
Computational Logic

Abstract Interpretation of Logic Programs

1

Introduction

[Material partly from Cousot, Nielson, Gallagher, Sondergaard, Bruynooghe, and
others]

• Many CS problems related to program analysis / synthesis

• Prove that some property holds for program P

(program analysis)

• Alternatively: derive properties which do hold for program P

(program analysis)

• Given a program P , generate a program P ′ which is

� in some way equivalent to P

� behaves better than P w.r.t. some criteria

(program analysis / synthesis)

• Standard Approach:

� identify that some invariant holds, and
� specialize the program for the particular case

2

Program Analysis

• Frequent in compilers although seldom treated in a formal way:

� “code optimization”,

� “dead code elimination”,

� “code motion”,

� ...

[Aho, Ullman 77]

• Often referred to as “dataflow analysis”

• Abstract interpretation provides a formal framework
for developing program analysis tools

• Analysis phase + synthesis phase ≡
Abstract Interpretation + Program Transformation

3

What is abstract interpretation?

• Consider detecting that one branch will not be taken in:
int x, y, z; y := read(file); x := y ∗ y;

if x ≥ 0 then z := 1 else z := 0

� Exhaustive analysis in the standard domain: non-termination

� Human reasoning about programs – uses abstractions or approximations:
signs, order of magnitude, odd/even, ...

� Basic Idea: use approximate (generally finite) representations of computational
objects to make the problem of program dataflow analysis tractable

• Abstract interpretation is a formalization of this idea:

� define a non-standard semantics which can approximate the meaning
or behaviour of the program in a finite way

� expressions are computed over an approximate (abstract) domain rather than
the concrete domain (i.e., meaning of operators has to be reconsidered w.r.t.
this new domain)

4

Comparison to other methods

• Very general:
can be applied to any language with well defined (procedural or declarative)
semantics

• Automatic – (vs. proof methods)

• Static – not all possible runs actually tried (vs. model checking)

• Sound – no possible run omitted (vs. debugging)

5

Example: integer sign arithmetic

• Consider the domain D = Z (integers)

• and the multiplication operator: ∗ : Z2 → Z

• We define an “abstract domain”: Dα = {[−], [+]}

• Abstract multiplication: ∗α : D2
α → Dα defined by

∗α [−] [+]

[−] [+] [−]

[+] [−] [+]

• This allows us to reason, for example, that y = x2 = x ∗ x is never negative

• Some observations:

� The basis is that whenever we have z = x ∗ y then:
if x, y ∈ Z are approximated by xα, yα ∈ Dα

then z ∈ Z is approximated by zα = xα ∗α yα

� It is important to formalize this notion of approximation,
in order to be able to prove an analysis correct
� Approximate computation is generally less precise but faster (tradeoff)

6

Example: integer sign arithmetic (Contd.)

• Again, D = Z (integers)

• and: ∗ : Z2 → Z

• Let’s define a more refined “abstract domain”: D′α = {[−], [0], [+]}

• Abstract multiplication: ∗α : D′2α → D′α defined by

∗α [−] [0] [+]

[−] [+] [0] [−]

[0] [0] [0] [0]

[+] [−] [0] [+]

• This now allows us to reason that z = y ∗ (0 ∗ x) is zero

• Some observations:

� There is a degree of freedom in defining different abstract operators and
domains

� The minimal requirement is that they be “safe” or “correct”

� Different “safe” definitions result in different kinds of analyses

7

Example: integer sign arithmetic (Contd.)

• Again D = Z (integers)

• and the addition operator: + : Z2 → Z

• We cannot use D′α = {[−], [0], [+]} because we wouldn’t know how to represent
the result of [+] +α [−]

(i.e. our abstract addition would not be closed)

• New element “>” (supremum): approximation of any integer

• New “abstract domain”: D′′α = {[−], [0], [+],>}

• Abstract addition: +α : D′′2α → D′′α defined by:

+α [−] [0] [+] >

[−] [−] [−] > >
[0] [−] [0] [+] >
[+] > [+] [+] >
> > > > >

... (alt:

+α [−] [0] [+] >

[−] > > > >
[0] > > > >
[+] > > > >
> > > > >

)

• We can now reason that z = x2 + y2 is never negative

8

Important observations

• In addition to the imprecision due to the coarseness of Dα, the abstract versions
of the operations (dependent on Dα) may introduce further imprecision

• Thus, the choice of abstract domain and the definition of the abstract operators
are crucial

9

Issues in Abstract Interpretation

• Required:

� Correctness – safe approximations: because most “interesting” properties are
undecidable the analysis necessarily has to be approximate. We want to
ensure that the analysis is “conservative” and errs on the “safe side”
� Termination – compilation should definitely terminate

(note: not always the case in every day program analysis tools!)

• Desirable – “practicality”:

� Efficiency – in practice finite analysis time is not enough: finite and small
� Accuracy – of the collected information: depends on the appropriateness of

the abstract domain and the level of detail to which the interpretation
procedure mimics the semantics of the language
� “Usefulness” – determines which information is worth collecting

• The first two received the most attention initially (understandably)

• Last three recently studied empirically (e.g., for logic programs)

10

Safe Approximations

• Basic idea in approximation: for some property p we want to show that

∀x, x ∈ S ⇒ p(x)

Alternative: construct a set Sa ⊇ S, and prove

∀x, x ∈ Sa ⇒ p(x)

then, Sa is a safe approximation of S

• Approximation on functions: for some property p we want to show that

∀x, x ∈ S ⇒ p(F (x))

• A function
G : S → S

is a safe approximation of F if

∀x, x ∈ S, p(G(x))⇒ p(F (x))

11

Approximation of the meaning of a program

• Let the meaning of a program P be a mapping FP from input to output, input and
output values ∈ “standard” domain D:

FP : D → D

• Let’s ‘lift’ this meaning to map sets of inputs to sets of outputs

F ∗P : ℘(D)→ ℘(D)

where ℘(S) denotes the powerset of S, and

F ∗P (S) = {FP (x)|x ∈ S}

• A function
G : ℘(D)→ ℘(D)

is a safe approximation of F ∗P if

∀S, S ∈ ℘(D), G(S) ⊇ F ∗P (S)

• Properties can be proved using G instead of F ∗P

12

Approximation of the meaning of a program (Contd.)

• For some property p we want to show that
for some inputs S, p(F ∗P (S))

• We show that
for some inputs Sa, p(G(Sa))

• Since G(Sa) ⊇ F ∗P (Sa)

for some inputs Sa, p(F ∗P (Sa))

(Note: abuse of notation – F ∗P does not work on abstract values Sa)

• As long as F ∗P is monotonic:

Sa ⊇ S ⇒ F ∗P (Sa) ⊇ F ∗P (S)

• And since Sa ⊇ S, then:
for some inputs S, p(F ∗P (S))

13

Abstract Domain and Concretization Function

• The domain ℘(D) can be represented by an “abstract” domain Dα of finite
representations of (possibly) infinite objects in ℘(D)

• The representation of ℘(D) by Dα is expressed by a (monotonic) function called a
concretization function:

γ : Dα → ℘(D)

such that γ(λ) = d if d is the largest element (under ⊆) of ℘(D) that λ describes
[(℘(D),⊆) is obviously a complete lattice]

e.g. in the “signs” example, with Dα = {[−], [0], [+],>}, γ is given by

γ([−]) = {x ∈ Z|x < 0}
γ([0]) = {0}
γ([+]) = {x ∈ Z|x > 0}
γ(>) = Z

• γ(?) = ∅ → we define ⊥ | γ(⊥) = ∅

14

Abstraction Function

• We can also define (not strictly needed) a (monotonic) abstraction function

α : ℘(D)→ Dα

α(d) = λ if λ is the “least” element of Dα that describes d

[under a suitable ordering defined on the elements of Dα]

e.g. in the “signs” example,

α({1, 2, 3}) = [+] (and not >)
α({−1,−2,−3}) = [−] (and not >)
α({0}) = [0]

α({−1, 0, 1}) = >

#

"

!

#

"

!�
-

γ

α

Dα℘(D)

15

Abstract Meaning and Safety

• We can now define an abstract meaning function as

Fα : Dα → Dα

which is then safe if
∀λ, λ ∈ Dα, γ(Fα(λ)) ⊇ F ∗P (γ(λ))

hhh

h h

?

-

-
?

"""""Q
Q

Q
QQk

γ
⊇

Fα
α

γ

F ∗P

r

d

λr

λ

• We can then prove a property of the output of a given class of inputs represented
by λ by proving that all elements of γ(Fα(λ)) have such property

• E.g. in our example, a property such as “if this program takes a positive number it
will produce a negative number as output” can be proved

16

Proving properties in the abstract

• Generating Fα:

� FP obtained from program and predefined semantics of operators
(x + z) ∗ 3, FP = (x + z) ∗ 3

� Automatic analysis:
Fα should be obtainable from program and semantics of abstract operators
(compositional properties)
{odd, even, +α, ∗α} ⇒ Fα = (x +α z) ∗α odd

• “If this program takes a positive number it will produce a negative number as
output”

� P = (y := x ∗ −3), x input, y output

� FP = x ∗ −3

� Fα = x ∗α [−]

� Fα([+]) = [+] ∗α [−] = [−]

17

Collecting Semantics

• “Input-output” semantics often too coarse for useful analysis: information about
“state” at program points generally required→ “extended semantics”

• Program points can be reached many times, from different points, and in different
“states”→ “collecting” (“sticky”) semantics

{x > 3} y := x ∗ −3 {y < −9} or {x < −3} y := x ∗ −3 {y > 9}

{x = [+]} y := x ∗ −3 {y = [−]} or {x = [−]} y := x ∗ −3 {y = [+]}

• Analysis often computes a collection of abstract states for a program point

{x = {[+], [−]}} y := x ∗ −3 {y = {[−], [+]}}

• Often more efficient to “summarize” states into one which gives the best overall
description→ lattice structure in abstract domain

{x = t{[+], [−]}} y := x ∗ −3 {y = t{[−], [+]}}

18

Lattice Structure

• The ordering on ℘(D), ⊆, induces an ordering on Dα, ≤α (“approximates better”)

E.g., we can choose either α({1, 2, 3}) = [+] or α({1, 2, 3}) = >,
but γ([+]) = {x ∈ Z|x > 0} and γ(>) = Z, and
since {x ∈ Z|x > 0} ⊆ Z we have [+] ≤α >, i.e., [+] approximates better than >,
it is more precise

• It is generally required that (Dα,≤α) be a complete lattice

• Therefore, for all S ⊆ Dα there exists a unique least upper bound tS ∈ Dα –i.e.,
such that

� ∀λs ∈ S, λs ≤α tS

� (∀λs ∈ S, λs ≤α λ)⇒ tS ≤α λ

• Intuition: given a set of approximations of the “current state” at a given point in a
program, to ensure that it is the best “overall” description for the point:

� tS approximates everything the elements of S approximate

� tS is the best approximation in Dα

19

Example: integer sign arithmetic

• We consider Dα = {[−], [0], [+],>}

� We add ⊥ (infimum) so that α(∅) exists and to have a complete lattice:
Dα = {⊥, [−], [0], [+],>}

� (Intuition:
it represents a program point that is never reached)
� The concretization function has to be extended with

γ(⊥) = ∅

� The lattice is then given by:

!!!!!!!!!!aaaaaaaaaa

aaaaaaaaaa

!!!!!!!!!!
[+][0][−]

⊥

>

� t{[+], [−]} = t{[−], [+]} = >

20

Example: integer sign arithmetic (Contd.)

• To make t more meaningful we consider Dα = {⊥, [−], [0−], [0], [0+], [+],>}

γ(⊥) = ∅ γ(>) = Z

γ([−]) = {x ∈ Z|x < 0} γ([+]) = {x ∈ Z|x > 0} γ([0]) = {0}
γ([0−]) = {x ∈ Z|x ≤ 0} γ([0+]) = {x ∈ Z|x ≥ 0}

• The lattice is then given by: t{[+], [−]} = >?

"""""bbbbb

"""""bbbbb"""""bbbbb

!!!!!!!!!!aaaaaaaaaa

""
""

""
"" bb

bb
bb

bb

[0+]

[0][−]

⊥

>

[+]

[0−] [+−]

• t{[−], [0]} = [0−]

accurately represents a program point where a variable can be negative or zero

21

The Galois Insertion Approach

• In the following, we will refer to ℘(D) simply as D

• (Collecting) program semantics is often given as lfp (F) (the least S s.t. S = F (S),
F being the program-dependent semantic function on D)

• Thus, we need to relate this fixpoint to (that of) the approximate semantic function
Fα (which approximates F and operates on elements of an abstract domain Dα)

• Assume: D and Dα are complete lattices; γ : Dα → D and α : D → Dα are
monotonic functions. The structure (Dα, γ, D, α) is called a Galois Insertion if:

� ∀λ ∈ Dα.λ = α(γ(λ))

� ∀d ∈ D.d ⊆ γ(α(d))

• Safe approximation, defined now in terms of a Galois insertion:
Let a Galois insertion (Dα, γ, D, α), λ ∈ Dα safely approximates d ∈ D iff d ⊆ γ(λ)

• Fundamental Theorem [Cousot]: Given a Galois insertion (Dα, γ, D, α), and two
(monotonic) functions F : D → D and Fα : Dα → Dα then if Fα approximates F ,
lfp (Fα) approximates lfp (F)

22

Termination: conditions on Fα and Dα

• The question is whether lfp (Fα) is finitely computable

• The abstract operator Fα operates on elements of an abstract domain Dα,
which we have required to be a complete lattice,
and Fα is monotonic, therefore
lfp Fα = Fα↑n
for some n which we would like to be finite
(i.e. we would like the Kleene sequence to be finite)

• Recalling the characteristics of fixpoints on lattices, the Kleene sequence will be
finite in cases including:

� Dα is finite

� Dα is ascending chain finite

23

Lattice Structures

��ZZ

#
##c

cc�
�c

cc

bbbbb�
�

�
��

>

d e

a b c

⊥

finite

!!!!!!!!!!!

���������

�
�

�
�

�
��

Q
Q

Q
Q

Q
QQ

PPPPPPPPPPPPP

aaaaaaaaaaa

S
S

S

�
�

�

�
�

�
��

�
�

�
�

�
��

!!!!!!!!!!!

���������

�������������

J
J

J
JJ

�
�

�

S
S

S

�
�

�

@
@

@
@@

Q
Q

Q
Q

Q
QQ

aaaaaaaaaaa

PPPPPPPPPPPPP

... inf ...

... inf ...

⊥

>

finite depth

ascending chain finite

>

1

2

3

4

⊥

24

Termination: Discussion

• Showing monotonicity of Fα may be more difficult than showing that Dα meets the
finiteness conditions

• There may be an Fα which terminates even if the conditions are not met

• Conditions also be relaxed by restricting the class of programs (e.g. non-recursive
programs pose few difficulties, although they are hardly interesting)

• In some cases an approximation from above (gfp (Fα)) can also be interesting

• There are other alternatives to finiteness: dynamic bounded depth, etc.
(See: Widening and Narrowing)

25

Origins (General Programming)

• The idea itself (i.e. rule of signs) predates computation...

• The idea of computing by approximations was used as early as 1963 by Naur
(“pseudo evaluation”, in the Gier Algol compiler),
“a process which combines the operators and operands of the source text in the manner in which an actual evaluation

would have to do it, but which operates on descriptions of the operands, not on their values”

• 1972, Sintzoff (proving well-formedness and termination properties)

• 1975, Wegbreit appears to be the first to develop a lattice-theoretic model

• Mid 70’s: Kam, Kindall, Tarjan, Ullman, ...

• 1976,77, Patrick and Radhia Cousot proposed a formal model for the analysis of
imperative (“flowchart”) languages: unifying framework

� Define a “static” semantics: associate a set of possible storage states with
each program point

� Dataflow analysis constructed then as a finitely computable approximation to
the static semantics

26

Analyzing Logic Programs

• Which semantics?

� Declarative semantics: concerned with what is a consequence of the program

* Model-theoretic semantics
* Fixpoint (TP operator-based) semantics

can be what the program actually does (cf. database-style bottom-up
evaluation)

� Operational semantics: close to the behavior of the program

* SLD-resolution based (success sets)
* Denotational
* Can cover possibilities other that SLD: reactive, parallel, ...

• Analyses based on declarative semantics are often called “bottom up” analyses

• Analysis based on the (top-down) operational semantics are often called
“top-down” analyses

• Also, intermediate cases (generally achieved through program transformation)

27

Case Study: Fixpoint Semantics

• Given the first-order language L associated with a given program P , the Herbrand
universe (U) is the set of all ground terms of L.

• The Herbrand Base (B) is the set of all ground atoms of L.

• A Herbrand Interpretation is a subset of B.
I is the set of all Herbrand interpretations (℘(B)).

• A Herbrand Model is a Herbrand interpretation which contains all logical
consequences of the program.

• The Immediate Consequence Operator (TP) is a mapping TP : I → I defined by:

TP (M) = {h ∈ B | ∃C ∈ ground(P), C = h← b1, ..., bn and b1, . . . bn ∈M}

(in particular, if (a←) ∈ P , then ground(a) ⊆ TP (M), for every M).

• TP is monotonic, so it has a least fixpoint lfp(TP) which can be obtained as TP ↑ω
starting from the bottom element of the lattice (the empty interpretation, ∅).

• (Characterization Theorem) [Van Emden and Kowalski]:
The Least Herbrand Model of P , H is lfp (TP)

28

Fixpoint Semantics: Example

• Example:

P = { p(f (X))← p(X).

p(a).

q(a).

q(b). }

U = {a, b, f (a), f (b), f (f (a)), f (f (b)), . . .}
B = {p(a), p(b), q(a), q(b), p(f (a)), p(f (b)), q(f (a)), . . .}
I = all subsets of B

H = {q(a), q(b), p(a), p(f (a)), p(f (f (a))), . . .}

TP ↑0 = {p(a), q(a), q(b)}
TP ↑1 = {p(a), q(a), q(b), p(f (a))}
TP ↑2 = {p(a), q(a), q(b), p(f (a)), p(f (f (a)))}
. . .

TP ↑ω = H

29

“Bottom-up” Abstract Interpretation

• Finds an approximation of H by approximating lfp (TP)

• We apply abstract interpretation:

� Domain: Iα, s.t. elements of Iα approximate elements of I = ℘(B).
� Concretization function: γ : Iα → I

� Abstraction function: α : I → Iα

� Operator abstraction: abstract version of the TP operator T α
P : Iα → Iα

� Correctness:
* (Iα, γ, I, α) should be a Galois insertion, i.e. , Iα complete lattice and it

should approximate I: ∀M ∈ I, γ(α(M)) ⊇M

* T α
P safe approximation of TP , i.e. ∀d, d ∈ Iα, γ(T α

P (d)) ⊇ TP (γ(d))

� Termination:
* T α

P monotonic.
* Iα (at least) ascending chain finite.

• Then, Hα = lfp (T α
P) = T α

P ↑n will be obtained in a finite number of steps n

and Hα will approximate H.

30

“Bottom-up” Abstract Interpretation (Contd.)

'

&

$

%

'

&

$

%

'

&

$

%�

6

�
�
�
�

�
�

�
�����������)�

�
�
�
�
�
�
��
���������1

?

-

T α
P ↑n

T α
P

γ

Iα

α

TP ↑ω

TP

℘(BP)
I =

P

Such “bottom-up” analyses have been proposed for example by Marriott and
Sondergaard, and, more recently, by Codish, Dams, and Yardeni, Debray and
Ramakrishnan, Barbuti, Giacobazzi, and Levi, and others.

31

Example: simple “type” inference

• Minimal “type inferencing” problem [Sondergaard]:
Approximating which predicates are in H

• pred(a): denotes the predicate symbol for an atom a

• Bα = S (set of predicate symbols in a program P)
Then Iα = ℘(S), we call it S∗

• Concretization function:
γ : S∗ → I

γ(D) = {a ∈ B | pred(a) ∈ D}

• Abstraction function:
α : I → S∗

α(M) = {p ∈ S | ∃a ∈M, pred(a) = p}

• (S∗, γ, I, α) is a Galois insertion

32

Example: simple “type” inference (Contd.)

• Abstract version of TP (after some simplification):
T α

P : S∗ → S∗

T α
P (D) = { p ∈ S | ∃C ∈ P,

C = h← b1, . . . , bn,

pred(h)← pred(b1), . . . , pred(bn) ≡ p← p1, . . . , pn,

and p1, . . . , pn ∈ D}

• S∗ finite (finite number of predicate symbols in program) and T α
P monotonic

→
analysis will terminate in a finite number of steps n and
Hα = T α

P ↑n approximates H.

33

Example: simple “type” inference (Contd.)

• Example:

P = { p(f (X))← p(X). Pα = { p← p.

p(a). p.

r(X)← t(X, Y). r ← t.

q(a). q.

q(b). } }

� S = {p/1, q/1, r/1, t/2}

� Abstraction:
α({p(a), p(b), q(a)}) = {p/1, q/1}

� Concretization:

γ({p/1, q/1}) = {A ∈ B | pred(A) = p/1 ∨ pred(A) = q/1}
= {p(a), p(b), p(f (a)), p(f (b)), . . . , q(a), q(b), q(f (a)), . . .}

� Analysis:
T α

P ↑0 = T α
P (∅) = {p/1, q/1}

T α
P ↑1 = T α

P ({p/1, q/1}) = {p/1, q/1} = T α
P ↑0 = Hα

34

TP -based Bottom-up Analysis: Discussion

• Advantages:

� Simple and elegant. Based on the declarative, fixpoint semantics

� General: results independent of the query form

• Disadvantages:

� Information only about “procedure exit.” Normally information needed at
various program points in compilation, e.g., “call patterns” (closures)

� The “logical variable” not observed (uses ground data). Information on
instantiation state, substitutions, etc. often needed in compilation

� Not query-directed: analyzes whole program, not the part (and modes) that
correspond to “normal” use (expressed through a query form)

35

TP -based Bottom-up Analysis: Discussion (II)

• Solutions:

� Call patterns obtainable via “magic sets” transformation
[Marriott and Sondergaard]
Used also for query-directed analysis by [Barbuti et al.], [Codish et al.],
[Gallagher et al.], [Ramakrishnan et al.], and others

� Enhanced fixpoint semantics
(e.g, S-semantics [Falaschi et al.], [Gaifman and Shapiro])

36

“Top-down” analysis (summarized)

• Define an extended (collecting) concrete semantics, derived from SLD resolution,
making relevant information observable.

• Abstract domain: generally “abstract substitutions”.

• Abstract operations: unification, composition, projection, extension, ...

• Abstract semantic function: takes a query form (abstraction of initial goal or set of
initial goals) and the program and returns abstract descriptions of the
substitutions at relevant program points.

• Variables complicate things:

� correctness (due to aliasing),

� termination (merging information related to different renamings of a variable)

• Logic variables are in fact (well behaved) pointers:
X = tree(N,L,R), L = nil, Y = N, Y = 3, ...

this makes analysis of logic programs very interesting
(and quite relevant to other paradigms).

37

Domains

• Simple domains [Mellish,Debray], e.g.:
{ closed (ground), don’t know, empty, free, non-var }
(e.g. f (a), ?, ⊥, X, f (X))

• May need to be very imprecise to be correct:

:- entry p(X,Y) : (free(X), free(Y)).

p(X,Y) :-

q(X,Y),

X = a.

q(Z,Z).

• Correct/more accurate treatment of aliasing [Debray]:
associate with a program variable a pair
< abstraction of the set of terms the variable may be bound to ,

set of program variables it may “share” with >.

38

Domains: Pair Sharing

• More accurate sharing – pair sharing [Sondergaard] [Codish]:
pairs of variables denoting possible sharing.

:- entry p(X,Y) : (free(X), free(Y)).

p(X,Y) :-

q(X,Y), % { X=f, Y=f } and { (X,Y) }

X = a. % { X=g, Y=g } and { (X,Y) }

q(Z,Z).

• Note: we have used a “combined” domain: simple modes plus pair sharing

• Pair sharing can encode linearity: (x, x)

:- entry p(X,Y) : (free(X), free(Y)).

p(X,Y) :-

q(X,Y), % { X=f, Y=f } and { (X,Y) }

W = f(X,Y). % { W=nv, X=f, Y=f } and { (W,W), (X,Y) }

q(Z,Z).

39

Domains: Set Sharing

• Even more accurate sharing – set sharing [Jacobs et al.] [Muthukumar et al.]:
sets of sets of variables.
θ = {W/a, X/f (A1, A2, A3), Y/g(A2), Z/A3}
θα = {∅, {X}, {X, Y }, {X, Z}}

• A bit tricky to understand. Try:
{X} {X, Y } {X, Z}
A1 A2 A3

θ = {W/a, X/f (A1, A2, A3, B1), Y/g(h(A2, B1)), Z/A3}
θα = {∅, {X}, {X, Y }, {X, Z}}

{X} {X, Y } {X, Z}
A1 A2 + B1 A3

• Encodes grounding and independence

� W has no ocurrence in any set: it is ground

� {Y, Z} has no ocurrence in any set: they are independent

40

Other domains

• Sharing+Freeness [Muthukumar et al.] (and + depth-K)

• Type graphs [Janssens et al.]

• Depth-K [Sato and Tamaki]

• Pattern structure [Van Hentenryck et al.]

• Variable dereferencing [VanRoy] [Taylor]

• ...

• Much work by [Codish et al.] [File et al.] [Giacobazzi et al.] ... on combining and
comparing these domains

41

Frameworks

• Debray: predicate level mode inference (call and success patterns for predicates).
Unification reformulated as entry + exit unification. Termination by tabling.

• Jones, Marriott, and Sondergaard: using denotational semantics.

• Bruynooghe:

� Concrete semantics constructs “generalized” AND trees: nodes contain
instance of goal before and after execution: call substitution and success
substitution.
� Analysis constructs “abstract AND-OR trees”. Each represents a (possibly

infinite) set of (possibly infinite) concrete trees. Widening to regular trees for
termination.
� Framework is generic: parametric on some basic domain related functions +

conditions for correctness and termination.

• Muthukumar and Hermenegildo: “PLAI” framework.
Improvement over previous frameworks: Efficient fixpoint algorithms (dependency
tracking) and memory savings (no explicit representation of trees).

42

Abstract AND-OR Tree

• Tree exploration: ?- p. h:- p1,...,pn.

p

h1 hm

λcall λsuccess

β1entry β1exit βmentry βmexit.......

h

p1 pnλ1 λ2 λn λn+1......

(a) (b)

• Basic operations:

� Procedure entry: from λcall obtain β1entry

� Entry-to-exit (b): from β1entry obtain β1exit

� Clause entry: from β1entry obtain λ1 (and clause exit)
� Body traversal: from λ1 obtain λn+1 (iteratively applying (a))
� Procedure exit: from (each or all of the) βiexit

obtain λsuccess

43

Fixpoint Optimization

• Fixpoint required on recursive predicates only:

p

p

λ λ′

λ λ′

....

....

....

....

...

δ q δ′

δ q δ′

λ p λ′

(a) (b)

• Simply recursive (a)

• Mutually recursive (b)

“Use current success substitution and iterate until a fixpoint is reached”

44

Other Improvements

• Abstract tree contains several occurrences of the same atom in a clause (for
precision): useful for program specialization
(Multivariance)

However, too many versions if not controlled
(solutions proposed [Gianotti et al.], [Jacobs et al.], [Puebla et al.])

• Much recent work in domains, improvement of fixpoints, application, etc.
[Taylor],[VanRoy], GAIA [LeCharlier et al.]

• Abstract compilation:
Compute over and “abstract version” of the program

• Reexecution [Bruynooghe, LeCharlier et. al.]
(alternative to keeping track of accurate sharing)

• Caching of operations [LeCharlier et al.]

45

Analysis of Constraint Logic Programs

• CLP: (relation-based) programs over symbolic and non symbolic domains:
constraint satisfaction instead unification (e.g. CLP(R), PrologIII, CHIP, etc.)

• Jorgensen, Marriott, and Michaylov [ISLP’91] and later Marriott and Stuckey
[POPL’93] identified numerous opportunities for improvement via static analysis

• A number of proposals for analysis frameworks:

� Marriott and Sondergaard [NACLP90]:
denotational approach

� Codognet and Filé [ICPL92]:
uses constraint solving for the analysis itself and “abstract compilation”

� G. de la Banda and Hermenegildo [WICLP’91,ILPS’93]:
adaptation of LP frameworks (PLAI).

46

Analysis of Constraint Logic Programs (Contd.)

• Example: Definiteness analysis (Def) [G. de la Banda et al.]
Domain: Def = {d, ℘(℘(Pvar)),>})

X = Y + Z ⇒ [(X, [[Y, Z]]), (Y, [[X, Z]]), (Z, [[X, Y]])]

X = f (Y, Z) ⇒ [(X, [[Y, Z]]), (Y, [[X]]), (Z, [[X]])]

X :: N ⇒ [(X,>), (N, [[X]])]

X > Y ⇒ [(X,>), (Y,>)]

X = 3 ⇒ [(X, d)]

• Other analyses:

� Freeness analysis [Dumortier et al.] and combinations.

� LSign [Marriott, Sondergaard and Stuckey, ILPS’94]

• Applications:

� optimization [Keely et al., CP’96]

� parallelization [Bueno et al., PLILP’96]

� ...

47

Origins (Declarative Paradigms, to CLP)

• A few milestones (on the road to CLP analysis):

� 1981, Mycroft: strictness analysis of applicative languages
� 1981, Mellish: proposes application to logic programs
� 1986, Debray: framework with safe treatment of logic variables, discussion of

efficiency
� 1987, Bruynooghe: framework for LP based on and-or trees
� 1987, Jones and Sondergaard: framework based on a denotational definition

of SLD
� 1988, Warren, Debray and Hermenegildo: Ms and MA3 practicality of Abs.

Int. for Logic Programs shown (for program parallelization)
� 1989, Muthukumar and Hermenegildo: PLAI generic system
� 1990, Van Roy / Taylor: application to sequential optimization of Prolog
� 1991, Marriott et al.: first extension to CLP
� 1992, Garcia de la Banda and Hermenegildo: generalization of Bruynooghe’s

algorithm to CLP, extension of PLAI

48

Conclusions

• Abstract Interpretation is a very elegant program analysis technique

• It has in addition been proved useful and efficient. E.g., for LP and CLP:

� Static parallelization of logic (and CLP) programs [Hermenegildo et al]

� (Sequential) program optimization [Taylor, VanRoy, ...]

� Optimization of CLP programs [Marriott et al, ...]

� Abstract debugging, etc.

49

Conclusions (and Coda!)

• Interesting issues studied for handling large real programs:

� Modularity

� Handling extra-logical features, higher order

� Handling dynamic code

� Support of test-debug cycle

Solutions include [See, e.g., papers in ESOP’96, SAS’96]:

� Module interface definition: modular analysis

� Analysis of “Full Prolog”

� Incremental analysis

• Demo!

50

