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Abstract which try to estimate how well the program is exercised by a test

suite. Examples of coverage criteria atatement coveragahich
requires that each line of the code is execupadh coveragavhich
requires that every possible trace through a given part of the code
is executed, etc.

Test Data Generation (TDG) can be dahgamically[2], by
executing the SUT for concrete input values,statically, where

PET is a prototypéartial Evaluation-based est case generation
tool for a subset of Java bytecode programs. It performs white-bo
test generation by means of two consecueagtial Evaluatiors
(PE). The first PE decompiles the Java bytecode program into an
equivalent CLP (Constraint Logic Programming) counterpart. The
second PE generatedest-case generatdrom the CLP program. . . .
This generator captures interesting test coverage criteria and it is"®_knowledge about the input data is assumed. On another di-

able to generate further test cases on demand. For the first PE, PE-lmensir?n, tesht data;] ggneratitl)n cfarrl] bgﬁ$53ifi¢dbm°§ bogap-
incorporates an existing tool which decompiles bytecode to CLP, Proaches, where the internals of the are ignored and program

. L . . - : specifications are used to guide TDG, amkite-boxapproaches,
The main contribution of this work is the implementation of the where the internals of the SUT are exploited for guiding the TDG

second PE and the proof of concept of the approach. This has re- Th dard f verformi ic white-b
quired the development of a partial evaluator for CLP with appro- Process. The standard way of performing static white-box gener-
ftion of test cases is to performsgmbolicexecution of the pro-

priate control strategies to ensure the required coverage criteria an ;
to generate test-case generators. PET can be downloaded as fre@@™m [8, 5,11, 12, 14] whereby instead of on actual values, pro-
grams are executed on symbolic values, sometimes represented

software from its web site, where a repository of examples and a : : .
web interface are also provided. Though PET has to be extended@s constraint variablesSuch constraints are accumulated as each
) branch of the execution tree is expanded. The constraints in feasi-

to be applicable to larger programs, we argue that it provides some X o X X
evidence that the approach can be of practical interest. ble branches provide pre-gondltlons on.the input data which guar-
antee that the corresponding branch will be executed at run-time.

Categories and Subject Descriptors D.2.5 [Software Engineer- Concrete input values which satisfy the constraints can then be ob-
ing]: Symbolic execution; F.3.2Ljogics and Meaning of Pro-  tained. These values become the input data for a test case which can
gramg: Partial evaluation be used for running the program. Then,@acle, i.e., the user or

some (partial) specification, should be consulted in order to decide
whether the actual output of is correct and to modify it otherwise.

Keywords Testing, Test-case generation, Partial evaluation, Sym- Then, a complete input-output pair can be stored as a test case.

bolic execution, Constraint Logic Programming In this work we present PET, a prototype tool for static white-
box TDG of Java bytecode. Our tool works at the bytecode [9] level

. because it is common in Java applications to have access to the
1. Introduction bytecode, often bundled jar files, but not to the source code. This
One of the most successful techniques to-date for reasoning abouis even more so in commercial software and in mobile code. PET is
program correctness and detecting bugs is systematic program testbased on the approach proposed in [1] and its main novelty is that
ing. Intesting, th&System Under Te€BUT) is run on a series oést the TDG process is based @artial Evaluation[6] (PE) of Con-
casesand the result computed by the SUT is compared with that ex- straint Logic Programg10] (CLP). PE is a well-known program
pected. Atest suiterefers to a collection of test cases which are ap- transformation technique which specializes programs w.r.t. part of
plied to a SUT. Though program testing is a relatively lightweight their input data. A unique feature of PET is that the test-case gen-
technique when compared to full formal verification, it neverthe- erators it produces can be used for generating further test-cases on
less implies a significant cost. In order to keep it as low as possible, demand without having to start the TDG process from scratch.
itis essential to select the test suite in such a way that a cexdain In its current form, PET has the following limitations: (1) It
erage criterion(see e.g., [16] for a survey) is achieved by using a can only generate test data for numeric arguments (not objects
minimal number of test cases. Such coverage criteria are heuristicsnor arrays), (2) floating-point numbers are not handled, (3) static
fields are not handled, and, (4) native code is not handled. As
mentioned later in Section 4, we are are currently working towards
the extensions to overcome such limitations.
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n>0

cond_1 ?op,init 34:iload 2
12:iload 0 28:iconst_1 35:il0ad.0
13:ifne 28 29:istore_2 36:imul

o
A a=0 A 37:istore._2
= n#0
nz0 cond.2 38:iinc 1 -1
e
intExp| O:iload_1 16:iload_1 41:goto 30
1:ifge 12 17:ifne 28 Loop
¢n <o ¢n =0 30:iload.1
-
- 31:iflt 44
4:new ArithExc 20:new ArithExc
7 :dup 23:dup n<o
8:invoke init 24:invoke init 44:iload_2
11:athrow 27 :athrow 45:ireturn
N\ \ y,

Figure 3. Input to PET: Bytecode of running example

Figure 1. Architecture of PET put parameter is a list with three elements, the return vRkte

the output heafiout and the exceptional output behavitflag.

We can observe that blocks in the CFG in Fig. 3 are represented by
corresponding rules in the CLP program. Tier loop has been
converted into a recursion. The rule fosop_init corresponds to

the block where the loop is initialized. Bytecode instructions are de-
compiled and translated to their corresponding operations in CLP;
conditional statements are captured by introducing multiple rules
with disjoint guards. For instance, the conditiohage 12 atpc 1
results in two rules for predicatentExp: one for the case when
n>0 and another one fai<0. Since we have explicit rules for ex-

case generatiofPE 2). Input and output of the system are depicted,
respectively, on the left and the right: PET takes a Java bytecode
programJBCand a description of theoverage criterionand yields

as output a set ofest casesvhich guarantee that the selected
coverage criterion is achieved and, optionally, a test gaserator
There are several parameters, nampadamin the figure, which

can be used for deciding which intermediate steps are viewed in
the output. We now discuss the three steps in the TDG process.

CLP_ Decompilation. During PE 1, the incomingJBC is trans- ceptional executions, we can generate test-cases for them as well.
formed into an equivaler@LP program by slightly adapting an ex-  Note that during decompilation we treat the heap as an abstract data
isting decompiler [4]. In particulaGLP_DECOMP is aninterpretive type with a set of operations which manipulate it. For instance, this

decompiler(i.e., based on the first Futamura projection [3]) which is the case of the atomew_(H1,C,R,H2) in the code above where
partially evaluates a JVM-interpreter written in Prolog w.r.t. an in- H1 andH2 are the input and output heaps, respectivelg a class
put bytecode and produces as a result a CLP program. The onlyidentifier ancr is a reference to the created object.
modifications to this decompiler have been to make it accept meth- ! . . . . .
ods as decompilation units, since it was applied on whole classesUnfolding.  The aim of this phase is to generateat-suitevhich
(or packages), and to replace in the output Prolog arithmetic with traverses as many different execution paths as pOSS|bIe_. For this,
constraints Let us consider methotintExp in Fig. 2. The Java  and as discussed in Sect. 1, we will perfasgmbolic executiarA
source is shown only for clarity. PET performs TDG from the byte- K€y advantage of the CLP decompiled programs w.r.t. their byte-
code, which is shown in Fig. 3 inside its control flow graph (CFG). C€0de counterparts is that symbolic execution does not require to
Method parameters and local variables in the program are refer-build @ dedicated symbolic execution mechanism and we use stan-
enced by consecutive natural numbers starting io@bserve also ~ dard execution. However, we need to supervise execution in order
the use of the operand stack in the bytecode, e.g., conditionals ard® guarantee termination while performing useful unfoldings. This
performed against the value at the top of the stack. We refer to [9] IS €xactly the problem thatnfolding rules denotedUNFOLD in
for further details on the bytecode language.

Fig. 4 shows the decompiled version of thetExp method. . L _
It contains CLP(FD) constraints such Bs#>=0, in SWI-Prolog mtE}:EI(KED;ZX] D’,Hflﬂ’é:itﬁgg:téﬁigg) N0
syntax. Rules which correspond to method entries have tWo argu-;ntxp([[_a,N] .HIn], [_Ret,HOut,exception(R)]1) i~ N #< 0,
ments which represent the input and output information. The first new_(HIn,’ArithException’,R,H2),

argument is a list of two elements. In turn, the first one is a list ’ArithException.<init>()V’ ([[ref(R)],H2], [HOut,_1).
which contains the input parameters of the corresponding method
(i.e., A andN) and the second one is the input héam. The out- cond_1(A,N,H1,R,H2,0k) :- A#\=0, loop_init(A,N,H1,R,H2).
cond_1(0,N,H1,Ret,H2,EFlag) :- cond_2(N,H1,Ret,H2,EFlag).
static int intExp(int a,int n){ cond_2(N,H1,R,H2,0k) :- N#\=0, loop_init(O,N,H1,R,H2).
if (n < 0) // Exponent must be non-negative cond_2(0,H1, _Ret,H3,exception(R)) :-
throw new ArithmeticException(); new_(H1,’ArithException’,R,H2),
else if ((a == 0) & (n == 0)) // O to O is undefined ’ArithException.<init>()V’ ([[ref(R)],H2], [H3,_]1).
throw new ArithmeticException();
else { loop_init(A,N,H1,Ret,H1) :- loop(A,N,1,Ret).
int out = 1;
for (;n >= 0;n--) out = out*a; loop(_A,N,Qut,Out) :- N #< O.
return out; } loop(A,N,Out,Ret) :- N #>= 0, Out’ #= Out*A, N’ #= N-1,
} loop(A,N’,Out’,Ret).

Figure 2. Source code of running example Figure4. Decompiled CLP Program obtained by PET



intExp([[A, ], HIn], [Ret, HOut, E]) intExp([[_,N],H],[_,H’,exc(1)]) :- N #< 0. % B1

intExp([[0,0],H], [_,H’,exc(2)]). % B2
R e M> intExp([[A,0] ,H], [Ret,H,ok]) :- A #\= 0, Ret = A. % B3
true : B1 cond_1(...) intExp([[0,N],H], [Ret,H,0k]) :- N #>= 1, N’’ #= N-2,
{A#0} o loop(0,N’’,0,Ret).
ta=op| intExp([[A,N],H], [Ret,H,ok]) :- N #>= 1, A #\= 0,
loop-entry(...) cond-2(...) N’ #= N-1,
E=cxc(R
v %:0} § {70} loop(4,N’,A,Ret).
loop(_,N,Out,Out) :- N #< 0.
Loop(. - N1} true : B2 loop-entry(...) loop(A,N,Out,Ret) :- N #>= 0, Out’ #= Out#A,
v=oy] M/ 1A} v N’ #= N-1, loop(A,N’,0ut’,Ret).
il iy TRt (n<oy_ 1ooP(---) Figure 6. Output of PET: Test-case generator
{Ret= M \v{N >0} / {N'=N-1}
{N=0} {Out/fl*()}
true : B3 loop(...) fail loop(...) .
(NTT=N'—1} duces the input-output pa{{A=—10,N=—10), E=exc(R)). For

WM >°N{O”’”*°*°} the path ending iB2, the constraints ar@i=0, N=0, E=exc(R)).
fail An input-output pair is simply((A=0,N=0), E=exc(R)). Fi-
nally, for the branch ending in lab&3, the constraints obtained
- - by PET are(N=0,Ret=A) and a possible input-output pair is
Figure5. An evaluation tree generated by PET fortExp/2 ((A=—10,N=0), Ret=—10). When confronted with this pair, the
user or oracle should detect tirdt does not have the expected
value, which indicates that there is a bug in the program, giace
should take the value.

the figure, used in partial evaluators of (C)LP, solve. In essence,
partial evaluators are meta interpreters which given an atom eval- Code Generation. The final objective of partial evaluation is to
uate it as determined by the so-called unfolding rule, obtaining an generate optimizedesidual code. Thus, the unfolding rule dis-
evaluation treeEach non-failing branch in this tree corresponds to cussed above can be complemented with a code generation phase
a computation path. This view of TDG as a PE problem, proposed and obtain a full partial evaluatoPE 2 in Fig. 1). For instance,
in [1], has the important advantage that we can apply existing, pow- consider the successful branch labeB&in Fig. 5. The code asso-
erful, unfolding rules developed in the context of PE. This is illus- ciated to this branch is a rule whose head is the original atom (ap-
trated in Fig. 1 by small boxes which represent a bunch of unfolding plying the mgu'’s to it) and the body is made up by the constraints
strategies that can be plugged in the system. Currently, PET incor-gathered along the path:
porates two unfolding rulesgevel-%, which limits the depth of the intExp([[A,0],H], [Ret,H,0k]) :- A #= 0, Ret = A.
evaluation tree toat moktlevels,.an(.b!ock-k., whlch ensuresthat  pq proposed in [1], the generation of a residual program composed
the number of times each block is visited within each path does not ,, e ryles associated to all non-failing branches in the evaluation
exceed the giveR. , , . tree returns a program which can be used #sstcase generator

Fig. 5 .ShOWS the evaluatlo_n tree built by PET _when selecting for obtaining further test-cases. In Fig. 6, we show a pretty printed
block-k with k=2. 1.e., the third time a rule is visited, the path  (oqt case generator obtained by PET from the evaluation tree in
is no longer expanded. In the example, PET executes the querygig 5 gasically, PET generatesnstrainedrules which integrate
intExp([[A, N], HIn], [Ret, HOut, E[). Along the execution, a con-  agtoreof constraints associated to their corresponding branch, as
straint store on the program’s variables is obtained which is used gpqyn ahove. The first three rules correspond to the three success-
for inferring the conditions that the input values must satisfy for | pranches B1, B2 andB3) in Fig. 5, from which we obtained
the execution to follow the corresponding path. Such conditions ha three test-céses shown before (a]iter callisige1ing/2). The

appear as labels on the arrows (eJ§.,> 0, A # 0, etc.). W qhar two rules are obtained, as explained above, from the two in-
rely on an underlying constraint domain to handle the constraint mpjete branches which finish in a framed atom. The constraints

store. CLP(FD) is currently used, which imposes an integer domain jn, yhe different rules, in addition to accumulating the arithmetic op-
for the program variables. The tree contains both complete and in- o ations performed in along the path, act as guards which avoid the
complete branches. In turn, complete branches can be successful, o\ tion of the alternative paths previously computed

or failing, labeled respectively dsue or fail. Incomplete branches Thus, the output of PET is a program which igeneratorof

have a framed atom as last element. They are no longer expandedegy_cases for larger valuesiafThe execution of this concrete gen-
because the unfolding rule prevent this. In particular, we can see grator will return on backtracking the (infinite) set of computation

that when an atom of the foriroop(. . .) appears for the third time : i ; i

h . h paths for theintExp program and their corresponding constraints.
in the same branch, the_ b_ranch 1S stc_)pped. Noteh_lmk-k with . Interestingly, in order to generate test-cases for kay,5, instead
k=1 will in general not visit all blocks in the CFG, since traversing  ut sarting the process from scratch, we can partially evaluate the
the loop body of thefor loop requirest>2 in order to obtain @ generator withk = 3 and obtain (more efficiently) the same set of

finished path. _ _ , test cases that we would obtain by partially evaluating the original
Once an evaluation tree is computed, the constraint stores aSSOé:LP orogram fork — 5.

ciated to successful branches can be used for obtaining associate
test cases. For instance, the leftmost branch in the tree (the on . . .

which ends in an atom labeled B4), captures the fact that for a 93 Web Site and Experimental Evaluation

negative value ofi, the output is an exceptional behavior. Thisis PET is available for download as free software at the PET web site
associated to the constrairfts < 0, E=exc(R)). Furthermore, our http://costa.ls.fi.upm.es/pet. In addition, a web interface
system allows providing a specific domain (e)y.€ [—10, 10]) makes it possible to use PET without having to install it. PET can
and use the CLP(FD) predicatebeling/2 to produce actual be executed on bytecode programs provided as examples on the
values in this domain compatible with the constraints. In order web site or by uploading them.

to get only one solutionlabeling/2 is called inside the meta- We now present some preliminary experiments which aim at
predicateonce/1. Forinstance, for the above constraints, PET pro- illustrating the time taken by PET in order to perform TDG and



H Bench ‘ T | k=2 k=5 I ~ We plan to improve PET in several directions. As already men-
[NTicg [Tgen [T N [Tteq [Tgen [Total]] tioned, our system is not able to deal with nun-numeric input argu-
intExp 13.70][ 3] 4.20] 0.00 |17.90]] 9 | 6.00| 0.00 | 19.70 ments. To overcome this, we expect to be able to model the heap
:2::3‘“ ﬂ%g 3 g-gg 8-88 i;ég 169 742-2‘?0 g-gg éi-ig using constraints, as well as along the lines of the recent proposal
gcd 14507415001 000 1620 101780 220 13420 in [13]. Regarding handling floating point numbers, we are working
varNoRep || 12.00(| 4] 2.00] 0.00 |14.00]| 7 | 4.20| 0.00 |16.20 on the integration of other constraint domains such as CLP(Q) and
varRep 11.10[ 4| 5.80] 0.00 |16.90|| 7 | 2.00| 0.00 | 13.10 CLP(R). We will also consider generalized symbolic execution, as
combNoRep| 12.90]| 4| 4.00 | 0.00 | 16.90j| 7 |10.00] 0.00 | 22.90 done for model checking and testing [7, 15], which performs sym-
combRep |]18.00]j 4| 2.00| 0.00 |20.00j] 7 |10.00] 0.00 | 28.00 bolic execution on dynamically allocated structures (e.g., lists and
pet ii:ég i 2:88 8:88 ig:ég 3 3:88 (2):88 ig:ég trees). Another challenge that we plan to investigate is the genera-

Table 1. Some Execution Statistics for PET

tion of test-cases for programs which use native code, and not only
pure bytecode. We also believe that our approach could be easily

extended with support for generating parameterized tests [14].

the number of test cases generated when using different criteria. o ok nowledaments
Table 3 shows the times taken by the different phases performed 9 ] ] )
by PET. All times are in milliseconds, and were obtained as the This work was funded in part by the Information Society Technolo-

arithmetic mean of five runs on an Intel Core 2 Quad Q9300 gies program of the European Commission, Future and Emerging
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lenny). As benchmarks, we use a set of methods which perform under the TIN-2008-0562BOVESand HI2008-0153 (Acéin In-

different arithmetic calculations like the greatest-common-divisor, t€grada) projects, by the UCM-BSCH-GR58/08-910502 (GPD-
the least-common-multiple, the Fibonacci sequence, etc. They areUCM), and the CAM under the S-0505/TIC/04BROMESAS
all accessible through the web interface. Each row in the table Project.
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