J. LOGIC PROGRAMMING 1997:32, 3:247-261 247

EXPLOITING GOAL INDEPENDENCE IN
THE ANALYSIS OF LOGIC PROGRAMS

MICHAEL CODISH

MAURICE BRUYNOOGHE
MARIA GARCIA DE LA BANDA
MANUEL HERMENEGILDO

>

This paper illustrates the use of a top-down framework to obtain goal
independent analyses of logic programs, a task which is usually associated
with the bottom-up approach. While it is well known that the bottom-
up approach can be used, through the magic set transformation, for goal
dependent analysis, it is less known that the top-down approach can be used
for goal independent analysis. The paper describes two ways of doing the
latter. We show how the results of a goal independent analysis can be used
to speed up subsequent goal dependent analyses. However this speed-up
may result in a loss of precision. The influence of domain characteristics on
this precision is discussed and an experimental evaluation using a generic
top-down analyzer is described.

1. INTRODUCTION

The framework of abstract interpretation [12] provides the basis for a semantic
approach to data-flow analysis. A program analysis is viewed as a non-standard

Address correspondence to M. Codish, Department of Mathematics and Computer Science,
Ben-Gurion University, Israel or email: codish@bengus.bgu.ac.il; mbanda@cs.monash.edu.au;
maurice@cs.kuleuven.ac.be; herme@fi.upm.es. A preliminary version of this paper appeared as
[5] This research was supported in part by CEC DGXIII ESPRIT Project “PRINCE”, CEC
HCM-project ABILE (CHRX-CT94-0624), CEC DGIII EC-Israel collaborative activity, ISC-IL-
90-PARFORCE and CICYT project IPL-D. M. Codish was supported by a post doctoral fellowship
from K.U. Leuven. Maria José Garcia de la Banda was supported in part by a Spanish Ministry
of Education Grant. M. Bruynooghe is supported by the Belgium National Fund for Scientific
Research.

THE JOURNAL OF LOGIC PROGRAMMING

© Elsevier Science Inc., 1997
655 Avenue of the Americas, New York, NY 10010 97/$7.00

248

CODISH, BRUYNOOGHE, GARCIA DE LA BANDA, HERMENEGILDO

semantics defined over a domain of data descriptions where the syntactic constructs
in the program are given corresponding non-standard interpretations. For a given
language, different choices of a semantic basis for abstract interpretation may lead
to different approaches to analysis of programs in that language. For logic programs
we distinguish between two main approaches which have been termed: “bottom-up
analysis” and “top-down analysis” [20]. Bottom-up analyses are typically based
on abstractions of bottom-up semantics such as the classic Tp semantics, while
top-down analyses are typically based on abstractions of top-down semantics such
as the SLD semantics. In addition, we distinguish between “goal dependent” and
“goal independent” analyses. Intuitively, a goal dependent analysis provides infor-
mation about the possible behaviors of a specified set of initial goals and a given
logic program. In contrast, a goal independent analysis considers the program in
isolation.

Traditionally, the standard meaning of a logic program P is given as the set
of ground atoms in P’s vocabulary which are implied by P. The development
of top-down analysis frameworks was originally driven by the need to abstract
not only the declarative meaning of programs, but also their behavior. To this
end it is straightforward to enrich the operational SLD semantics into a collecting
semantics which captures call patterns (i.e. how particular predicates are activated
while searching for refutations), and success patterns (i.e. how call patterns are
instantiated by the refutation of the involved predicate). Consequently, it is quite
natural to apply a top-down approach to derive goal dependent analyses.

Falaschi et al. [14] introduce the s-semantics which bridges the gap between the
declarative bottom-up semantics and the operational top-down semantics for logic
programs. This semantics basically consists of a non-ground version of the bottom-
up Tp operator. The meaning of a program is a set of possibly non-ground atoms
which can later be applied to determine the answers for arbitrary initial goals. This
semantics is the basis for a number of frameworks for the bottom-up analysis of
logic programs [1, 4]. An analysis based on the abstraction of this semantics is
naturally viewed as goal independent. It computes an abstraction of the answers
to most general queries which in turn can be used to determine abstract answers
to arbitrary queries.

Bottom-up computations have also been used for query evaluation in the context
of deductive databases where “magic sets” and related transformation techniques
are applied to make the evaluation process goal dependent. These same techniques
have also been applied to enable bottom-up frameworks of abstract interpretation
to support goal dependent analysis (see [4] for a list of references). In contrast,
the practical application of top-down frameworks for goal independent analysis has
received little attention.

This paper describes the application of a top-down framework of abstract in-
terpretation to the goal independent analysis of logic programs. An immediate
benefit is to make goal independent analyses readily available using existing top-
down frameworks.

2. TOP-DOWN GOAL INDEPENDENT ANALYSIS

Falaschi et al. [14] illustrate that the computed answers for an arbitrary initial goal
G with a program P can be obtained by solving G in the s-semantics of P. Various

EXPLOITING GOAL INDEPENDENCE IN THE ANALYSIS OF LOGIC PROGRAMS 249

bottom-up frameworks of abstract interpretation for logic programs (e.g. [1, 4])
take advantage of this fact to provide for the goal independent bottom-up analysis
of logic programs. It is straightforward to apply also a top-down framework to
provide for such goal independent analyses. This follows from the observation [14]
that the s-semantics, [P] of a program P is determined by:

[P] = { p(@)p | P/ € pred(P) and 8 is a }

computed answer for p(Z)

where Z is an n-tuple of distinct variables and pred(P) is the set of predicate
symbols defined in P. An approximation of the s semantics of a program can be
obtained in a top-down framework by analyzing the set of “most general” initial
goal descriptions (p(Z); k) where p/n is a predicate in P and k. is the (most precise)
description of the empty substitution, for the abstract domain at hand. The same
result can be obtained with a single application of the top-down framework by
adding to P the set of clauses

{ analyze + p(z) | p/n € pred(P) }

where analyze/0 ¢ pred(P). In this way, starting the analysis with the initial call
pattern (analyze; k¢) there is a call pattern (p(Z); k) for every p/n € pred(P). We
will refer to this transformation as the naive transformation and the corresponding
analysis as the naive analysis.

The experimental results described in this paper are obtained using the top-down
framework, PLAI, described in [23]. However, the proposed techniques are general
and typically described in terms of source level transformations. Consequently, it is
straightforward to provide similar functionalities using other top-down frameworks
based on [2] such as for example those described in [19] (GATA) and in [17] (AMAI).

The experiments described in this paper are based on three well known abstract
domains: Prop [9, 11, 18], Sharing [16, 23] and ASub [24]. For sharing analysis,
data descriptions are represented as lists of lists of variables which appear as com-
ments in the text of the program. The information describes properties of possible
substitutions when execution reaches different points in the clause. The informa-
tion given after the clause head describes properties of variables after performing
head unification. The information given after each subgoal describes properties of
variables after executing the clause body up to and including that subgoal.

Ezample 1. Consider the following simple program P:
length(Y,N) :- length(Y,0,N).

length([],N,N).
length([X|Xs],N1,N):- N2 is N1+1, length(Xs,N2,N).

The naive transformation adds the following clauses to P:
analyze:- length(X,Y).
analyze:- length(X,Y,Z).

A top-down Sharing analysis of the transformed program with the initial call pat-
tern (analyse;[]) gives the following annotations:

(1) analyze :- w[[X1,[Y1]
length(X,Y). wLIX1]
(2) analyze :- #Lx1,[Y1, [21]

250

CODISH, BRUYNOOGHE, GARCIA DE LA BANDA, HERMENEGILDO

length(X,Y,Z). wL0x1,[Y,2]1]

(3) length(Y,N) :- wL0Yl, N1]
length(Y,0,N). %LLY1]

(4) 1length([],N,N). AR

(5) length([X|Xs],N1,N) :- %CIN1], [N, [X], [X,Xs], [Xs], [N2]]
N2 is Ni+1, %LIND, [X], [X,Xs], [Xs]]
length(Xs,N2,N). L[X1,[X,Xs], [Xs]]

Intuitively, each list [v1,...,v,] in an annotation represents a set of clause vari-

ables and specifies that there may be a runtime environment in which these are
exactly the variables which are bound to terms containing a common variable z.
If a variable v does not occur in any list, then there is no variable that may occur
in the terms to which v is bound and thus those terms are definitely ground. If a
variable v appears only in a singleton list, then the terms to which it is bound may
contain only variables which do not appear in any other term. For example, after
executing the recursive call in clause (5) the variables N, N1 and N2 are ground
while X and Xs possibly share.

The analysis provides also the following information indicating the set of call
and success patterns:

|| Atom || Call Pattern | Success Pattern ||
analyze [] []
length(A,B,C) || [[Al,[B1,[C]] | [[A],[B,C]]
length(A,B) [[A], [B]] [[A]]
length(A,0,B) || [[A],[B]] [[A]]
length(A,B,C) || [[A],[CI] [[A]]

The first three rows in this table provide the goal independent information as ob-
tained in a bottom-up analysis. The other two rows correspond to information
inferred for additional call patterns which arise in the course of the analysis. For a
more detailed description of the Sharing domain see [16] and [23]. O

Observe that the analysis described in Example 1 is inefficient in that it provides
information concerning call patterns which are not required in a goal independent
analysis. A more efficient goal independent analysis is obtained by transforming the
program so that all of the calls in the body of a clause are “flat” and involve only
fresh variables. As a consequence, any call encountered in the top-down analysis is
in its most general form and corresponds to the most general call patterns required
by a goal independent analysis. In the sequel this transformation is referred to as
the efficient transformation and involves replacing each call of the form ¢(%) in a
clause body by q(z),z = t'where z are fresh variables. The corresponding analysis
is called the efficient analysis.

Example 2. Applying the efficient transformation to the program in Example 1
gives:

INote however that, due to the transformation, the abstraction of built-ins such as is/2 has
to be adapted. See the discussion at the end of Section 4.

EXPLOITING GOAL INDEPENDENCE IN THE ANALYSIS OF LOGIC PROGRAMS 251

analyze:- length(X,Y). length([],N,N).
analyze:- length(X,Y,Z). length([X|Xs],N1,N) :-
N2 is Ni+1,
length(Y,N) :- length(Xsa,N2a,Na),
length(Ya,Ma,Na), <Xsa,N2a,Na> = <Xs,N2,N>.

<Y,0,N> = <Ya,Ma,Na>.

A goal independent analysis of this program eliminates the last two rows in the
table of Example 1. O

This paper illustrates that the “efficient” transformation often provides a sub-
stantial speed-up over the “naive” approach. However, for some types of domains,
there can be a loss of precision which can exceptionally also increase the cost of the
analysis. This is discussed in Section 4.

Finally, we would like to point out the strong similarities between the efficient
analysis described above, and a bottom-up analysis which traverses the clause bod-
ies from left to right. Consider the analysis of a call p(t) in some clause body under
a data description k;. The bottom-up analyser solves the atom p(f) against the
abstraction of the s-semantics of the atom p/n (by analysing an equality z = 1)
and uses the result to update k; into a data description x;. The top-down effi-
cient analysis solves p(Z),Z = t under a data description k; which differs from
k; in expressing that Z are fresh variables. In doing this, it first analyses p(Z) by
computing an abstraction of the s-semantics of p/n (or looks it up if it has been
computed before) and using this result to update the description of Z in ;. Then,
it performs the analysis of Z = ¢ which has the effect of solving the call p() against
the abstracted s-semantics of p/n and of updating the data description into a ;.
Assuming that the same abstraction of the s-semantics of p/n is used, one can
expect that x;/, after projecting out the variables z, is the same as ;.

3. REUSING GOAL INDEPENDENT INFORMATION

In this section we illustrate how the results of a goal independent analysis can
be used (and reused) to derive goal dependent information. There are two issues
involved: (1) using the result of the analysis to obtain abstract answers for an
abstract call; and (2) using the result of the analysis to obtain an approximation
of the set of call patterns which arise in the computation of a given initial call
pattern. The first issue is extensively discussed in the literature, both for top-down
frameworks as proposed by [16] and in the context of bottom-up frameworks as
described in [1] and [4]. Basically, the abstract answers for a given call pattern are
obtained by “solving” the call using the result of the goal independent phase. Also
the second issue is considered in the literature. The basic concept, underlying the
Magic-set transformation, is a recursive specification of the set of activated calls,

for example as described in [1] and as formalized in [15]: (1) if a1,...,a4,..., G is
an initial goal then a;6 is a call if is an answer for ay,...,a; 1 (in particular a; is
a call); and (2) if b < by,...,b;,...,b, is a (renamed) program clause, a is a call,

mgu(a, h) = 0 and ¢ is an answer of (by,...,b;—1)8 then b;f¢p is a call.
Our contribution is to perform this collection of activated call patterns efficiently
from within a top-down analysis framework. Given the results of a goal independent

252

CODISH, BRUYNOOGHE, GARCIA DE LA BANDA, HERMENEGILDO

analysis for P and an initial call pattern G, the call patterns for P and G are
collected in a single pass over the program without performing any form of fixpoint
iteration.

We illustrate the approach with an example.

Example 8. Consider a Sharing analysis of the following simple Prolog program.

q(O,_,_,_,_,V,V) .
q(S(A) ,X,Y,Z,W,U,V) e q(A,Z,WsU,V:X,Y) .

The result of the goal independent analysis is:

Atom Call Pattern
q(A,X,Y,Z,w,u,Vv) | [[A],[X],[Y],[Z],[w], [Ul,[V]1]
Success Pattern

[Lx1, [X,v1, Y1, [z], [Z,w], [W], [U], [U,V], [V]]

This result is obtained after three iterations, for both the naive and the efficient
analysis. In the first iteration, the analysis of the base clause yields sharing groups
[X1,[Y],[Z],[W] and [U,V]. During the analysis of the recursive clause, it is
observed that the recursive call q(A,Z,W,U,V,X,Y) has the same call pattern as
the original query. Thus, in order not to go into an infinite loop, the success
pattern obtained so far (from the base clause) is used to estimate its success pattern.
This yields the additional sharing groups [U], [V] and [X,Y]. The second iteration
reanalyzes the second clause, now using the success pattern of the first iteration to
handle the recursive call and finds the additional share group [Z,W]. After the third
iteration no new sharing groups are found and, therefore, a fixpoint is reached.

Now consider a goal dependent analysis for a query q(A,X,Y,Z,W,U,V) with the
call pattern [[X], [Y],[Z], W], [U],[V]1] (ie., Ais ground). A standard top-down
analysis will exhibit the same behavior illustrated above, i.e., it will require three
iterations deriving as success patterns the sharing groups [X], [Y],[Z], [W] and
[U, V] for the base case, plus [U], [V] and [X,Y] for the first iteration, and [Z,W] for
the second iteration. However, if the results of a goal independent analysis are avail-
able, the goal dependent analysis can be sped-up as follows. The analysis of the base
case proceeds as usual, obtaining the sharing groups [X], [Y], [Z], [W] and [U,V].
During the analysis of the recursive clause it is observed that the recursive call has
the same call pattern as the original query. Hence, rather than using the success pat-
tern of the base case to proceed, the analysis can use the goal independent analysis
to derive the final result by performing an abstract conjunction of the goal indpen-
dent information ([[X], [X,Y],[Y],[Z],[Z,w], [W], (U], [U,V], [V]])?with the call
pattern ([[X1,[Y]1,[Z],[w],[Ul,[V1]). The result of the abstract conjunction
(CCx1,[x,Y1,0v¥1,021,[z,w],[w], (U], [U,V],[V]]) is known to be a safe data
description for the program point following the recursive call. This information is
propagated to the query and no iteration is required.

This does not imply that each predicate is analyzed only once. Consider the

2The result of the goal-independent analysis is stored as a pair call pattern-success pattern,
e.g. for a binary predicate p/2, a pair could be [[X1][X2]] [[X1][X1,X2]]. For a normalized call,
e.g. p(A, B), the success pattern is simply renamed into [[A][A,B]]. For an unnormalized call,
additionally an abstract unification has to be performed, e.g. for P(f(A), B) the success pattern
is renamed into [[X1][X1,B]] and, additionally, the unification X1=f(A) is abstracted yielding
[[x1,A1,[x1,A,B]1].

EXPLOITING GOAL INDEPENDENCE IN THE ANALYSIS OF LOGIC PROGRAMS 253

same query, but with call pattern [[X,Y],[Z],[w],[U],[V]]. During the anal-
ysis of the recursive clause, the goal dependent analysis (both the standard as
well as our “reuse” version) creates a new call pattern [[X1,[Y],[Z],[wW],[U,VI].
Analyzing the predicate for this pattern yields yet another call pattern, namely
[[x1,[Y],[Z,w], [U], [VI]. The analysis of the recursive clause for this third pat-
tern creates for the recursive call the same pattern as the initial call. At this point
the traditional goal dependent analysis would use the result for the base clause and
start iterations for each of the nested calls created during the analysis (A quite
complex process as the calls are nested, but which a system as PLAI performs in a
clever way to minimize the overall work.). However, if goal independent information
is available, the analysis can reuse such information yielding a safe data description
that will be propagated to the rest of the calls without the need for any iteration.

4. DOMAIN DEPENDENT ISSUES
There are several domain-dependent issues which significantly affect the precision
of a program analysis. The following example illustrates that a naive top-down

analysis can provide a more precise analysis for some programs.

Exzample 4. Consider the following program:

naive :- efficient :-
Y=f(X,_), Z=f(X,_), Y=f(X,_), Z=f(X,_),
q(Y,2). q(U,V), <U,V> = <Y,Z>

q(A,B) :- A = f(a,a).
q(A,B) :- B = f(a,a).

where the predicates naive/0 and efficient/0 correspond to our two different
approaches for goal independent analysis.

A top-down analysis based on the Sharing domain infers the groundness of X
in naive/0 but not in efficient/0. The reason is that ¢(Y,Z) is called with
pattern [[Y],[Z],[X,Y, Z]]. After the analysis of ¢(Y,Z), although the Sharing
domain cannot express that either Y or Z are ground, it definitely knows that they
cannot share, and thus X must be ground. On the other hand ¢(U,V) is called
with pattern [[U],[V],[Y],[Z],[X,Y, Z]]. If the groundness of either U or V could
be inferred after ¢(U, V'), then the groundness of X could have been inferred due to
(U,V) = (Y, Z). Unfortunately, the fact that U and V do not share after q(U,V)
does not imply the groundness of X, and therefore this information is lost. O

The above example illustrates that the precision of an analysis is highly depen-
dent on the ability of the underlying abstract domain to capture information which
enables a good propagation of the property being analyzed.

Jacobs and Langen [16] prove that analyzing p(?) and analyzing p(Z),T =t are
guaranteed to be equally precise when they involve an abstract unification function

254

CODISH, BRUYNOOGHE, GARCIA DE LA BANDA, HERMENEGILDO

which is idempotent, commutative and additive. Consequently, under these condi-
tions, the naive and efficient goal independent analysis are equally precise as well as
the standard one phase and our two phase goal dependent analysis. Idempotence
implies that repeating abstract unification does not change the result. Commuta-
tivity allows abstract unification to be performed in any order. Finally, additivity
guarantees that precision is not lost when performing least upper bounds. These
conditions impose a restriction on the abstract domain which must support an ab-
stract unification algorithm satisfying these properties. Marriott and Sgndergaard
refine the terminology introducing the notion of a condensing domain [21]. It is
interesting to note that most of the domains used in practice are not additive,
and many not even commutative or idempotent. Consequently, the answer to the
question can we benefit from goal independent analyses (top-down or bottom-up)
remains an issue for practical experimentation.

In the remainder of the paper we describe an experimental investigation involv-
ing the three well known abstract domains, Prop, Sharing and ASub. Note that
Prop comes equipped with an abstract unification operation which is idempotent,
commutative and additive; Sharing with an operation which is idempotent and com-
mutative; and ASub with an operation which is additive. Our choice of domains is
intended to illustrate the influence of domain properties on its ability to support
precise and efficient goal independent analysis. For a comparison of these three
domains see [10].

It is interesting to note that domain properties such as idempotence, commuta-
tivity and additivity have more influence on goal independent than on goal depen-
dent analyses. This is because, operations in a goal independent analysis involve
“more general” substitutions as there is no propogation of inputs from an initial
goal. Consequently, accuracy can be lost in weaker domains and may also slow
down analyses in domains where loss of accuracy incurs larger representations. As
an example, in ASub, when groundness information propagates from an initial goal,
the inability of the domain to capture groundness dependencies has less effect on
accuracy than in a goal independent analysis. In fact we observe in [7] that the
groundness information obtained with ASwub is essentially the same as that obtained
with Sharing in a goal dependent setting (for a rich set of benchmarks). We rea-
son that most real Prolog programs tend to propagate groundness in a top-down
manner. However, the absence of such properties becomes more relevant in goal-
independent analyses, although less important in naive top-down analyses than in
bottom-up or efficient top-down analyses.

Another important issue concerns the analysis of Prolog built-ins. In standard
top-down analysis, the data descriptions in a program point describe the substitu-
tions which are possible at that point during the actual execution of the program.
This can be exploited in defining the abstraction of built-ins. Consider for example
an abstract domain which captures definite freeness information. In a standard top-
down analysis if we know that the clause p(X,Y) :- ground(X), Y=a is called
with X a free variable then we may assume that the clause fails. This is no longer
the case when performing a goal independent analysis (whether naive or efficient).
Here one has to abstract the built-ins under the assumption that the substitutions
which occur during the execution are not only those described by the data descrip-
tions, but also their instances. As a free variable can have ground instances, failure
cannot be assumed in the above example. However, it remains valid to claim that X
is ground after executing the built-in. So, when doing a goal independent analysis,

EXPLOITING GOAL INDEPENDENCE IN THE ANALYSIS OF LOGIC PROGRAMS 255

all abstractions of built-ins have to be reconsidered.

5. OBJECTIVES, EXPERIMENTS AND RESULTS

Our objective is to illustrate the relative impact of the issues discussed in the
previous sections on efficiency and accuracy of goal independent analyses. We
compare the standard top-down, goal dependent analysis with the alternative two
phase analysis which first infers goal independent information and then reuses it
to obtain goal dependent information for given initial goals. For goal independent
analyses we compare the naive and efficient approaches described in Section 2. The
experiments focus on the domains ASub, Sharing, and Prop. For Prop the analyzer
is run on an abstract version of the program as described in [6]. The benchmark
programs are the same as those used in [7]3and they range in size from 2 clauses
with 5 variables (occurrences) to 227 clauses with 869 variables. All analyses are
obtained using SICStus 2.1 (native code) on a SPARC10. All times are in seconds.

Prop Sharing ASub
Name | GI¥/[GI" [Size” G’ GI* [Size" [A || GI¥/] GI" [Size” | A
init 0.2 3.3 | 2.9/7 0.9 | 173.5 | 6.7/12 0 0.2 04 | 2.7/6 0
seri 0.5 9.1 | 2.8/8 0.7 3.0 | 5.3/12 0 0.2 0.2 | 2.0/4 0
map 0.1 1.1 | 2.2/4 1.4 1.9 | 5.2/7 0 0.2 0.3 | 2.0/5 0
gram | 0.1 | 0.1 | 1.4/2 0.1 0.1 | 3.7/5 0 0.0 00][o0.7/1 0
brow 0.3 2.5 | 1.8/3 3.9 14.0 | 5.2/12 0 0.3 1.1 | 1.3/4 12
bid 0.2 1.9 | 1.7/3 0.5 1.4 | 3.8/8 0 0.3 1.0 | 0.8/3 5
derv 0.6 2.1 | 2.3/6 0.8 1.9 | 5.4/9 0 0.6 2.1 | 1.7/3 0
rdtk 0.3 1.2 | 1.7/4 0.7 1.5 | 4.8/8 0 0.7 1.0 | 1.3/3 33
read 2.3 | 93.7 | 3.1/26 10.6 | 206.0 | 8.4/67 4 2.1 9.3 | 1.3/9 4
boyr 0.7 6.3 | 2.6/9 3.7 75 | 6.1/35 0 0.7 1.1 | 2.3/11 0
peep 24 | 15.7 | 4.6/11 33.4 19.4 | 10.8/24 0 1.8 2.9 | 3.4/6 0
ann 1.8 | 69.2 | 2.9/10 418.1 | 381.8 | 11.0/60 6 2.9 | 11.5 | 4.2/19 3

TABLE 1. Goal Independent results

Table 1 presents the results of the goal independent experiments for the three
domains considered. For each benchmark program (in the Name column) the table
describes the following information:

e GI¢/: time for the efficient top-down goal independent analysis.
e GI™: time for the naive top-down goal independent analysis.

o Size": A measure of the average/maximal sizes of the results given by the
naive goal independent analyses: For Prop, the number of disjuncts in the
resulting disjunctive normal forms; for Sharing, the number of lists of vari-
ables in the lists of lists representations; and for ASub, the number of pairs
of variables in the corresponding abstract substitutions.

3Benchmark names abbreviated as follows: init (init_susbt), seri (serialize), map (map-color),
gram (grammar), brow (browse), derv (deriv), rdtk (rdtok), boyr (boyer), peep (peephole).

256

CODISH, BRUYNOOGHE, GARCIA DE LA BANDA, HERMENEGILDO

GDreuwse GDstandard
Name Query Tm | LU | Size Tm | >1] >2
init(X,Y,Z,W) | XAY 1.1/1.3 58 6.6/7 1.0 0 0
X 1.2/1.4 66 6.0/7 1.2 3 1
true 1.2/14 66 6.0/7 1.2 3 1
seri(X,Y) X 5.7/6.2 | 161 | 6.9/8 || 13.7 | 74 | 32
true 6.0/6.5 | 189 6.3/8 14.5 88 41
map(X,Y,Z,W) | X 1.0/1.1 | 64 | 3.0/4 15| 26| 11
gram(X,Y) true 0.1/0.2 0 0.0/0 0.1 0 0
brow(X,Y) XAY 1.8/2.1 | 123 2.2/3 2.9 49 17
true 1.0/1.3 93 2.1/3 1.9 48 17
bid(X,Y,Z) XAYAZ 0.3/0.5 14 2.4/3 0.3 0 0
derv(X,Y,Z) XAY 0.4/1.0 | 30 | 2.3/6 04] 0] 0
X 0.4/1.0 30 2.3/6 0.4 0 0
rdtk(X,Y) true 1.2/1.5 55 2.3/3 2.2 28 12
read(X,Y) X 1.7/2.0 | 57 | 2.4/5 24| 15| 7
true 17.0/19.3 | 241 | 2.7/26 135.7 | 753 | 424
boyr(X) X 2.5/3.2 92 2.8/9 4.6 | 122 72
true 2.6/3.3 89 2.8/9 4.8 | 120 67
peep(X,Y) X 2.8/5.2 | 146 3.1/5 6.0 | 98 | 47
true 10.2/12.6 | 412 3.6/5 24.7 | 202 | 104
ann(X,Y) true 12.7/14.5 | 488 3.0/6 58.4 | 217 95

TABLE 2. Prop results

A: the percentage of predicates for which the analysis using GI®/ is less
accurate than that obtained by GI™.*

Tables 2, 3, and 4 present the results of the goal dependent experiments for
the Prop, Sharing, and Asub domains respectively. For each benchmark program
the Name and Query columns describe the program, the arguments of its top-
level predicate and several initial goal patterns (for Prop, a propositional formula

on the

variables of the top-level predicate). The results for the goal dependent

analyses (with look-up and standard) are given under the headings GD"¢%*¢ and
GDs#terdard | The other columns describe:

Tm: the time for the respective analyses, for GD"*“*¢, times exclusive /
inclusive the time for the efficient goal independent analysis are given;

LU: the number of look-ups into the goal independent phase;

Size: a measure of the average/maximal sizes of the answers for the looked
up queries (gives a rough idea of the complexity of the abstract unification
operations involved);

>1 and >2: the number of fixed point computations that take more than
one and two iterations. These are the non-trivial computations. Note that
the last iteration usually takes much less time than the others. Thus, the
>2 computations are bound to be more costly than those which involve only
two iterations;

4Only for Sharing and ASub (for Prop both techniques give identical results).

EXPLOITING GOAL INDEPENDENCE IN THE ANALYSIS OF LOGIC PROGRAMS 257

GDreuse GDstandard A

Name Query Tm | LU | Size Tm | >1] >2 %
init(X,Y,Z,W) Z),[W] 02/1.1] 9] 8.0/10 0.2 0 0 0
Y1,[Z],[W] 0.7/1.6 | 15 | 9.5/16 09| 6 1 0

XLIYLIZLIWI || 98.1/99.0 | 21 | 32.4/70 || 193.7 | 21 1 0

seri(X,Y) Y]] 2.8/35 | 14 | 12.4/23 3.0 8 0 0
X, [YT] 2.9/3.6 | 14 | 12.7/23 3.1 8 0 0

X],[X, YT, Y]] 2.9/3.6 | 14 | 12.7/23 3.1 8] o 0

map(X,Y,Z,W) | [[Y],[Z],[W]] 15/2.9 | 5| 7.4/10 3.1 8 0 0
gram(X,Y) X],[Y]] 0.1/02 | 0| 0.0/0 0.1 0] o 0
XX, Y[V 0.1/02 | 0 0.0/0 0.1 0 0 0

brow(X,Y)] 13.6/17.5 | 18 | 5.1/10 || 16.4 | 9| 0 0
XI,IY1] 0.2/4.1 | 10 1.2]7 0.4 8 0 0

X XYY 02/41 | 9| 47/7 03| 6] 0 0

bid(X,Y,Z)] 0.3/0.8 | 7 3.9/6 0.3 0 0 0
derv(X,Y,Z) 7] 0.9/1.7 | 35 3.8/7 0.9 0 0 0
Y1,1Z]] 0.9/1.7 | 35 | 4.2/7 09| 0] 0 0

rdtk(X,Y) X1,[Y1] 1.2/1.9 | 47 5.1/6 2.0 | 25 | 13 0
X],[X,YT,IY]] 1.2/1.9 | 47 5.1/6 20| 25| 13 0

read(X,Y) Y]] 1.5/12.1 22 8.3/11 1.5 18 11 0
X], Y] 66.4/77.0 | 73 | 11.5/25 || 257.9 | 270 | 115 0

boyer(X)] 1.7/5.4 | 15 | 7.8/14 40 | 45| 19 0
X 1.7/5.4 13 8.5/14 4.0 44 18 0

peep(X,Y) Y 4.1/375 | 60 | 4.7/12 73 | 28 7 o
X],[Y 11.1/44.5 63 6.0/12 19.8 36 10 0

ann(X,Y) X],[Y 22.2/440.3 69 9.3/33 27.8 40 11 2.4
XX YLV || 22.1/440.2 | 69 | 9.4/33 || 27.7 | 39 | 10 || 2.4

TABLE 3. Sharing results

e A: the % of program points at which the information inferred by the GD™¢us¢
is less accurate than that obtained by the standard GD?**"d27d approach.

6. DISCUSSION

Consider first the two alternatives for goal independent top-down analyses. Table
1 indicates that for Prop and Asub, GI¢f is consistently faster than GI*. On the
other hand, for Sharing there are cases where this difference is not as large, and
a few in which GI™ is faster. To this end we note that the abstract conjunction
functions for Prop and Asub are relatively simple. Hence while the cost of the addi-
tional conjunctions introduced by the efficient schema is relatively small, the cost
of analyzing the extra call patterns introduced by the naive schema is avoided. For
Sharing, this is not the case. Data descriptions can become very large in which
case the abstract operations can become very time consuming. There are three
reasons why the efficient schema can cause a slow-down. (1) The extra variables
which are introduced can sometimes cause substantially larger data descriptions.
(2) The loss of precision with respect to the naive schema can sometimes cause
substantially larger data descriptions. (3) Computing the result for a more instan-
tiated call pattern first can sometimes reduce the number of iterations needed for

258

CODISH, BRUYNOOGHE, GARCIA DE LA BANDA, HERMENEGILDO

GDreuse GDstandard A

Name Query Tm | LU | Size Tm | >1 [>2 %
nit(X,Y,Z,W) | (YLD || 0.3/05] 9] 3.9/5] 0.4 5] 0 0
(XL 0.3/05 | 12 | 3.3/5 | 05 8] 0 0

(BED) 0.3/05 | 9| 3.9/5]| 04 6] 0 0

seri(X,Y) XL 0.1/0.3 | 8 | 2.5/4 | 02 5| 1] 125
(BN 0.1/0.3 | 8| 2.5/4] 02 51 1] 12.6

(LY || 04/0.6 | 9 | 44/7 || 04 6| 1] 125

map(X.Y,Z,W) | ((XI,[]) 0.3/05 | 6| 5.0/11 || 03] 2] 0 0
gram(X,Y) (BED) 0.0/00 | 0] 00/0 | 00| 0] 0 0
(LIGYID [0.1/ | 0 0.0/0 || 0.1 0] o 0

brow(X,Y) (BEN) 0.6/0.9 | 18 | 3.1/5 || 0.5 7] o 714
(BN 01/04 | 9| 08/2] 02 6] 0 0

((LIXYT) |[06/0.9 | 13| 31/5 | 07| 9] 0 0

bid(X,Y,Z) (1.ID 0.5/0.8 | 8| 1.9/3 || 0.3 0] o] 76.2
derv(X,Y,Z) X YLD [31/37 | 72 | 2.7/5 || 08 0] o0 911
(XID 31737 | 72 | 2.7/5 | 08| 0] 0 | 911

rdtk(X,Y) (.00 1.0/1.7 | 43| 1.8/3 || 1.4 | 23 | 12 || 17.9
(LIGYDD || 1.0/1.7 | 43| 1.8/3 || 1.4 | 23 | 12 | 17.9

read(X,Y) (X1,[D 4.8/6.9 | 61 | 2.3/3 || 1.8 | 18 | 11 || 745
(T.D 37/5.8 | 46 | 2.3/3 || 10.4 | 121 | 50 0

boyr(X) (XLID 0.8/1.5 | 15 | 2.0/3 || 1.4 | 45 | 19 0
(T.D 0.8/15 | 15 | 2.0/3 || 1.4 | 45| 19 0

peep(X,Y) (XLID 1.7/35 | 58 | 3.3/10 || 2.5 | 21| 3 0
(1LID 1.9/3.7 58 | 3.3/10 3.0 25 6 0

ann(X,Y) (AR 3.9/6.8 | 79 | 48/16 || 5.1 | 37| 9| 65
(LIYT) [5.4/83 | 94 | 4.7/16 || 6.6 | 40 | 10 || 6.5

TABLE 4. Asub results

the more general call pattern, giving an overall reduction in the time needed to
analyze the predicate.

Concerning precision, for Prop both techniques give identical results; for Sharing,
relatively high precision is maintained by GI¢f, while for Asub there is some loss
when using GI®f. Given the fact that Asub is a weaker domain GI®/ presents a
reasonable precision / cost compromise.

To compare the standard goal dependent analysis (GD#t*"derd) with the two
phase approach using GI®/ and GD7®“*¢, the accumulated cost of both phases
(GI¢f+GD"*“*¢) must be considered. On this comparison, the results are mixed.
While almost consistently favorable for Prop, the results are very erratic for Sharing
and almost consistently worse for the fast Asub analysis. We attribute this to
the fact that a very efficient fixed point is being used in GD#®**"dard which, by
keeping track of data dependencies and incorporating several other optimizations,
performs very few fixed point iterations — often none. The real advantage of a goal
independent analysis is for cases when we are interested in the analysis for more
than one initial query pattern.

Having performed already the goal independent phase the cost of GD"¢%¢ is
almost consistently faster than GD#*!¢nderd although not as much as one might
expect. The advantage of GD"¢%5¢ gver GD*t®"e7d ig proportional to the number
of fixed points avoided by performing look-up’s in GD"¢%$¢. A measure of this can
be observed from the “>1” and “>2” columns which indicate the number of “heavy”

EXPLOITING GOAL INDEPENDENCE IN THE ANALYSIS OF LOGIC PROGRAMS 259

fixed point computations in the GD#*t*"47d apnroach. Any time the number in these
columns is high the advantage of performing a two phase analysis is significant. The
exception is for the weakest Asub domain where the loss in precision in the two phase
analysis has its influence also on the cost for several of the benchmark programs.

As for precision, both techniques give identical results for Prop and almost iden-
tical results for Sharing. This is quite surprising and indicates that in practice the
least upper bound operation does not cause much loss of information in the Sharing
domain. For the read benchmark some information is lost by GI¢f however there
is no loss of information with respect to GD*t@"7d after the GD"¢%*¢ pass. This
is due to the fact that the predicate in which loss of precision occurs are not used
in the goal dependent computation for the given query patterns. Less surprising is
the fact that the weaker Asub domain presents a more relevant loss of precision.

Overall one can say that the two-phase analysis is beneficial for domains such as
Prop where there is no loss of precision, almost no slow down and often a substan-
tial speed-up, in particular for programs requiring a rather high analysis time. As
another example in this class, we mention the analysis aiming at detecting possible
aliases between memory cells which is part of the liveness analysis of [22]. A two
phase analysis for this domain is described in [3]. Substantial speed-ups are ex-
pected. For domains such as Sharing, the results are mixed. The lack of additivity
sometimes incurs a small loss of precision. More importantly, the goal indepen-
dent analysis can sometimes be expensive, due to the much larger data descriptions
which can show up during a goal independent analysis. Finally, the results are neg-
ative for a domain as Asub which also lacks commutativity, there is a substantial
loss of precision, while there is also a slow down.

In addition we can mention that the combined two phase analyses described in
this paper are particularly beneficial in situations where the results of a goal inde-
pendent phase are reused many times. One such case is when programs reuse their
predicates in several ways and with different call patterns. However, while this does
happen sometimes in typical programs, it is not frequent. A more typical example
is for library modules which may be pre-analyzed to obtain goal independent infor-
mation that can be stored with the module. Then, only the GD"¢%%¢ pass is needed
to specialize that information for the particular goal pattern corresponding to the
use of the library performed by the program that calls it.

Because the look-up operation in GD"¢%#¢ uses a safe approximation of the suc-
cess pattern, the analysis computes information which is guaranteed to be a post
fixpoint. It might be interesting to investigate whether narrowing of this post-
fixpoint [13] allows obtaining the same precision as GD#tanderd,

REFERENCES

1. R. Barbuti, R. Giacobazzi, and G. Levi. A general framework for semantics-based
bottom-up abstract interpretation of logic programs. ACM Transactions on Pro-
gramming Languages and Systems, 15(1):133-181, (1993).

2. M. Bruynooghe. A practical framework for the abstract interpretation of logic
programs. The Journal of Logic Programming, 10(2):91-124, (1991).

3. M. Bruynooghe, G. Janssens and A. Kagedal. Live-structure analysis for logic
programming languages with declarations. CW report nr. 231, Dept. Comp. Sc,
K.U.Leuven, 1996.

260

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

CODISH, BRUYNOOGHE, GARCIA DE LA BANDA, HERMENEGILDO

M. Codish, D. Dams, and E. Yardeni. Bottom-up abstract interpretation of logic
programs. Journal of Theoretical Computer Science, 124:93-125, (1994).

M. Codish, Garcia de la Banda M.,M. Bruynooghe, and M. Hermenegildo. Goal
dependent vs goal independent analysis of logic programs. Proceedings, Fifth Int’l
Conf. on Logic Programming and Automated Reasoning, LNAI 822:305-320, 1994.
M. Codish and B. Demoen. Analysing logic programs using “Prop”-ositional logic
programs and a magic wand. The Journal of Logic Programming, 25(3):249-274,
(1995).

M. Codish, A. Mulkers, M. Bruynooghe, M. Garcfa de la Banda, and
M. Hermenegildo. Improving abstract interpretations by combining domains. ACM
Transactions on Programming Languages and Systems, 17(1):28-44, (1995).

M. Corsini, K. Musumbu, A. Rauzy, and B. Le Charlier. Efficient bottom-up
abstract interpretation of Prolog by means of constraint solving over symbolic finite
domains. In Proceedings of the Fifth International Symposium on Programming
Language Implementation and Logic Programming, Lecture Notes in Computer
Science, Talin, August 1993. Springer Verlag.

A. Cortesi, G. Filé, and W. Winsborough. Prop revisited: Propositional formula
as abstract domain for groundness analysis. Proceedings, Sizth IEEE Symposium
on Logic in Computer Science, pp 322-327, 1991. IEEE Press.

A. Cortesi, G. File, and W. Winsborough. Comparison of Abstract Interpreta-
tions. In M. Kuich, editor, Proc. 19th International; Colloguium on Automata,
Languages and Programming (ICALP’92), volume 623 of LNCS, pages 521-532,
Wien, Austria, 1992.

A. Cortesi, G. Filé, and W. Winsborough. Optimal groundness analysis using
propositional logic. To appear, The Journal of Logic programming.

P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. Proceedings
of the Fourth ACM Symp. on Principles of Programming Languages, pp 238252,
1977.

P. Cousot and R. Cousot. Abstract interpretation and application to logic pro-
grams. The Journal of Logic Programming, 13(2 and 3):103-179, (1992).

M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. Declarative modeling of the
operational behavior of logic languages. Theoretical Computer Science, 69(3):289—
318, (1989).

J. Gallagher, M. Codish, and E. Shapiro. Specialisation of Prolog and FCP
programs using abstract interpretation. New Generation Computing, 6:159-186,
(1988).

D. Jacobs and A. Langen. Static analysis of logic programs for independent and
parallelism. The Journal of Logic Programming, 13(2 and 3):291-314, (1992).

G. Janssens, M. Bruynoooghe, and V. Dumortier. A blueprint for an abstract
machine for abstract interpretation of (constraint) logic programs. In Proceedings
of the 1995 Int’l Symposium on Logic Programming, pp 336—-350, MIT Press, 1995.
B. Le Charlier and P. Van Hentenryck. Groundness analysis for Prolog: Imple-
mentation and evaluation of the domain Prop. The Journal of Logic Programming,
23(3):237-278, (1995).

B. Le Charlier and P. Van Hentenryck. Experimental evaluation of a generic ab-
stract interpretation algorithm for Prolog. ACM Transactions on Programming
Languages and Systems, 16(1):35-101, (1994).

K. Marriott and H. Sgndergaard. Bottom-up abstract interpretation of logic pro-
grams. In Proceedings of the Fifth International Conference and Symposium on
Logic Programming, Washington, Seattle, August 1988.

K. Marriott and H. Sgndergaard. Precise and efficient groundness analysis for logic
programs. ACM Letters on Programming Languages and Systems, ACM-LOPLAS,

EXPLOITING GOAL INDEPENDENCE IN THE ANALYSIS OF LOGIC PROGRAMS 261

22.

23.

24.

2(1-4):181-196, (1993).

A. Mulkers, W. Winsborough and M. Bruynooghe. Live-structure data-flow anal-
ysis for Prolog. ACM Transactions on Programming Languages and Systems,
16(2):205-258, (1994).

K. Muthukumar and M. Hermenegildo. Compile-time derivation of variable de-
pendency using abstract interpretation. The Journal of Logic Programming, 13(2
and 3):315-347, (1992).

H. Sgndergaard. An application of abstract interpretation of logic programs:
Occur-check reduction. Proceedings, ESOP 86, LNCS 213: 327-338, Springer-
Verlag, 1986.

