
Resource-driven CLP-based
Test Case Generation

Elvira Albert1, Miguel Gómez-Zamalloa1, José Miguel Rojas2

1 DSIC, Complutense University of Madrid, E-28040 Madrid, Spain
2 Technical University of Madrid, E-28660 Boadilla del Monte, Madrid, Spain

Abstract. Test Data Generation (TDG) aims at automatically obtain-
ing test inputs which can then be used by a software testing tool to
validate the functional behaviour of the program. In this paper, we pro-
pose resource-aware TDG, whose purpose is to generate test cases (from
which the test inputs are obtained) with associated resource consump-
tions. The framework is parametric w.r.t. the notion of resource (it can
measure memory, steps, etc.) and allows using software testing to detect
bugs related to non-functional aspects of the program. As a further step,
we introduce resource-driven TDG whose purpose is to guide the TDG
process by taking resource consumption into account. Interestingly, given
a resource policy, TDG is guided to generate test cases that adhere to
the policy and avoid the generation of test cases which violate it.

1 Introduction

Test data generation (TDG) is the process of automatically generating test in-
puts for interesting test coverage criteria. Examples of coverage criteria are:
statement coverage which requires that each line of the code is executed; loop-
k which limits to a threshold k the number of times we iterate on loops. The
standard approach to generate test cases statically is to perform a symbolic exe-
cution of the program [7,8,12,14,17,18,20], where the contents of variables are
expressions rather than concrete values. Symbolic execution produces a system
of constraints over the input variables consisting of the conditions to execute the
different paths. The conjunction of these constraints represents the equivalence
class of inputs that would take this path. In what follows, we use the term test
cases to refer to such constraints. Concrete instantiations of the test cases that
satisfy the constraints are generated to obtain test inputs for the program. Test-
ing tools can later test the functionality of an application by executing such test
inputs and checking that the output is as expected. The CLP-based approach to
TDG of imperative3 programs [4, 11] consists of two phases: (1) first, an imper-
ative program is translated into an equivalent CLP program and (2) symbolic
execution is performed on the CLP program by relying on the standard CLP’s

3 The application of this approach to TDG of logic programs must consider failure [20]
and, to functional programs, should consider laziness, higher-order, etc. [9].

evaluation mechanisms (extended with a special treatment for heap-allocated
data [11]) which provide symbolic execution for free.

Non-functional aspects of an application, like its resource consumption, are
often more difficult to understand than functional properties. Profiling tools exe-
cute a program for concrete inputs to assess the associated resource consumption,
a non-functional aspect of the program. Profilers can be parametric w.r.t. the
notion of resource which often includes cost models like time, number of instruc-
tions, memory consumed, number of invocations to methods, etc. Usually, the
purpose of profiling is to find out which parts of a device or software contribute
most to its poor performance and find bugs related to the resource consumption.

In this paper, we propose resource-aware TDG which strives to build per-
formance into test cases by additionally generating their resource consumption,
thus enriching standard TDG with non-functional properties. The main idea is
that, during the TDG process, we keep track of the exercised instructions to ob-
tain the test case. Then, in a simple post-process we map each instruction into a
corresponding cost, we obtain for each class of inputs a detailed information of
its resource consumption (including the resources above). Our approach is not
reproducible by first applying TDG, then instantiating the test cases to obtain
concrete inputs and, finally, performing profiling on the concrete data. This is
because, for some cost criteria, resource-aware TDG is able to generate symbolic
(i.e., non-constant) costs. E.g., when measuring memory usage, the amount of
memory might depend on an input parameter (e.g., the length of an array to be
created is an input argument). The resource consumption of the test case will
be a symbolic expression that profilers cannot compute.

A well-known problem of TDG is that it produces a large number of test cases
even for medium size programs. This introduces scalability problems as well as
complicates human reasoning on them. An interesting aspect of resource-aware
TDG is that resources can be taken into account in order to filter out test cases
which do not consume more (or less) than a given amount of resources, i.e, one
can consider a resource policy. This leads to the idea of resource-driven TDG,
i.e., a new heuristics which aims at guiding the TDG process to generate test
cases that adhere to the resource policy. The potential interest is that we can
prune the symbolic execution tree and produce, more efficiently, test cases for
inputs which otherwise would be very expensive (and even impossible) to obtain.

Our approach to resource-driven CLP-based TDG consists of two phases.
First, in a pre-process, we obtain (an over-approximation of) the set of traces in
the program which lead to test cases that adhere to the resource policy. We sketch
several ways of automatically inferring such traces, starting from the simplest
one that relies on the call graph of the program to more sophisticated ones that
enrich the abstraction to reduce the number of unfeasible paths. An advantage of
formalizing our approach in a CLP-based setting is that traces can be partially
defined and the TDG engine then completes them. Second, executing standard
CLP-based TDG with a (partially) instantiated trace generates a test case that
satisfies the resource policy (or it fails if the trace is unfeasible). An interesting
aspect is that, if the trace is fully instantiated, TDG becomes deterministic and

solutions can be found very efficiently. Also, since there is no need to backtrack,
test cases for the different traces can be computed in parallel.

2 CLP-based Test Case Generation

This section summarizes the CLP-based approach to TDG of [11] and extends
it to incorporate traces in the CLP programs that will be instrumental later
to define the resource-aware framework. CLP-based TDG consists of two main
steps: (1) imperative programs are translated into an extended form of equivalent
CLP-programs which incorporate built-in operations to handle dynamic data,
and, (2) symbolic execution is performed on the CLP-translated programs by
relying on the standard evaluation mechanisms of CLP with special operations
to treat such built-ins. The next two sections overview these steps.

2.1 CLP-Translation with Traces

The translation of imperative (object-oriented) programs into equivalent CLP
program has been subject of previous work (see, e.g., [1,10]). Therefore, we will
not go into details of how the transformation is done, but rather simply recap
the features of the translated programs in the next definition.

Definition 1 (CLP-translated program). Given a method m with input ar-
guments x̄ and output arguments ȳ. Its CLP-translation consists of a set of
predicates m,m1, . . . ,mn such that each of them is defined by a set of rules of
the form “m(I,O,Hin,Hout):- g, b1, . . . , bn.” where:

1. m is the entry predicate (named as the method) and its arguments I and O

are lists of variables that correspond to x̄ and ȳ.
2. For the remaining predicates m1, . . . ,mn, I and O are, resp., the list of input

and output arguments of this predicate.
3. Hin and Hout are, resp., the input and output heaps to each predicate.
4. If a predicate mi is defined by multiple rules, the guards in each rule contain

mutually exclusive conditions. We denote by mk
i the k−th rule defining mi.

5. g, b1, . . . , bn are CLP-representations of equivalent instructions in the im-
perative language (as usual, a SSA transformation is performed on the vari-
ables), method invocations are replaced by calls to corresponding predicates,
and operations that handle data in the heap are translated into built-in pred-
icates (e.g., new object(H,Class,Ref,H’), get field(H,Ref,Fld,Val), etc.).

Given a rule mk
i , we denote by instr(mk

i) the sequence of instructions in the
original program that have been translated into rule mk

i .

As the imperative program is deterministic, the CLP translation is deter-
ministic as well (point 4 in Def. 1). Observe that the global memory (or heap)
is explicitly represented in the CLP program by means of logic variables. When
a rule is invoked, the input heap Hin is received and, after executing its body,

the heap might be modified, resulting in Hout. The operations that modify the
heap will be shown in the example. Note that the above definition proposes a
translation to CLP as opposed to a translation to pure logic (e.g. to predicate
logic or even to propositional logic, i.e., a logic that is not meant for “pro-
gramming”). This is because we then want to execute the resulting translated
programs to perform TDG and this requires, among other things, handling a
constraint store and then generating actual data from such constraints. CLP is
a natural paradigm to perform this task.

In the next definition, we add a trace term as an additional argument to each
rule of Def. 1 to keep track of the sequence of rules that are executed.

Definition 2 (CLP-translated program with trace). Given the rule of
Def. 1, its CLP-translation with trace is: “m(I,O,Hin,Hout,T):- g, b

′
1, . . . , b

′
n.”,

where T is the trace term for m of the form m(k,P,〈Tci , . . . , Tcm〉). Here, P is the
list of trace parameters, i.e., the subset of the variables in rule mk on which the
resource consumption depends; ci, . . . , cm is the (possibly empty) subsequence of
method calls in b1, . . . , bn. Tcj is a free logic variable representing the trace term
associated to the call cj. Calls in the body of the rule are extended with their
corresponding trace terms, i.e., for all 1 ≤ j ≤ n, if bj ≡ p(Ip,Op,Hinp ,Houtp),
then b′j ≡ p(Ip,Op,Hinp ,Houtp ,Tcj); otherwise b′j ≡ bj.

Example 1. Our example in Fig. 1 shows class Vector, that contains a refer-
ence to an array of integers elems and two integer fields to keep track of its
size and capacity (size and cap). The initial capacity of the array is set by the
constructor (method init). The interesting aspect of class Vector is that, when
adding an element using method add, if the size has already reached the max-
imum capacity determined by field cap the size of the array is duplicated (by
method realloc) before actually adding the new element. Fig. 2 shows the (sim-
plified and pretty-printed) CLP translation obtained by the PET system [4]
from the bytecode associated to class Vector. For brevity, we have omitted the
predicates that model the exceptional behavior. Observe that each method is
transformed into a set of predicates, some of them defined by several (mutually
exclusive) guarded rules. In particular, method add is transformed into predi-
cates add, if and addc. Variable names in the decompiled program correspond
to the original names in the Java source. The operations that handle the heap
remain as built-in predicates. Heap references are written as terms of the form
r(Ref). Function instr in Def. 1 keeps the mapping between rules and bytecode
instructions. For instance, instr(init1)=〈iload icap, ifgt, aload this, iload

icap, newarray int, putfield elems, aload this, aload icap, putfield cap,

aload this, iconst 0, putfield size, return〉 is the sequence of bytecode in-
structions that have been translated into rule init. A trace term is made up
by the predicate name and number, the set of input arguments on which the
cost depends (e.g., rule realloc and its trace parameter NCap) and it recursively
includes the trace terms for the predicates it calls.

class Vector {
int [] e lems ; int s i z e , cap ;
Vector (int iCap) throws Exception {

i f (iCap > 0){
elems = new int [iCap] ;
cap = iCap ; s i z e = 0 ;

} else
throw new Exception () ;

}
void add (int x){

i f (s i z e >= cap)
r e a l l o c () ;

e lems [s i z e ++] = x ;
}
void r e a l l o c (){

int nCap = cap ∗2 ;
int [] nElems = new int [nCap] ;
for (int i =0; i<cap ; i++) {

nElems [i] = elems [i] ;
}
cap = nCap ; elems = nElems ;

}
}

Fig. 1: Java source code example (1).

2.2 Symbolic Execution

When the imperative language does not use dynamic memory, CLP-translated
programs can be executed by using the standard CLP’s execution mechanism
with all arguments being free variables. However, in order to generate arbi-
trary heap-allocated data structures, it is required to define heap-related op-
erations which build the heap associated with a given path by using only the
constraints induced by the visited code. We rely in the CLP-implementation pre-
sented in [11], where operations to create, read and modify heap-allocated data
structures are presented in detail. Briefly, at symbolic execution-time, the heap
is represented as a list of locations which are pairs formed by a unique reference
and a cell. Each cell can be an object or an array. An object contains its type and
its list of fields, each one represented as a pair of the form (signature, content).
An array contains its type, its length and its list of elements. Note that our CLP
translated programs manipulate the heap as a black-box through its associated
operations. For instance, a new object is created through a call to predicate
new object(HIn,Class,Ref,HOut), where HIn is the current heap, Class is the new
object’s type, Ref is a unique reference in the heap for accessing the new object
and HOut is the new heap after allocating the object. Read-only operations do

add([r(This),X],[],H,H1,add(1,[],[T])) :- get field(H,This,size,Size),
get field(H,This,cap,Cap), if([Size,Cap,r(This),X],[],H,H1,T).

if1([Size,Cap,r(This),X],[],H,H1,if(1,[],[T])) :- Size #< Cap,

addc([r(This),X],[],H,H1,T).

if2([Size,Cap,r(This),X],[],H,H2,if(2,[],[T1,T2])) :- Size #>= Cap,

realloc([r(This)],[],H,H1,T1), addc([r(This),X],[],H1,H2,T2).

addc([r(This),X],[],H,H2,addc(1,[],[])) :- get field(H,This,elems,r(Es)),
get field(H,This,size,Size), set array(H,Es,Size,X,H1),
NSize #= Size+1, set field(H1,This,size,NSize,H2).

realloc([r(This)],[],H,H2,realloc(1,[NCap],[T])) :-

get field(H,This,cap,Cap), NCap #= Cap*2, new array(H,int,NCap,NEs,H1),
loop([r(This),NCap,r(NEs),0],[],H1,H2,T).

loop([r(This),NCap,r(NEs),I],[],H,H1,loop(1,[],[T])) :-

get field(H,This,cap,Cap), cond([Cap,I,r(This),NCap,r(NEs)],[],H,H1,T).

cond1([Cap,I,r(This),NCap,r(NEs)],[],H,H2,cond(1,[],[])) :- I #>= Cap,

set field(H,This,cap,NCap,H1), set field(H1,This,elems,r(NEs),H2).
cond2([Cap,I,r(This),NCap,r(NEs)],[],H,H2,cond(2,[],[T])) :- I #< Cap,

get field(H,This,elems,r(Es)), get array(H,Es,I,E), set array(H,NEs,I,E,H1),
NI #= I+1, loop([r(This),NCap,r(NEs),NI],[],H1,H2,T).

init1([r(This),ICap],[],H,H4,init(1,[ICap],[])) :- ICap #> 0,

new array(H,int,ICap,E,H1),set field(H1,This,elems,r(E),H2),
set field(H2,This,cap,ICap,H3),set field(H3,This,size,0,H4).

init2([r(This),ICap],[],H,H1,init(2,[ICap],[])) :- ICap #=< 0,

new object(H,’Exception’,E,H1).

Fig. 2: CLP translation.

not produce any output heap (e.g. get field(H,Ref,Field,Value)). The remaining
operations are implemented likewise.

It is well-known that the execution tree to be traversed in symbolic execution
is in general infinite. This is because iterative constructs such as loops and recur-
sion whose number of iterations depends on the input values usually induce an
infinite number of execution paths when executed with unknown input values.
It is therefore essential to establish a termination criterion. In the context of
TDG, termination is usually ensured by the coverage criterion which guarantees
that the set of paths generated produces test cases which meet certain degree of
code coverage and the process terminates. In what follows, we denote by T C

m the
finite symbolic execution tree of method m obtained using coverage criterion C.

Definition 3 (test case with trace and TDG). Given a method m, a cover-
age criterion C and a successful branch b in T C

m with root m(Argsin,Argsout,Hin,
Hout,T), a test case with trace for m w.r.t. C is a 6-tuple of the form: 〈σ(Argsin),
σ(Argsout),σ(Hin),σ(Hout),σ(T),θ〉, where σ and θ are the set of bindings and
constraint store, resp., associated to b. TDG generates the set of test cases with
traces obtained for all successful branches in T C

m .

Argsin= [r(This),X] Argsout= []

Heapin=
SThis C

r(Es)
S [Y]Es

Heapout=
NSThis NC

r(NEs)
1 [X]Es 2 [Y,X]NEs

Constraints = {NS=S+1, NC=2*C}
Trace = add(1,[],[if(2,[],[realloc(1,[NC],[loop(1,[],[cond(2,[],[loop(1,[],[cond(1,[],[])])])])]),addc(1,[],[])])])

Argsin= [r(This),5] Argsout= []

Heapin=
1This 1

r(Es)
1 [3]Es

Heapout=
2This 2

r(NEs)
1 [3]1 2 [3,5]NEs

Fig. 3: Example of test case (up) and test input (down) for add with loop-1

The root of the execution tree is a call to method m with its associated argu-
ments. Calls to methods are inlined in this scheme (one could use compositional
TDG [5] as well). Each test case represents a class of inputs that will follow the
same execution path, and its trace the sequence of rules applied along such path.

Example 2. Let us consider loop-1 as coverage criterion. In our example, loop-1
forces the array in the input vector to be at most of length 1. Note that we include
the reference to the This object as an explicit input argument in the CLP trans-
lated program. The symbolic execution tree of add(Argsin,Argsout,Hin,Hout,T)

will contain the following two successful derivations (ignoring exceptions):

1. If the size of the Vector object is less than its capacity, then the argument X
is directly inserted in elems.

2. If the size of the Vector object is greater than or equal to its capacity, then
method realloc is invoked before inserting X.

Fig. 3 shows in detail the second test case. Heaps are graphically represented
by using rounded boxes for arrays (the array length appears to the left and the
array itself to the right) and square boxes for Vector objects (field elems appears
at the top, fields size and cap to the left and right bottom of the square, resp.).
The trace-term T contains the rules that were executed along the derivation. At
the bottom of the figure, an (executable) instantiation of this test case is shown.

3 Resource-Aware Test Case Generation

In this section, we present the extension of the TDG framework of Sec. 2 to
build resource consumption into the test cases. First, in Sec. 3.1 we describe the
cost models that we will consider in the present work. Then, Sec. 3.2 presents
our approach to resource-aware TDG.

3.1 Cost Models

A cost model defines how much the execution of an instruction costs. Hence, the
resource consumption of a test case can be measured by applying the selected
cost model to each of the instructions exercised to obtain it.

Number of Instructions. The most traditional model, denotedMins , is used
to estimate the number of instructions executed. In our examples, since the
input to our system is the bytecode of the Java program, we count the number
of bytecode instructions. All instructions are assigned cost 1.

Memory Consumption. Memory consumption can be estimated by counting
the actual size of all objects and arrays created along an execution [3].

Mmem(b) =


size(Class) if b ≡ new Class

Sref ∗ Length if b ≡ anewarray Class Length

Sprim ∗ Length if b ≡ newarray PrimType Length

0 otherwise

We denote by Sprim and Sref , resp., the size of primitive types and references.
In the examples, by assuming a standard JVM implementation, we set both
values to 4 bytes. The size of a class is the sum of the sizes of the fields it
defines. Note that, if one wants to consider garbage collection when assessing
memory consumption, then the behaviour of the garbage collection should be
simulated during the generation of test cases. In this paper, we assume that no
garbage collection is performed.

Number of calls. This cost model, Mcall , counts the number of invocations
to methods. It can be specialized toMm

call to count calls to a specific method m
which, for instance, can be one that triggers a billable event (e.g. send SMS).

Example 3. The application of the cost models Mins , Mmem and Mcall to the
sequence of instructions in rule init (i.e., instr(init) of Ex. 1) results in, resp., 14
bytecode instructions, 4 ∗ ICap bytes and 0 calls.

3.2 Resource-Aware TDG

Given the test cases with trace obtained in Def. 3, the associated cost can be
obtained as a simple post-process in which we apply the selected cost models to
all instructions associated to the rules in its trace.

Definition 4 (test case with cost). Consider a test case with trace Test ≡
〈Argsin,Argsout,Hin,Hout,Trace,θ〉, obtained in Def. 3 for method m w.r.t. C.
Given a cost model M, the cost of Test w.r.t. M, is defined as:

C(Test,M) = cost(Trace,M)

where function cost is recursively defined as:

cost(m(k, P, L),M) =

{∑
∀i∈instr(mk)M(i) if L = []∑
∀i∈instr(mk)M(i) +

∑
∀l∈L cost(l,M) otherwise

For the cost models in Sec. 3.1, we define the test case with cost as a tuple of
the form 〈Test, C(Test,Mins), C(Test,Mmem), C(Test,Mcall)〉.

stat ic Vector [] m u l t i p l e s (int [] ns , int div , int i cap){
Vector v = new Vector (i cap) ;
for (int i =0; i<ns . l ength ; i++)

i f (ns [i]% div == 0)
v . add (ns [i]) ;

return r ;
}

Fig. 4: Java source code example (2).

Argsin = [r(Ns),Div,1] Argsout = r(0)

Heapin=
4 [E1,E2,E3,E4]Ns

Heapout=
4 [E1,E2,E3,E4]Ns 41 4

r(4)
1 [E1]2 2 [E1,E2]3 4 [E1,E2,E3,E4]4

Constraints = {Div6=0, E1 mod Div=0, E2 mod Div=0, E3 mod Div=0, E4 mod Div=0}
Mmem=2*SPrimType+SRef+SPrimType*1+SPrimType*2+SPrimType*4=40 bytes

Mins = 270 bytecode instructions Mrealloc
call = 2

Argsin = [r(Ns),Div,ICap] Argsout = r(0)

Heapin=
2 [E1,E2]Ns

Heapout=
4 [E1,E2]Ns 41 ICap

r(2)
ICap [E1,E2,. . .]2

Constraints = {ICap≥4, Div 6=0, E1 mod Div=0, E2 mod Div6=0}
Trace=multiples(1,[],[init(1,[ICap],[]),mloop(1,[],[mcond(2,[],[mif(2,[],[add(1,[],[if(1,[],[addc(1,[],[])])]),

mloop(1,[],[mcond(2,[],[mif(1,[],[mloop(1,[],[mcond(1,[],[])])])])])])])])])

Mmem = 2*SPrimType+SRef+SPrimType*ICap = 12+4*ICap

Mins = 86 bytecode instructions Mrealloc
call = 0

Argsin=[r(Ns),Div,3] Argsout=r(0)

Heapin=
4 [E1,E2,E3,E4]Ns

Heapout=
4 [E1,E2,E3,E4]Ns 40 6

r(2)
3 [E1,E2,E3]1 6 [E1,E2,E3,E4,0,0]2

Constraints = {Div6=0, E1 mod Div=0, E2 mod Div=0, E3 mod Div=0, E4 mod Div=0}
Mmem = (2*SPrimType+SRef+SPrimType*3+SPrimType*6) = 48 bytes

Mins = 247 bytecode instructions Mrealloc
call = 1

Figure 1: Selected test cases with cost for method multiples with loop-4

Fig. 5: Selected test cases with cost for method multiples with loop-4

This could also be done by profiling the resource consumption of the exe-
cution of the test-case. However, observe that our approach goes beyond the
capabilities of TDG + profiling, as it can also obtain symbolic (non-constant)
resource usage estimations while profilers cannot. Besides, it saves us from the
non trivial implementation effort of developing a profiler for the language.

Example 4. We use a slightly more complex example from now on. Fig. 4 shows
method multiples, which receives an input array of integers ns and outputs an ob-
ject of type Vector, created with initial capacity icap, containing all the elements
of ns that are multiples of the second input argument div. Let us consider the
TDG of the CLP translation of method multiples with loop-4 as coverage crite-
rion. We get 54 test cases, which correspond to all possible executions for input

arrays of length not greater than 4, i.e., at most 4 iterations of the for loop.
Fig. 5 shows three test cases. The upper one corresponds to the test case that
executes the highest number of instructions, in which method realloc is executed
2 times (worst case for Mrealloc

call as well). The one in the middle corresponds to
one of the paths with the highest parametric memory consumption (for brevity,
only the trace for this case is shown), and the one at the bottom corresponds
to that with the highest constant memory consumption. In the middle one, the
input array Ns is of length 2, both elements in the array are multiples of Div, and
the initial capacity is constrained by ICap ≥ 4. With such input configuration,
the array is fully traversed and its two elements are inserted in the resulting
Vector object. By applying the cost model Mmem to the trace in the figure, we
obtain a symbolic heap consumption which is parametric on ICap (observe that
ICap is a parameter of the second and third calls in the trace). Importantly, this
parameter remains as a variable because method realloc is not executed. Sym-
bolic execution of realloc would give a concrete value to ICap when determining
the number of iterations of its loop. The test case at the bottom in contrast
executes realloc once, as the vector runs out of capacity at the fourth iteration
of the loop. Hence, its capacity is duplicated.

Resource-aware TDG has interesting applications. It can clearly be useful to
detect, early within the software development process, bugs related to an exces-
sive consumption of resources. Additionally, one of the well-known problems of
TDG is that, even for small programs, it produces a large set of test cases which
complicate the software testing process which, among other things, requires rea-
soning on the correctness of the program by verifying that the obtained test cases
lead to the expected result. Resource-aware TDG can be used in combination
with a resource policy in order to filter out test cases which do not adhere to the
policy. The resource policy can state that the resource consumption of the test
cases must be larger (or smaller) than a given threshold so that one can focus
on the (potentially problematic) test cases which consume a certain amount of
resources.

Example 5. Let us recall that in Ex. 4 we had obtained 54 test cases. By using
a resource policy to focus on those cases that consume more than 48 bytes, we
filter out 23 test cases. In a realistic scenario, the user must provide the test-
ing framework with resource consumption parameters. For instance, by setting
the amount of memory available in the resource policy, TDG could help us de-
tect (potentially buggy) behaviours of the program under test which exceed the
memory limit.

Furthermore, one can display to the user the test cases ordered according to the
amount of resources they consume. For instance, for the cost modelMmem , the
test cases in Ex. 4 would be shown first. It is easy to infer the condition ICap
> 9, which determines when the parametric test case is the most expensive one.
Besides, one can implement a worst-case resource policy which shows to the user
only the test case that consumes more resources among those obtained by the
TDG process (e.g., the one at the top together with the previous condition for

Mmem), or display the n test cases with highest resource consumption (e.g., the
two cases in Fig. 5 for n = 2).

4 Resource-driven TDG

This section introduces resource-driven TDG, a novel heuristics to guide the sym-
bolic execution process which improves, in terms of scalability, over the resource-
aware approach, especially in those cases where restrictive resource policies are
supplied. The main idea is to try to avoid, as much as possible, the generation
of paths during symbolic execution that do not satisfy the policy. If the resource
policy imposes a maximum threshold, then symbolic execution can stop an exe-
cution path as soon as the resource consumption exceeds it. However, it is often
more useful to establish resource policies that impose a minimum threshold. In
such case, it cannot be decided if a test case adheres to the policy until it is
completely generated. Our heuristics to avoid the unnecessary generation of test
cases that violate the resource policy is based on this idea: 1) in a pre-process,
we look for traces corresponding to potential paths (or sub-paths) that adhere
to the policy, and 2) we use such traces to guide the symbolic execution.

An advantage of relying on a CLP-based TDG approach is that the trace
argument of our CLP-transformed programs can be used, not only as an output,
but also as an input argument. Let us observe also that, we could either supply
fully or partially instantiated traces, the latter ones represented by including
free logic variables within the trace terms. This allows guiding, completely or
partially, the symbolic execution towards specific paths.

Definition 5 (guided TDG). Given a method m, a coverage criterion C, and
a (possibly partial) trace π, guided TDG generates the set of test cases with
traces, denoted gTDG(m,C, π), obtained for all successful branches in T C

m .

Observe that the symbolic execution guided by one trace (a) generates exactly
one test case if the trace is complete and corresponds to a feasible path, (b) none
if it is unfeasible, or (c) can also generate several test cases in case it is partial.
In this case the traces of all test cases are instantiations of the partial trace.

Example 6. Let us consider the partial trace multiples(1, [], [init(1, [ICap], []),
mloop(1,[], [mcond(2, [], [mif(2, [], [A1, mloop(1, [], [mcond(2,[], [mif(2,[], [A2,
mloop(1,[], [mcond(2, [], [mif(2, [], [A3, mloop(1, [], [mcond(2,[], [mif(2,[], [A4,
mloop(1,[], [mcond(1, [], []). . .]), which represents the paths that iterate four
times in the for loop of method multiples (rules mloop1 and mcond2 in the CLP
translated program), always following the then branch of the if statement (rule
mif2), i.e. invoking method add. The trace is partial since it does not specify
where the execution goes after method add is called (in other words, whether
method realloc is executed or not). This is expressed by the free variables (A1,
A2, A3 and A4) in the trace-term arguments. The symbolic execution guided
by such trace produces four test cases which differ on the constraint on ICap,
which is resp. ICap=1, ICap=2, ICap=3 and ICap≥4. The first and the third test

cases are the ones shown at the top and at the bottom resp. of Fig 5. All the
executions represented by this partial trace finish with the evaluation to false of
the loop condition (rule mcond1).

By relying on an oracle O that provides the traces, we now define resource-driven
TDG as follows.

Definition 6 (resource-driven TDG). Given a method m, a coverage crite-
rion C and a resource-policy R, resource-driven TDG generates the set of test
cases with traces defined by

n⋃
i=1

gTDG(m,C, πi)i

where {π1, . . . , πn} is the set of traces computed by an oracle O w.r.t R and C.

In the context of symbolic execution, there is an inherent need of carrying out
a constraint store over the input variables of the program. When the constraint
store becomes unsatisfiable, symbolic execution must discard the current ex-
ecution path and backtrack to the last branching point in the execution tree.
Therefore, in general it is not possible to parallelize the process. This is precisely
what we gain with deterministic resource-guided TDG. Because the test cases
are computed as the union of independent executions, they can be parallelized.
Experimenting on a parallel infrastructure remains as future work.

This definition relies on a generic oracle. We will now sketch different tech-
niques for defining specific oracles. Ideally, an oracle should be sound, complete
and effective. An oracle is sound if every trace it generates satisfies the resource
policy. It is complete if it generates all traces that satisfy the policy. Effectiveness
is related to the number of unfeasible traces it generates. The larger the number,
the less effective the oracle and the less efficient the TDG process. For instance,
assuming a worst-case resource policy, one can think of an oracle that relies on
the results of a static cost analyzer [1] to detect the methods with highest cost. It
can then generate partial traces that force the execution go through such costly
methods (combined with a terminating criterion). Such oracle can produce a
trace as the one in Ex. 6 with the aim of trying to maximize the number of
times method add (the potentially most costly one) is called. This kind of oracle
can be quite effective though it will be in general unsound and incomplete.

4.1 On Soundness and Completeness of Oracles

In the following we develop a concrete scheme of an oracle which is sound,
complete, and parametric w.r.t. both the cost model and the resource policy.
Intuitively, an oracle is complete if, given a resource policy and a coverage cri-
terion, it produces an over-approximation of the set of traces (obtained as in
Def. 3) satisfying the resource policy and coverage criterion. We first propose a
naive way of generating such an over-approximation which is later improved.

Definition 7 (trace-abstraction program). Given a CLP-translated pro-
gram with traces P , its trace-abstraction is obtained as follows: for every rule
of P , (1) remove all atoms in the body of the rule except those corresponding to
rule calls, and (2) remove all arguments from the head and from the surviving
atoms of (1) except the last one (i.e., the trace term).

The trace-abstraction of a program corresponds to its control-flow graph, and
can be directly used as a trace-generator that produces a superset of the (usually
infinite) set of traces of the program. The coverage criterion is applied in order
to obtain a concrete and finite set of traces. Note that this is possible as long as
the coverage criterion is structural, i.e., it only depends in the program structure
(like loop-k). The resource policy can then be applied over the finite set: (1) in
a post-processing where the traces that do not satisfy the policy are filtered out
or (2) depending on the policy, by using a specialized search method.

As regards soundness, the intuition is that an oracle is sound if the resource
consumption for the selected cost model is observable from the traces, i.e, it can
be computed and it is equal to the one computed after the guided TDG.

Definition 8 (resource observability). Given a method m, a coverage crite-
rion C and a cost-modelM, we say thatM is observable in the trace-abstraction
for m, if for every feasible trace π generated from the trace-abstraction using C,
we have that cost(π,M) = cost(π′,M), where π′ is a corresponding trace ob-
tained for gTDG(m,C, π).

Observe that π can only have variables in trace parameters (second argument
of a trace-term). This means that the only difference between π and π′ can be
made by means of instantiations (or associated constraints) performed during the
symbolic execution on those variables. Trivially,Mins andMcall are observable
since they do not depend on such trace parameters. Instead,Mmem can depend
on trace parameters and is therefore non-observable in principle on this trace-
abstraction, as we will discuss later in more detail.

Enhancing trace-abstractions. Unfortunately the oracle proposed so far is in
general very far from being effective since trace-abstractions can produce a huge
amount of unfeasible traces. To solve this problem, we propose to enhance the
trace-abstraction with information (constraints and arguments) taken from the
original program. This can be done at many degrees of precision, from the empty
enhancement (the one we have seen) to the full one, where we have the original
program (hence the original resource-aware TDG). The more information we
include, the less unfeasible traces we get, but the more costly the process is.
The goal is thus to find heuristics that enrich sufficiently the abstraction so that
many unfeasible traces are avoided and with the minimum possible information.

A quite effective heuristic is based on the idea of adding to the abstraction
those program variables (input arguments, local variables or object fields) which
get instantiated during symbolic execution (e.g., field size in our example). The
idea is to enhance the trace-abstraction as follows. Let us start with a set of vari-
ables V initialized with those variables (this can be soundly approximated by

multiples(ICap,multiples(1,[],[T1,T2])):- init(ICap,Size,Cap,T1),

mloop(Size,Cap,T2).

mloop(Size,Cap,mloop(1,[],[T])) :- mcond(Size,Cap,T).

mcond1(, ,mcond(1,[],[])).

mcond2(Size,Cap,mcond(2,[],[T])) :- mif(Size,Cap,T).

mif1(Size,Cap,mif(1,[],[T])) :- mloop(Size,Cap,T).

mif2(Size,Cap,mif(2,[],[T1,T2])) :- add(Size,Cap,NSize,NCap,T1),

mloop(NSize,NCap,T2).

add(Size,Cap,NSize,NCap,add(1,[],[T])) :- if(Size,Cap,NSize,NCap,T).

if1(Size,Cap,NSize,Cap,if(1,[],[T])) :- Size #\= Cap, addc(Size,NSize,T).

if2(Size,Cap,NSize,NCap,if(2,[],[T1,T2])) :- Size #= Cap,

realloc(Cap,NCap,T1), addc(Size,NSize,T2).

addc(Size,NSize,addc(1,[],[])) :- NSize #= Size+1.

realloc(Cap,NCap,realloc(1,[NCap],[T])) :- NCap #= Cap*2, loop(Cap,0,T).

loop(Cap,I,loop(1,[],[T])) :- cond(Cap,I,T).

cond1(Cap,I,cond(1,[],[])) :- I #>= Cap.

cond2(Cap,I,cond(2,[],[T])) :- I #< Cap, NI #= I+1, loop(Cap,NI,T).

init1(ICap,0,ICap,init(1,[ICap],[])).

init2(ICap,0,ICap,init(2,[ICap],[])).

Fig. 6: Enhanced trace-abstraction program.

means of static analysis). For every v ∈ V , we add to the program all occur-
rences of v and the guards and arithmetic operations in which v is involved. The
remaining variables involved in those guards are added to V and the process is
repeated until a fixpoint is reached. Fig. 6 shows the trace-abstraction with the
proposed enhancement for our working example, in which variables Size and Cap
(fields), ICap (input argument) and I (local variable) are added.

Resource Observability for Mmem . As already mentioned,Mmem is in gen-
eral non-observable in trace-abstractions. The problem is that the memory con-
sumed by the creation of arrays depends on dynamic values which might be
not present in the trace-abstraction. Again, this problem can be solved by en-
hancing the trace-abstraction with the appropriate information. In particular,
the enhancement must ensure that the variables involved in the creation of new
arrays (and those on which they depend) are added to the abstraction. This
information can be statically approximated [2, 15,16].

Instances of Resource-driven TDG. The resource-driven scheme has been
deliberately defined as generic as possible and hence it could be instantiated in
different ways for particular resource policies and cost-models producing more
effective versions of it. For instance, for a worst-case resource policy, the oracle
must generate all traces in order to know which is the one with maximal cost.
Instead of starting a guided symbolic execution for all of them, we can try them

one by one (or k by k in parallel) ordered from higher to lower cost, so that as
soon as a trace is feasible the process stops. By correctness of the oracle, the
trace will necessarily correspond to the feasible path with highest cost.

Theorem 1 (correctness of trace-driven TDG). Given a cost model M, a
method m, a coverage criterion C and a sound oracle O on which M is observ-
able, resource-driven TDG for m w.r.t. C using O generates the same test cases
as resource-aware TDG w.r.t. C for the cost model M.

Soundness is trivially entailed by the features of the oracle.

4.2 Performance of Trace-Driven TDG

We have performed some preliminary experiments on our running example using
different values for k for the loop-k coverage criterion (X axis) and using a worst-
case resource policy for the Mins cost model. Our aim is to compare resource-
aware TDG with the two instances of resource-driven TDG, the one that uses
the naive trace-abstraction and the enhanced one. Fig. 7a depicts the number
of traces which will be explored in each case. It can be observed that the naive
trace-abstraction generates a huge number of unfeasible traces and the growth
is larger as k increases. Indeed, from k = 6 on, the system runs out of memory
when computing them. The enhanced trace-abstraction reduces drastically the
number of unfeasible traces and besides the difference w.r.t. this number in
resource-aware is a (small) constant. Fig. 7b shows the time to obtain the worst-
case test case in each case. The important point to note is that resource-driven
TDG outperforms resource-aware TDG in all cases, taking in average half the
time w.r.t. the latter. We believe our results are promising and suggest that the
larger the symbolic execution tree is (i.e., the more exhaustive TDG aims to be),
the larger the efficiency gains of resource-driven TDG are. Furthermore, in a real
system, the different test cases for resource-driven TDG could be computed in
parallel and hence the benefits would be potentially larger.

5 Conclusions and Related work

In this paper, we have proposed resource-aware TDG, an extension of standard
TDG with resources, whose purpose is to build resource consumption into the
test cases. Resource-aware TDG can be lined up in the scope of performance
engineering, an emerging software engineering practice that strives to build per-
formance into the design and architecture of systems. Resource-aware TDG can
serve different purposes. It can be used to test that a program meets performance
criteria up to a certain degree of code coverage. It can compare two systems to
find which one performs better in each test case. It could even help finding out
what parts of the program consume more resources and can cause the system
to perform badly. In general, the later a defect is detected, the higher the cost

0 1 2 3 4 5 6 7 8 9 10

1
2
34
810

20

50

150
250
500
800

1,200

4,000

11,99914,999

74,984

loop-k

N
r.
o
f
tr
ac
es

Resource-aware
Trace-abstraction
Enhanced trace-abst.

(a) Number of traces.

1 2 3 4 5 6 7 8 9 10

0.01
0.02
0.04
0.06

0.19
0.38

0.92
1.9

4.66

9.94

23.27

50.01

loop-k

T
im

e(
se
cs
)

Resource-aware
Trace-abstraction
Enhanced trace-abst.

(b) Time.

Fig. 7: Preliminary experimental results.

of remediation. Our approach allows thus that performance test efforts begin at
the inception of the development project and extend through to deployment.

Previous work also considers extensions of standard TDG to generate re-
source consumption estimations for several purposes (see [6, 13, 21] and their
references). However, none of those approaches can generate symbolic resource
estimations, as our approach does, neither take advantage of a resource policy to
guide the TDG process. The most related work to our resource-driven approach
is [19], which proposes to use an abstraction of the program in order to guide
symbolic execution and prune the execution tree as a way to scale up. An impor-
tant difference is that our trace-based abstraction is an over-approximation of
the actual paths which allows us to select the most expensive paths. In contrast,
their abstraction is an under-approximation which tries to reduce the number of
test cases that are generated in the context of concurrent programming, where
the state explosion can be problematic. Besides, our extension to infer the re-
sources from the trace-abstraction and the idea to use it as a heuristics to guide
the symbolic execution is new.

Acknowledgements

This work was funded in part by the Information & Communication Technolo-
gies program of the European Commission, Future and Emerging Technologies
(FET), under the ICT-231620 HATS project, by the Spanish Ministry of Sci-
ence and Innovation (MICINN) under the TIN-2008-05624 DOVES project, the
UCM-BSCH-GR35/10-A-910502 GPD Research Group and by the Madrid Re-
gional Government under the S2009TIC-1465 PROMETIDOS-CM project.

References

1. E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost Analysis of
Java Bytecode. In Proc. of ESOP’07, volume 4421 of LNCS. Springer, 2007.

2. E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Removing useless
variables in cost analysis of java bytecode. In Proc. of SAC’08. ACM, 2008.

3. E. Albert, S. Genaim, and M. Gómez-Zamalloa. Heap Space Analysis for Java
Bytecode. In Proc. of ISMM ’07. ACM Press, 2007.

4. E. Albert, M. Gómez-Zamalloa, and G. Puebla. PET: A Partial Evaluation-based
Test Case Generation Tool for Java Bytecode. In Proc. of. PEPM’10. ACM Press,
2010.

5. E. Albert, M. Gómez-Zamalloa, J.M. Rojas, and G. Puebla. Compositional clp-
based test data generation for imperative languages. In LOPSTR 2010 Revised
Selected Papers, volume 6564 of LNCS. Springer-Verlag, 2011.

6. J. Antunes, N. F. Neves, and P. Veŕıssimo. Detection and prediction of resource-
exhaustion vulnerabilities. In Proc. of ISSRE’08. IEEE Computer Society, 2008.

7. L. A. Clarke. A System to Generate Test Data and Symbolically Execute Pro-
grams. IEEE Transactions on Software Engineering, 2(3):215–222, 1976.

8. C. Engel and R. Hähnle. Generating unit tests from formal proofs. In Proc. of
TAP’07, volume 4454 of LNCS. Springer, 2007.

9. S. Fischer and H. Kuchen. Systematic generation of glass-box test cases for func-
tional logic programs. In Proc. of PPDP’07. ACM, 2007.

10. M. Gómez-Zamalloa, E. Albert, and G. Puebla. Decompilation of Java Bytecode
to Prolog by Partial Evaluation. JIST, 51:1409–1427, October 2009.

11. M. Gómez-Zamalloa, E. Albert, and G. Puebla. Test Case Generation for Object-
Oriented Imperative Languages in CLP. TPLP, ICLP’10 Special Issue, 2010.

12. A. Gotlieb, B. Botella, and M. Rueher. A clp framework for computing structural
test data. In Computational Logic, pages 399–413, 2000.

13. A. Holzer, V. Januzaj, and S. Kugele. Towards resource consumption-aware pro-
gramming. In Proc. of ICSEA’09. IEEE Computer Society, 2009.

14. J. C. King. Symbolic Execution and Program Testing. Communications of the
ACM, 19(7):385–394, 1976.

15. M. Leuschel and M.H. Sørensen. Redundant argument filtering of logic programs.
In Proc. of LOPSTR’96. Springer-Verlag, 1996.

16. M. Leuschel and G. Vidal. Forward Slicing by Conjunctive Partial Deduction and
Argument Filtering. In Proc. of ESOP’05. Springer-Verlag, 2005.

17. C. Meudec. Atgen: Automatic test data generation using constraint logic program-
ming and symbolic execution. Softw. Test., Verif. Reliab., 11(2):81–96, 2001.

18. R. A. Müller, C. Lembeck, and H. Kuchen. A symbolic java virtual machine for
test case generation. In IASTED Conf. on Software Engineering, 2004.

19. N. Rungta, E.G. Mercer, and W. Visser. Efficient testing of concurrent programs
with abstraction-guided symbolic execution. In Proc. of SPIN’09. Springer, 2009.

20. T. Schrijvers, F. Degrave, and W. Vanhoof. Towards a framework for constraint-
based test case generation. In Proc. of LOPSTR’09, 2009.

21. J. Zhang and S.C. Cheung. Automated test case generation for the stress testing
of multimedia systems. Softw., Pract. Exper., 32(15):1411–1435, 2002.

	Resource-driven CLP-based Test Case Generation

