Computational Logic

Automated Deduction Fundamentals

Elements of First-Order Predicate Logic

First Order Language:

- An alphabet consists of the following classes of symbols:
 - 1. variables denoted by X, Y, Z, Boo, ..., (infinite)
 - **2**. *constants* denoted by 1, a, boo, john, ...,
 - **3**. *functors* denoted by f, g, +, -, ..,
 - 4. predicate symbols denoted by p, q, dog, ...,
 - 5. connectives, which are: \neg (negation), \lor (disjunction), \land (conjunction), \rightarrow (implication) and \leftrightarrow (equivalence),
 - 6. *quantifiers*, which are: \exists (there exists) and \forall (for all),
 - 7. parentheses, which are: (and) and the comma, that is: ",".
- Each functor and predicate symbol has a fixed *arity*, they are often represented in *Functor/Arity* form, e.g. f/3.
- A constant can be seen as a functor of arity 0.
- Propositions are represented by a predicate symbol of arity 0.

Terms and Atoms

We define by induction two classes of strings of symbols over a given alphabet.

• The class of terms:

◊ a variable is a term,

a constant is a term,

 \diamond if *f* is an *n*-ary functor and $t_1, ..., t_n$ are terms then $f(t_1, ..., t_n)$ is a term.

• The class of atoms (different from LP!):

a proposition is an atom,

 \diamond if p is an n-ary pred. symbol and $t_1, ..., t_n$ are terms then $p(t_1, ..., t_n)$ is an atom,

 \diamond true and false are atoms.

• The class of Well Formed Formulas (WFFs):

◊ an atom is a WFF,

 \diamond if F and G are WFFs then so are $\neg F, (F \lor G), (F \land G), (F \to G)$ and $(F \leftrightarrow G)$,

 \diamond if *F* is a WFF and *X* is a variable then $\exists X F$ and $\forall X F$ are WFF.

• Literal: positive or negative (non-negated or negated) atom.

Examples

Examples of Terms

• Given:

- ◊ constants: a, b, c, 1, spot, john...
- ◊ functors: f/1, g/3, h/2, +/3...
- ◊ variables: X, L, Y...
- Correct: spot, f(john), f(X), +(1,2,3), +(X,Y,L), f(f(spot)), h(f(h(1,2)),L)
- Incorrect: spot(X), +(1,2), g, f(f(h))

Examples of Literals

• Given the elements above and:

o predicate symbols: dog/1, p/2, q/0, r/0, barks/1...

- Correct: q, r, dog(spot), p(X,f(john))...
- Incorrect: q(X), barks(f), dog(barks(X))

More about WFFs

- Allow us to represent knowledge and reason about it
 - Marcus was a man
 - Marcus was a pompeian
 - All pompeians were romans
 - Caesar was a ruler

man(marcus)

pompeian(marcus)

 $\forall X \text{ pompeian}(X) \rightarrow \text{roman}(X)$

ruler(caesar)

- ◇ All romans were loyal to Caesar or they hated him $\forall X \text{ roman}(X) \rightarrow \text{loyalto}(X, \text{caesar}) \lor \text{hate}(X, \text{caesar})$
- Everyone is loyal to someone

 $\forall X \exists Y loyalto(X, Y)$

- We can now reason about this knowledge using standard deductive mechanisms.
- But there is in principle no guarantee that we will prove a given theorem.

Towards Effi cient Automated Deduction

- Automated deduction is search.
- Complexity of search: directly dependent on branching factor at nodes (exponentially!).
- It is vital to cut down the branching factor:
 - Canonical representation of nodes (allows identifying identical nodes).
 - As few inference rules as possible.

Towards Effi cient Automated Deduction (Contd.)

Clausal Form

- The complete set of logical operators (\leftarrow , \land , \lor , \neg ,...) is redundant.
- A minimal (canonical) form would be interesting.
- It would be interesting to separate the quantifiers from the rest of the formula so that they did not need to be considered.
- It would also be nice if the formula were flat (i.e. no parenthesis).
- Conjunctive normal form has these properties [Davis 1960].

Deduction Mechanism

• A good example:

Resolution – only two inference rules (Resolution rule and Replacement rule).

Classical Clausal Form: Conjunctive Normal Form

General formulas are converted to:

◊ Set of Clauses.

- Clauses are in a logical conjunction.
- \diamond A clause is a disjunction of the form. $literal_1 \lor literal_2 \lor \ldots \lor literal_n$
- \diamond The *literal*_i are negated or non-negated atoms.
- ◇ All variables are implicitly universally quantified: i.e. if $X_1, ..., X_k$ are the variables that appear in a clause it represents the formula: $\forall X_1, ..., X_k$ literal₁ ∨ literal₂ ∨ ... ∨ literal_n
- Any formula can be converted to clausal form automatically by:
 - 1. Converting to Prenex form.
 - 2. Converting to conjunctive normal form (conjunction of disjunctions).
 - 3. Converting to Skolem form (eliminating existential quantifiers).
 - 4. Eliminating universal quantifiers.
 - 5. Separating conjunctions into clauses.
- The *unsatisfiability* of a system is preserved.

Substitutions

- A substitution is a finite mapping from variables to terms, written as $\theta = \{X_1/t_1, ..., X_n/t_n\}$ where
 - \diamond the variables $X_1, ..., X_n$ are different,
 - \diamond for $i = 1, ..., n X_i \neg \equiv t_i$.
- A pair X_i/t_i is called a binding.
- $domain(\theta) = \{X_1, ..., X_n\}$ and $range(\theta) = vars(\{t_1, ..., t_n\}).$
- If $range(\theta) = \emptyset$ then θ is called ground.
- If θ is a bijective mapping from variables to variables then θ is called a renaming.
- Examples:

 $\diamond \ \theta_1 = \{X/f(A), Y/X, Z/h(b, Y), W/a\}$ $\diamond \ \theta_2 = \{X/a, Y/a, Z/h(b, c), W/f(d)\} \text{ (ground)}$ $\diamond \ \theta_3 = \{X/A, Y/B, Z/C, W/D\} \text{ (renaming)}$

Substitutions (Contd.)

- Substitutions operate on *expressions*, i.e. a term, a sequence of literals or a clause, denoted by *E*.
- The application of θ to E (denoted $E\theta$) is obtained by *simultaneously* replacing each occurrence in E of X_i by t_i , $X_i/t_i \in \theta$.
- The resulting expression $E\theta$ is called an *instance* of E.
- If θ is a renaming then $E\theta$ is called a *variant* of E.
- Example:

 $\begin{aligned} \theta_1 &= \{X/f(A), Y/X, Z/h(b,Y), W/a\} \\ p(X,Y,X) \; \theta_1 &= p(f(A), X, f(A)) \end{aligned}$

Composition of Substitutions

• Given $\theta = \{X_1/t_1, ..., X_n/t_n\}$ and $\eta = \{Y_1/s_1, ..., Y_m/s_m\}$ their *composition* $\theta\eta$ is defined by removing from the set

{ $X_1/t_1\eta, ..., X_n/t_n\eta, Y_1/s_1, ..., Y_m/s_m$ }

those pairs $X_i/t_i\eta$ for which $X_i \equiv t_i\eta$, as well as those pairs Y_i/s_i for which $Y_i \in \{X_1, ..., X_n\}$.

- Example: if $\theta = \{X/3, Y/f(X, 1)\}$ and $\eta = \{X/4\}$ then $\theta \eta = \{X/3, Y/f(4, 1)\}$.
- For all substitutions θ, η and γ and an expression E
 - i) $(E\theta)\eta \equiv E(\theta\eta)$ ii) $(\theta\eta)\gamma = \theta(\eta\gamma)$.
- θ is more general than η if for some γ we have $\eta = \theta \gamma$.
- Example: $\theta = \{X/f(Y)\}$ more general than $\eta = \{X/f(h(G))\}$

Unifi ers

- If $A\theta \equiv B\theta$, then
 - $\diamond \theta$ is called a *unifier* of A and B
 - $\diamond A$ and B are unifiable
- A unifier *θ* of *A* and *B* is called a *most general unifier* (*mgu*) if it is *more general* than any other unifier of *A* and *B*.
- If two atoms are unifiable then they have a most general unifier.
- θ is idempotent if $\theta \theta = \theta$.
- A unifier θ of A and B is relevant if all variables appearing either in $domain(\theta)$ or in $range(\theta)$, also appear in A or B.
- If two atoms are unifiable then they have an mgu which is idempotent and relevant.
- An mgu is unique up to renaming.

Unifi cation Algorithm

• Non-deterministically choose from the set of equations an equation of a form below and perform the associated action.

1.
$$f(s_1, ..., s_n) = f(t_1, ..., t_n) \rightarrow \text{replace by } s_1 = t_1, ..., s_n = t_n$$

2.
$$f(s_1, ..., s_n) = g(t_1, ..., t_m)$$
 where $f \not\equiv g \rightarrow$ halt with failure

- **3**. $X = X \rightarrow$ delete the equation
- 4. t = X where t is not a variable \rightarrow replace by the equation X = t
- 5. X = t where $X \not\equiv t$ and X has another occurrence in the set of equations \rightarrow

5.1 if X appears in t then halt with failure

5.2 otherwise apply $\{X/t\}$ to every other equation

• Consider the set of equations $\{f(x) = f(f(z)), g(a, y) = g(a, x)\}$:

$$\diamond$$
 (1) produces $\{x=f(z),g(a,y)=g(a,x)\}$

$$\diamond$$
 then (1) yields $\{x=f(z), a=a, y=x\}$

♦ (3) produces
$$\{x = f(z), y = x\}$$

 \diamond now only (5) can be applied, giving $\{x=f(z),y=f(z)\}$

No step can be applied, the algorithm successfully terminates.

Unifi cation Algorithm revisited

• Let A and B be two formulas:

1. $\theta = \epsilon$

2. while $A\theta \neq B\theta$:

2.1 find leftmost symbol in $A\theta$ s.t. the corresponding symbol in $B\theta$ is different 2.2 let t_A and t_B be the terms in $A\theta$ and $B\theta$ starting with those symbols

(a) if neither t_A nor t_B are variables or one is a variable occurring in the other \rightarrow halt with failure

(b) otherwise, let t_A be a variable \rightarrow the new θ is the result of $\theta\{t_A/t_B\}$

3. end with θ being an m.g.u. of A and B

Unifi cation Algorithm revisited (Contd.)

• Example:
$$A = p(X, X) B = p(f(A), f(B))$$

heta	A heta	B heta	Element
ϵ	p(X,X)	p(f(A),f(B))	$\{X/f(A)\}$
$\{X/f(A)\}$	p(f(A),f(A))	p(f(A),f(B))	$\{A/B\}$
$\{X/f(B),A/B\}$	p(f(B),f(B))	p(f(B),f(B))	

• Example: A = p(X, f(Y)) B = p(Z, X)

heta	A heta	B heta	Element
ϵ	p(X,f(Y))	p(Z,X)	$\{X/Z\}$
$\{X/Z\}$	p(Z,f(Y))	p(Z,Z)	$\{Z/f(Y)\}$
$\{X/f(Y),Z/f(Y)\}$	p(f(Y),f(Y))	p(f(Y),f(Y))	

Resolution with Variables

• It is a *formal system* with:

◊ A first order language with the following formulas:

* Clauses: without repetition, and without an order among their literals.

* The empty clause \Box .

An empty set of axioms.

◊ Two inference rules: resolution and replacement.

Resolution with Variables (Contd.)

• Resolution:

$$r_1: A \lor F_1 \lor \cdots \lor F_n$$

$$r_2: \neg B \lor G_1 \lor \cdots \lor G_m$$

$$((F_1 \lor \cdots \lor F_n)\sigma \lor G_1 \lor \cdots \lor G_m)\theta$$

where

- $\diamond A$ and B are unifiable with substitution θ
- $\diamond \sigma$ is a renaming s.t. $(A \lor F_1 \lor \cdots \lor F_n)\sigma$ and $\neg B \lor G_1 \lor \cdots \lor G_m$ have no variables in common

 $\diamond \theta$ is the m.g.u. of $A\sigma$ and B

The resulting clause is called the *resolvent* of r_1 and r_2 .

• Replacement: $A \lor B \lor F_1 \lor \cdots \lor F_n \Rightarrow (A \lor F_1 \lor \cdots \lor F_n)\theta$ where

 $\diamond A$ and B are unifiable atoms

 $\diamond \theta$ is the m.g.u. of A and B

19

Basic Properties

- Resolution is *correct* i.e. all conclusions obtained using it are valid.
- There is no guarantee of directly deriving a given theorem.
- However, resolution (under certain assumptions) is refutation complete: if we have a set of clauses $K = [C_0, C_1, \dots, C_n]$ and it is inconsistent then resolution will arrive at the empty clause \Box in a finite number of steps.
- Therefore, a valid theorem (or a question that has an answer) is guaranteed to be provable by refutation. To prove "p" given $K_0 = [C_0, C_1, \dots, C_n]$:
 - **1**. Negate it $(\neg p)$.
 - **2.** Construct $K = [\neg p, C_0, C_1, ..., C_n]$.
 - 3. Apply resolution steps repeatedly to K.
- Furthermore, we can obtain answers by composing the substitutions along a path that leads to □ (very important for realizing Greene's dream!).
- It is important to use a good method in applying the resolution steps i.e. in building the resolution tree (or proof tree).
- Again, the main issue is to reduce the branching factor.

Proof Tree

- Given a set of clauses $K = \{C_0, C_1, \dots, C_n\}$ the proof tree of K is a tree s.t. :
 - \diamond the root is C_0
 - \diamond the branch from the root starts with the nodes labeled with C_0, C_1, \cdots, C_n
 - \diamond the descendent nodes of C_n are labeled by clauses obtained from the parent clauses using resolution
 - \diamond a derivation in K is a branch of the proof tree of K
- The derivation $C_0C_1\cdots C_nF_0\cdots F_m$ is denoted as $K, F_0\cdots F_m$

Proof Tree (Contd.)

• Example: part of the proof tree for K, with:

22

Characteristics of the Proof Tree

• It can be infinite: $K = [p(e), \neg p(X) \lor p(f(X))]$ $p(e) \equiv C0$

$$\neg p(X) \vee p(f(X)) \equiv C1$$

$$p(f(e)) \qquad \Theta = \{X/e\}$$

$$p(f(f(e))) \qquad \Theta = \{X/f(e)\}$$

- Even if it is finite, it can be too large to be explored efficiently
- Aim: determine some criteria to limit the number of derivations and the way in which the tree is explored ⇒ strategy
- Any strategy based on this tree is correct: if □ appears in a subtree of the proof tree of *K*, then □ can be derived from *K* and therefore *K* is unsatisfiable

General Strategies

• Depth-first with backtracking: First descendant to the left; if failure or □ then backtrack

General Strategies (Contd.) (Contd.)

• Iterative deepening

- Advance depth-first for a time.
- After a certain depth, switch to another branch as in breadth-first.

- Completeness issues / possible types of branches:
 - Success (always finite)
 - ◊ Finite failure
 - Infinite failure (provably infinite branches)
 - Non-provably infinite branches

Linear Strategies

- Those which only explore linear derivations
- A derivation $K, F_0 \cdots F_m$ is linear if
 - \diamond F_0 is obtained by resolution or replacement using C_0
 - $\diamond F_i, i < 0$ is obtained by resolution or replacement using F_{i-1}

Characteristics of these Strategies

- 1 If \Box can be derived from *K* by using resolution with variables, it can also be derived by linear resolution
- 2 Let *K* be $K' \cup \{C_0\}$ where K' is a satisfiable set of clauses, i.e. \Box cannot be derived from K' by using resolution with variables. If \Box can be derived from *K* by using resolution with variables it can also be derived by linear resolution with root C_0 .
- From (1), if the strategy is breadth first, it is complete.
- From (2), if we want to prove that *B* is derived form K^{c} then we can apply linear resolution to $K = K^{c} \cup \{\neg B\}$. $\kappa_{=[p(e), \neg p(X) \vee p(f(X)), \neg p(X)]}$
- Depth first with backtracking is not complete:

Input Strategies

- Those which only explore input derivations
- A derivation $K, F_0 \cdots F_m$ is input if
 - \diamond F_0 is obtained by resolution or replacement using C_0
 - $\diamond F_i, i < 0$ is obtained by resolution or replacement using at least a clause in K

Input Strategies

- In an input derivation, if F_{i-1} does not appear in any derivation of a successor clause, it can be eliminated from the derivation without changing the result
- If F_{i-1} appears in the derivation of F_j , j > 1, F_{i-1} can be allocated in position j-1
- As a result, we can limit ourselves to linear input derivations without losing any input derivable clause
- Let K be Kⁱ ∪ {C₀} where □ is derived by using resolution with variables, C₀ is a negative Horn clause and all clauses in Kⁱ are positive Horn clauses. There is an input derivation with root C₀ finishing in □ and in which the replacement rule is not used (Hernschen 1974)
- A Horn clause is a clause in which at most one literal is positive:

it is *positive* if precisely one literal is positive

- it is negative if all literals are negatives
- As a result, in those conditions, a breadth first input strategy is complete, and a depth first input strategy with backtracking is complete if the tree is finite.

Ordered Strategies

- We consider a new formal system in which:
 - 1. clauses are ordered sets
 - 2. ordered resolution of two clauses

 $A = p_1 \vee \cdots \vee p_n \text{ and } B = q_1 \vee \cdots \vee q_m$

where p_1 is a positive literal and q_1 is a negative literal is possible iff $\neg p_1$ and $\sigma(q_1)$ are unifiable (σ is a renaming, s.t. p_1 and $\sigma(q_1)$ have no variables in common)

- **3.** the resolvent of *A* and *B* is $\theta(p_2 \lor \cdots \lor p_n \lor \sigma(q_2 \lor \cdots \lor q_m))$ where θ is an m.g.u of $\neg p_1$ and $\sigma(q_1)$
- Let K = Kⁱ ∪ {C₀} be a set of clauses s.t. □ is derived by using resolution with variables, C₀ is a negative Horn clause and all clauses in Kⁱ are positive Horn clauses with the positive literal in the first place. There is a sorted input derivation with root C₀ arriving at □.
- In this context a sorted linear input with:
 - breadth first: is complete
 - o depth first with backtracking: is complete if the tree is finite