
LPdoc

A Documentation Generator
for (C)LP Systems

Manuel Hermenegildo
herme@fi.upm.es

School of Computer Science

Technical University of Madrid (UPM)

CL2000
Imperial College, UK, July 28, 2000

(Work supported in part by Projects EDIPIA/ELLA/DiSCiPl)

LPdoc: A Documentation Generator for (C)LP Systems CL2000, Imperial College, UK — July 28, 2000

Slide 1

Introduction / Motivation

• Writing and, specially, maintaining program documentation is hard
→ automate process as much as possible.

• Objectives:

� Keep documentation close to source
(easy to keep in sync with the program – “Literate Programming”).

LPdoc: A Documentation Generator for (C)LP Systems CL2000, Imperial College, UK — July 28, 2000

Slide 1

Introduction / Motivation

• Writing and, specially, maintaining program documentation is hard
→ automate process as much as possible.

• Objectives:

� Keep documentation close to source
(easy to keep in sync with the program – “Literate Programming”).

� Be able to reuse typical program documentation.

LPdoc: A Documentation Generator for (C)LP Systems CL2000, Imperial College, UK — July 28, 2000

Slide 1

Introduction / Motivation

• Writing and, specially, maintaining program documentation is hard
→ automate process as much as possible.

• Objectives:

� Keep documentation close to source
(easy to keep in sync with the program – “Literate Programming”).

� Be able to reuse typical program documentation.

� Integrate closely with assertion language used in debugging/verification.

LPdoc: A Documentation Generator for (C)LP Systems CL2000, Imperial College, UK — July 28, 2000

Slide 1

Introduction / Motivation

• Writing and, specially, maintaining program documentation is hard
→ automate process as much as possible.

• Objectives:

� Keep documentation close to source
(easy to keep in sync with the program – “Literate Programming”).

� Be able to reuse typical program documentation.

� Integrate closely with assertion language used in debugging/verification.

� Produce useful documentation even if no comments or assertions in program.

LPdoc: A Documentation Generator for (C)LP Systems CL2000, Imperial College, UK — July 28, 2000

Slide 1

Introduction / Motivation

• Writing and, specially, maintaining program documentation is hard
→ automate process as much as possible.

• Objectives:

� Keep documentation close to source
(easy to keep in sync with the program – “Literate Programming”).

� Be able to reuse typical program documentation.

� Integrate closely with assertion language used in debugging/verification.

� Produce useful documentation even if no comments or assertions in program.

� Integrate in program development environment (e.g., version control system).

LPdoc: A Documentation Generator for (C)LP Systems CL2000, Imperial College, UK — July 28, 2000

Slide 1

Introduction / Motivation

• Writing and, specially, maintaining program documentation is hard
→ automate process as much as possible.

• Objectives:

� Keep documentation close to source
(easy to keep in sync with the program – “Literate Programming”).

� Be able to reuse typical program documentation.

� Integrate closely with assertion language used in debugging/verification.

� Produce useful documentation even if no comments or assertions in program.

� Integrate in program development environment (e.g., version control system).

� Allow complex manuals (indices, images, citations from BiBTeX dbs, etc.).

LPdoc: A Documentation Generator for (C)LP Systems CL2000, Imperial College, UK — July 28, 2000

Slide 1

Introduction / Motivation

• Writing and, specially, maintaining program documentation is hard
→ automate process as much as possible.

• Objectives:

� Keep documentation close to source
(easy to keep in sync with the program – “Literate Programming”).

� Be able to reuse typical program documentation.

� Integrate closely with assertion language used in debugging/verification.

� Produce useful documentation even if no comments or assertions in program.

� Integrate in program development environment (e.g., version control system).

� Allow complex manuals (indices, images, citations from BiBTeX dbs, etc.).

� Support many output formats.

LPdoc: A Documentation Generator for (C)LP Systems CL2000, Imperial College, UK — July 28, 2000

Slide 1

Introduction / Motivation

• Writing and, specially, maintaining program documentation is hard
→ automate process as much as possible.

• Objectives:

� Keep documentation close to source
(easy to keep in sync with the program – “Literate Programming”).

� Be able to reuse typical program documentation.

� Integrate closely with assertion language used in debugging/verification.

� Produce useful documentation even if no comments or assertions in program.

� Integrate in program development environment (e.g., version control system).

� Allow complex manuals (indices, images, citations from BiBTeX dbs, etc.).

� Support many output formats.

� Perform several related tasks (e.g., construction of distribution sites).

LPdoc: A Documentation Generator for (C)LP Systems CL2000, Imperial College, UK — July 28, 2000

Slide 1

Introduction / Motivation

• Writing and, specially, maintaining program documentation is hard
→ automate process as much as possible.

• Objectives:

� Keep documentation close to source
(easy to keep in sync with the program – “Literate Programming”).

� Be able to reuse typical program documentation.

� Integrate closely with assertion language used in debugging/verification.

� Produce useful documentation even if no comments or assertions in program.

� Integrate in program development environment (e.g., version control system).

� Allow complex manuals (indices, images, citations from BiBTeX dbs, etc.).

� Support many output formats.

� Perform several related tasks (e.g., construction of distribution sites).

� Allow text reuse in multiple places (e.g., manuals, readmes, distribution sites,
lists of manuals and sw packages, announcements, installation scripts, ...)

LPdoc: A Documentation Generator for (C)LP Systems CL2000, Imperial College, UK — July 28, 2000

Slide 1

Introduction / Motivation

• Writing and, specially, maintaining program documentation is hard
→ automate process as much as possible.

• Objectives:

� Keep documentation close to source
(easy to keep in sync with the program – “Literate Programming”).

� Be able to reuse typical program documentation.
� Integrate closely with assertion language used in debugging/verification.
� Produce useful documentation even if no comments or assertions in program.
� Integrate in program development environment (e.g., version control system).
� Allow complex manuals (indices, images, citations from BiBTeX dbs, etc.).
� Support many output formats.
� Perform several related tasks (e.g., construction of distribution sites).
� Allow text reuse in multiple places (e.g., manuals, readmes, distribution sites,

lists of manuals and sw packages, announcements, installation scripts, ...)
� Be largely (CLP) platform-independent and modular.

LPdoc: A Documentation Generator for (C)LP Systems CL2000, Imperial College, UK — July 28, 2000

Slide 2

Overall operation

...

lpdoc
Installation scripts

Index entries

WWW & info sites

User files

Sys. files

Main.pl

CompN.pl

SETTINGS Manuals, Readmes,...

Code + Assertions

css, templ,

texinfo

dvi, ps
pdf
hml
man
ascii, ...

info

Comp1.pl

LPdoc: A Documentation Generator for (C)LP Systems CL2000, Imperial College, UK — July 28, 2000

Slide 2

Overall operation

...

lpdoc
Installation scripts

Index entries

WWW & info sites

User files

Sys. files

Main.pl

CompN.pl

SETTINGS Manuals, Readmes,...

Code + Assertions

css, templ,

texinfo

dvi, ps
pdf
hml
man
ascii, ...

info

Comp1.pl

• Can be done via menus from emacs interface.

LPdoc: A Documentation Generator for (C)LP Systems CL2000, Imperial College, UK — July 28, 2000

Slide 2

Overall operation

...

lpdoc
Installation scripts

Index entries

WWW & info sites

User files

Sys. files

Main.pl

CompN.pl

SETTINGS Manuals, Readmes,...

Code + Assertions

css, templ,

texinfo

dvi, ps
pdf
hml
man
ascii, ...

info

Comp1.pl

• Can be done via menus from emacs interface.

• Or manually:

� Creating manual:
* Edit SETTINGS file
* lpdoc format (dvi, ps, html, ...)

� Viewing manual: lpdoc dviview, lpdoc htmlview, ...
� Installing manual: lpdoc install

� + cleanup, etc.

LPdoc: A Documentation Generator for (C)LP Systems CL2000, Imperial College, UK — July 28, 2000

Slide 3

Inputs

• Basic types of input files:

� Files to be documented (possibly including assertions and comments).

� Used but not documented (library) files
(e.g., system and user libraries: types, properties, reexports, etc.).

� SETTINGS, template files, HTML style (css files), etc.

LPdoc: A Documentation Generator for (C)LP Systems CL2000, Imperial College, UK — July 28, 2000

Slide 3

Inputs

• Basic types of input files:

� Files to be documented (possibly including assertions and comments).

� Used but not documented (library) files
(e.g., system and user libraries: types, properties, reexports, etc.).

� SETTINGS, template files, HTML style (css files), etc.

• SETTINGS:

� Determines main file and components.

� Defines the paths to be used to find files
(independent of the paths used by the LPdoc application itself).

� Selects indices (predicates, ops, declarations, properties, types, libraries,
concepts, authors, ...), options, etc.

� Defines location of BiBTeX file(s), HTML styles, etc.

� Defines document installation location, WWW site, etc.

LPdoc: A Documentation Generator for (C)LP Systems CL2000, Imperial College, UK — July 28, 2000

Slide 4

Assertions

• Assertions:

� Written in the Ciao assertion language.

� Declarations, used to:

* state general properties, types, modes, exceptions, ...
* of certain program points, predicate usages,

� Includes standard compiler directives (dynamic, meta_predicate, etc.).

� Have a certain qualifier: check, true, trust, ...

� Can include documentation text strings.

• LPdoc understands assertions natively and
uses them to generate the documentation.

LPdoc: A Documentation Generator for (C)LP Systems CL2000, Imperial College, UK — July 28, 2000

Slide 5

Assertions (Contd.)

• Examples – pred:

:- pred qsort(X,Y) : list(X) => sorted(Y)

"@var{Y} is a sorted permutation of @var{X}.".

• Examples – prop, regtype:

:- prop sorted(X) # "@var{X} is sorted.".

sorted([]).

sorted([_]).

sorted([X,Y|R]) :- X < Y, sorted([Y|R]).

:- regtype list(X) # "@var{X} is a list.".

list([]).

list([_|T]) :- list(T).

LPdoc: A Documentation Generator for (C)LP Systems CL2000, Imperial College, UK — July 28, 2000

Slide 6

Comments

• Declarations, typically containing textual comments:
:- comment(CommentType,CommentData).
(also: :- doc(CommentType,CommentData).)

• Examples:
:- comment(title,"Complex numbers library").

:- comment(summary,"Provides an ADT for complex numbers.").

:- comment(ctimes(X,Y,Z),"@var{Z} is @var{Y} times @var{X}.").

• Markup language, close to LaTeX/texinfo:
� Syntax: @command (followed by either a space or {}), or @command{body}.
� Command set kept small and somewhat generic, to be able to generate

documentation in a variety of formats.
� Names typically the same as in LaTeX.
� Types of commands:

* Indexing and referencing commands.
* Formatting commands.
* Inclusion commands, etc.

LPdoc: A Documentation Generator for (C)LP Systems CL2000, Imperial College, UK — July 28, 2000

Slide 7

Structure of generated documents

• Overall structure:

� Single file → simple manual without chapters.
� Multiple files:

* Main file gives title, author(s), version, summary, intro, etc.
* Other (“component”) files are chapters and appendices.

• Chapters:

� If file does not define main → assumed library, interface (API) documented.
else → assumed application, usage documented.

� Structure:
* Chapter title/subtitle (or file name if unavailable).
* Info on authors, version, copyright, ...
* Chapter intro.
* Interface (usage, exports, reexports, decls, ops, modules used, ...).
* Documentation for decls, preds, props, regtypes, multifiles, modedefs,...
* Bugs, changelog, appendices, ...

LPdoc: A Documentation Generator for (C)LP Systems CL2000, Imperial College, UK — July 28, 2000

Slide 8

Documentation of predicates, props, etc.

• If no declarations or comments:

� One line stating predicate name and arity
(useful: goes to index → automatic location, automatic completion).

� If property or regtype: source code (often best description).

• Comments for the predicate/property/regtype...

• All assertions, described in textual form (unless stated otherwise).

• pred assertions documented as “usages”.

• Comments associated with pred assertions used to describe the usages.

• Syntactic sugar (e.g., modes) can be documented as is or expanded.

• The text in properties is reflected into the predicates which use such properties
(also if property is imported from another module).

LPdoc: A Documentation Generator for (C)LP Systems CL2000, Imperial College, UK — July 28, 2000

Slide 9

Architecture and Implementation

• Standalone application (Ciao standalone executable).

• Uses the Ciao generic modular program processing library
(see the paper on the Ciao module system):

� We want to be fully modular and incremental.
� To support syntax extensions (ops, expansions, ...) the task requires a full

reader, precise module visibility, etc.

• System is indeed quite incremental (vital for, e.g., the Ciao manual).

assrt_lib
Auxiliary apps.

Back-ends

c_itf

doc. gen. rules

.asr files

CONFIG

Manuals

Index entries

Installation scripts

WWW & info sites

.pl files

• Size: 300K (dynamic) / 2.7 M (static).

• 11K lines Prolog + 12K lines from Ciao libraries + 1K misc (html/css, BiBTeX, ...).

LPdoc: A Documentation Generator for (C)LP Systems CL2000, Imperial College, UK — July 28, 2000

Slide 10

Comparison with other systems

• We are not aware of other systems with the capabilities of LPdoc.

• Some systems for pure “literate programming” in LP.
� Quite useful, but almost all text must be written manually.
� LPdoc goes much further and is much more automatic

(“knows at least as much as the compiler”).

• Some automatic documenters with more limited capability (e.g., Icon, Perl, ...).

• Closest system is javadoc (developed in parallel with LPdoc):
� Nicely formatted HTML manuals.
� Also uses information typically available to the compiler.
� Allows inclusion of textual comments in HTML format.

Disadvantages:

� Assrt. lang., treatment of props, markup, output formats, etc. richer in LPdoc.
� Perhaps too tied to HTML.
� Cannot show source code, as LPdoc.
� (+ the obvious one: tied to Java).

LPdoc: A Documentation Generator for (C)LP Systems CL2000, Imperial College, UK — July 28, 2000

Slide 11

Conclusions

• In use at CLIP since late 1996 (and elsewhere) → some user experience.

• Very good for reference manuals in general. Also for “internals” manuals.

• Most satisfactory for libraries (highest quality documentation with least effort).

• Somewhat stilted for user’s manuals, but still useful.

• Much easier to maintain documentation up to date.

• With practice, one can with moderate effort write assertions and comments that:

� document the program code,
� produce a manual documenting the use of the code,
� greatly improve the debugging and maintenance cycles (verification).

Writing assertions/comments more likely if effort pays off in several ways!

• All CLIP software manuals, web sites, etc. currently produced using LPdoc.

• Can be downloaded freely from http://www.clip.dia.fi.upm.es/Software.

• Can be adapted to other (C)LP systems and output formats.

LPdoc: A Documentation Generator for (C)LP Systems CL2000, Imperial College, UK — July 28, 2000

Slide 12

System Demo

• LPdoc

• The Ciao preprocessor – Ciaopp

� No assertions or comments.

� Add assertions, comments.

� Generate dvi, view

� Add citations.

� Generate html, view; info, view

� Add a figure. View in several formats.

� Manual cleanup for distribution/installation.

� Visit Ciao manual, show help on current symbol.

� Visit WWW site, collection of manuals.

� Style sheets.

SYSTEM DEMO

LPdoc: A Documentation Generator for (C)LP Systems CL2000, Imperial College, UK — July 28, 2000

