
A Transformational Approach to Parametric
Accumulated-cost Static Profiling

R. Haemmerlé1, P. López-Garćıa1,2, U. Liqat1,
M. Klemen1, J.P. Gallagher1,3, and M.V. Hermenegildo1,4

1 IMDEA Software Institute
2 Spanish Council for Scientific Research (CSIC)

3 Roskilde University
4 Technical University of Madrid (UPM)

Abstract. Traditional static resource analyses estimate the total re-
source usage of a program, without executing it. In this paper we present
a novel resource analysis whose aim is instead the static profiling of ac-
cumulated cost, i.e., to discover, for selected parts of the program, an
estimate or bound of the resource usage accumulated in each of those
parts. Traditional resource analyses are parametric in the sense that the
results can be functions on input data sizes. Our static profiling is also
parametric, i.e., our accumulated cost estimates are also parameterized
by input data sizes. Our proposal is based on the concept of cost centers
and a program transformation that allows the static inference of func-
tions that return bounds on these accumulated costs depending on input
data sizes, for each cost center of interest. Such information is much
more useful to the software developer than the traditional resource us-
age functions, as it allows identifying the parts of a program that should
be optimized, because of their greater impact on the total cost of pro-
gram executions. We also report on our implementation of the proposed
technique using the CiaoPP program analysis framework, and provide
some experimental results.

1 Introduction and Motivation

The execution of software consumes resources such as time, energy, and memory.
The goal of automatic program resource analysis is to infer the resources that a
program uses as a function of the size of the input data or other environmental
parameters of the program, without actually executing the program. Previous
work on this topic, mainly for inferring asymptotic time complexity bounds, goes
back to the 1970s. Recent research has adapted and extended these techniques
for inferring other resources, including for example energy [15, 14].

In this paper we investigate an extension of this problem which, although
based on the same essential techniques, has a different range of applications.
Rather than estimating the total resource usage of a program, we wish to perform
static profiling of its resource usage. This means that we intend to discover, for
selected parts of the program, an estimate of the resources used by those parts.
As before, the estimates will be parameterised by input sizes. However, these



input sizes will be of the entry predicate/function, unlike the input sizes of the
selected parts, as in the standard resource analysis.

There are several motivations for this research. Firstly, a profile of the re-
source usage of the program can show the developer which parts of the program
are the most resource critical. For example, it can expose the cost of functions
that are perhaps not particularly resource hungry by themselves but which are
called many times. Such parts are natural targets for optimization, since there a
small improvement can yield important savings. Secondly, there are cases where
the overall resource functions of a program might not be obtainable. This can be
for instance because some program parts are too complex for analysis or because
the code for some parts is not available and the cost cannot even be reasonably
estimated. In this case useful information may still be obtained by excluding
such parts from the analysis, obtaining information about the resource usage for
the rest of the program. Thirdly, resource usage models (for example Tiwari’s
energy consumption model [29]) are sometimes based on summing the individual
resource usage of basic components of the program. The analysis presented here
fits naturally with such models. Finally, in cases where a program has mutually
recursive functions/predicates, the standard cost analysis infers similar resource
functions for each recursive function. In such cases, a static profile finds precisely
the resource functions for each mutually recursive part of the program, and helps
identify the parts that are responsible for most of the cost.

The traditional profiling techniques are dynamic (i.e., require executing the
program on some particular input) and are based either on code instrumenta-
tion, i.e., introducing additional pieces of code in the sections to be measured,
or on running a process that performs the profiling together with the measured
program. In both cases, the dynamic profiler introduces an overhead in the re-
source measured that needs to be properly discriminated, which is non trivial.
For example, it may be the case that an instruction in the original program has
a very different energy consumption in the presence of code added by the pro-
filer just before it. In contrast, the static profiling approach we propose in this
paper obtains safe upper and lower bounds on resource consumption, because it
is based on the semantics of the program rather than particular executions of it.
I.e., the results are valid for all possible program inputs.

Our starting point is the well-developed technique of extracting recurrence
relations that express resource usage functions [32, 25, 6, 5, 7, 1]. These are then
solved to get a closed-form function expressing the (bounds on) parameterised
resource usage. In our work we will make use the CiaoPP program analysis frame-
work, which includes a set of generic resource analyses based on these techniques.
In particular, we will use the analysis described in [28]. CiaoPP operates on an
intermediate semantic program representation based on Horn Clauses [16], that
we will refer to as the “HC IR.” By transforming the input language into this
intermediate representation, the CiaoPP framework has been shown capable of
analyzing imperative programs at the source, bytecode, or binary level with
competitive precision and efficiency (see [16, 21, 20, 15, 14] for details).

Our approach to static profiling is based on a transformation that is per-
formed at the level of the CiaoPP Horn Clause-based intermediate representa-



tion. The proposed transformation allows a standard cost analyzer (CiaoPP in
our experiments) to statically infer functions that return bounds on accumulated
costs depending on input data sizes, for a number of predefined program points
of interest (predicates in our case), referred to as cost centers. Intuitively, given
a program P, the cost accumulated in a given predicate p ∈ P is defined in the
context of the execution of a single call to another predicate q ∈ P. It expresses
the addition of (part of) the resource usages corresponding to the execution of
all calls to predicate p generated by a single call to predicate q ∈ P.

In the rest of the paper, Section 2 presents informally a general model of
(dynamic) profiling and how we turn it into a static version. Section 3 reviews
established techniques for cost analysis based on extracting and solving cost
relations. Section 4 formalizes our notion of accumulated cost. Section 5 describes
the implementation of the technique, based on a source-to-source transformation.
Section 6 reports some experimental results. In Section 7 we comment on some
related work and finally Section 8 concludes, discussing future directions.

2 From Dynamic Profiling to Static Profiling

We start by presenting informally a general model of (dynamic) profiling and
how we turn it into a static version. Our model is based on the notion of cost
centers, inspired from the work of Sansom and Peyton Jones [26] and Morgan
and Jarvis [18]. This approach was also applied to Logic Programs and extended
to perform run-time checking of non-functional properties in [17]. Intuitively a
cost center provides a dynamic scoping mechanism to uniquely attribute the
execution costs of a part of the code to an identifier. The scope of the cost
center is dynamic in the sense that execution costs of code that are not explicitly
associated to a cost center are dynamically attributed to the same cost center
as the caller. For a number of languages it is convenient to identify the cost
centers with (a subset of) functions, procedures, or predicates. In this paper we
follow this path. Alternatively, cost centers can be defined by special scoping
constructs [26].

As an example,5 assume that a programmer wishes to profile a program
which uses the following variance() function (variance() naively computes
the variance of an array of integers):

1 int variance(int * arr, int size){
2 int tmp[size], i = size;
3 while(i > 0) {
4 i--;
5 tmp[i] = (arr[i] - mean(arr, size));
6 tmp[i] = tmp[i] * tmp[i]; }
7 return mean(tmp, size);
8 }

5 As mentioned in the introduction, CiaoPP’s analyses deal with programs written
in such C-like languages (among others) by analyzing corresponding Horn Clause
representations.



Assume that mean() is a given function that computes the mean of an integer
array. First consider that both mean() and variance() are cost centers. In this
case the actual execution costs of the code that appears textually within the
variance() function will be aggregated at each call to such function and will
be attributed to the variance() cost center. However the cost of calls to mean()

–including those made from variance()– will not be attributed to variance().
Now consider the case where variance() is declared a cost center, but mean

() is not. In this case the execution costs of calls to mean() made from the
variance() function will be also aggregated to those of variance() (but not
those made from other points in the program).

Returning to the case where both variance() and mean() are declared
as cost centers, assume that the programmer profiles the energy consumption
(measured as nano joules, nJ ) of a call to the variance() function over the array
{1, 2, 3, 4}, on some particular architecture. Assume that the result of the profiler
is that 74.7 units of energy are accumulated in the variance() cost center and
464.4 units in the mean() cost center. Since mean() is called 4 times, the cost
of a single call to it (with the array above) would be 116.1 nJ (464.4/4). If only
variance() were declared a cost center, the profiler would have accumulated
all the cost in it, i.e., 464.4 + 74.7 nJ. In such a case, the cost measured by the
profiler would be the same as what we call the standard cost of a (single) call to
variance() with the given array (i.e., 539 nJ ).

Since the accumulated value in the mean() cost center is much larger than
that accumulated in the variance() cost center, this indicates that for this
particular call most of the energy is consumed inside the mean() function, i.e.,
that this function is responsible for most of the standard cost of the call to
variance(). This can be a strong indicator that it may be worthwhile to either
optimize the body of mean() or try to reduce the number of times it is called.
Note, however, that with just this data, which come from a run with a particular
input, the programmer does not really have any guarantees that the results are
representative of the general behavior of the program for all inputs. This problem
is usually tackled by repeating the process on a large set of different inputs.
This can lead to more indicative results, but still has several drawbacks. First,
this process can be very long, because profiling usually introduces additional
execution costs, which get multiplied by the number of inputs. Second, and
more importantly, even if a large number of inputs is used, this still does not
provide a strong guarantee, i.e., there may be some corner case inputs for which
the call behaves in a very different way. Finally, the approach does not allow the
comparison of the asymptotic cost accumulated in the different cost centers.

To overcome the problems outlined above, we propose to statically infer
(lower and upper) bounds on the cost accumulated in the cost centers as func-
tions of the sizes of the input data to the profiled call (the call variance() in our
example). In the example above, the system we have implemented infers (for the
resource “energy”6) that for a call to variance() with a list of size size, the costs

6 Using as back-end analysis the energy analysis of [15, 14] on an XCore XS1 processor
with the program compiled by the XMOS xcc compiler without optimization.



accumulated in the variance and mean() functions are 24.32+size×12.59 and
23.03 + 17.46×size2 + 40.49×size energy units (nano joules) respectively. In
this case the system infers these expressions for both the upper and lower bounds,
which means that they are exact costs. Hence, the programmer does have the
guarantee that for all non-trivial calls (i.e., for all calls with non-empty lists)
and for any input data, the code of mean() consumes most of the energy. In this
case an obvious improvement can be made, since the call to mean(arr, size)

can be safely moved outside the loop:

1 int variance(int * arr, int size){
2 int tmp[size];
3 int i = size;
4 int m = mean(arr, size);
5 while(i > 0) {
6 i--;
7 tmp[i] = (arr[i] - m);
8 tmp[i] = tmp[i] * tmp[i];
9 }

10 return mean(tmp, size);
11 }

For this version of the program, the system infers that the costs accumulated in
the variance() and mean() functions are 28.18+size×8.73 and 46.06+34.92×
size energy units (nano joules) respectively. For brevity and simplicity we chose
a program that is rather naive and where the optimization is obvious (and would
in fact be done by some compilers automatically), but the same reasoning applies
to more complex cases that are not easy to spot without profiling information.
Furthermore, the static profiling functions can also be used for guiding automatic
optimization by the compiler.

3 The Classical Cost Relations-based Parametric Static
Analysis

The approach to cost analysis based on setting up and solving recurrence equa-
tions was proposed in [32] and has been developed significantly in subsequent
work. For example, in [25] an automatic upper-bound analysis was presented
based on an abstract interpretation of a step-counting version of a functional
program, in order to infer both execution time and execution steps. However,
size measures could not automatically be inferred and the experimental section
showed few details about the practicality of the analysis. In the context of Logic
Programming, a semi-automatic analysis was presented in [6, 5] that inferred
upper-bounds on the number of execution steps, given as functions on the input
data sizes. This work also proposed techniques to address the additional chal-
lenges posed by the Logic Programming paradigm, as, for example, dealing with
the generation of multiple solutions via backtracking. However, a shortcoming
of the approach was its loss in precision in the presence of divide-and-conquer
programs in which the sizes of the output arguments of the “divide” predicates



are dependent. This approach was later fully automated (by integrating it into
the CiaoPP system and automatically providing modes and size measures) and
extended to inferring both upper- and lower-bounds on the number of execu-
tion steps (which is non-trivial because of the possibility of failure) in [7, 10]. In
addition, [7] introduced the setting up of non-deterministic recurrence relations
for the class of divide-and-conquer programs mentioned above, and proposed a
technique for computing approximated closed form bound functions for some
of them. Such a technique was based on bounding the number of terminal and
non-terminal nodes in the set of computation trees corresponding to the eval-
uation of the non-deterministic recurrence relations, and bounding the cost of
such nodes. Non-deterministic recurrence relations were also used and further
developed in [1] (named Cost Relations). The approach in [6, 5, 7] was general-
ized in [22] to infer user-defined resources (by using an extension of the Ciao
assertion language [11]), and was further improved in [28] by defining the re-
source analysis itself as an abstract domain that is integrated into the PLAI
abstract interpretation framework [19, 24] of CiaoPP, obtaining features such as
multivariance, efficient fixpoints, and assertion-based verification and user in-
teraction. A significant additional improvement brought about by [28] is that it
is combined with a sized types abstract domain, which allows the inference of
non-trivial cost bounds when they depend on the sizes of input terms and their
subterms at any position and depth. Recently, many other approaches have been
proposed for resource analysis [30, 12, 9, 13, 23, 8, 1, 2]. While based on different
techniques, all these analyses infer, for all predicates p of a given program P,
an approximation of the notion of cost that we call the standard cost or single
call cost. Most of them infer an upper bound, while others infer both upper and
lower bounds. The following example shows this (for the case of CiaoPP) and
also illustrates that this concept of cost may not be directly useful for locating
performance bottlenecks.

Example 1. Consider the following implementation of an eval(E,M,R) pred-
icate that evaluates modulo 2M a given expression E built from additions and
multiplications. This implementation assumes that two predicates are given:
add(A,B,M,R) and mult(A,B,M,R), that respectively add and multiply two
infinite precision numbers A and B modulo 2M, and unify the result with R.

1 eval(const(A),M,R) :- eval_const(A,M,R).
2 eval(A+B, M,R) :- eval_add(A,B,M,R).
3 eval(A*B, M,R) :- eval_mult(A,B,M,R).
4

5 eval_const(A,_,R) :- R=A.
6 eval_add(A,B,M,R) :- eval(A,M,RA), eval(B,M,RB), add(RA,RB,M,R).
7 eval_mult(A,B,M,R):- eval(A,M,RA), eval(B,M,RB),mult(RA,RB,M,R).

For the sake of simplicity, assume that all the costs are null except those re-
lated to the evaluation of add/4 and mult/4. Assume that the cost of the evalu-
ation of add(A,B,M,R) is M and the cost of the evaluation of mult(A,B,M,R)
is M2. Under these assumptions, the standard CiaoPP cost analysis infers that the
cost of the evaluation of eval(E,M,R) is bounded by (2depth(E) − 1)× (M+ M2)



where depth(E) stands for the depth of the expression E – note that the exact
bound is (2depth(E) − 1) × M2. However, such an analysis does not help finding
precisely which part of the code is responsible for most of the cost. Indeed since
all the predicates (eval/3, eval add/4, and eval mult/4) are mutually re-
cursive, the system will infer a similar cost for eval add/4 and eval mult/4.
Furthermore, those costs will be expressed in terms of different input variables
making the actual comparison difficult.

4 Parametric Accumulated-cost Static Profiling

We now formalize the new notion of cost that we propose, the accumulated cost,
which has been intuitively described in Section 1. As mentioned before, our
approach is based on the notion of cost centers: user-defined program points
(predicates, in our case) to which execution costs are assigned during the execu-
tion of a program. Data about computational events is accumulated by the cost
center each time the corresponding program point is reached by the program
execution control flow.

We start by presenting a formal profiled semantics for Logic Programming.
For this purpose we assume given a program P. We also assume that each predi-
cate p is associated with a cost costp ∈ R and that the cost centers are defined as
a set ♦ of predicate symbols. In the following we will use overlined symbols such
as t̄, x̄, or ē to denote a sequence of terms, variables, or arithmetic expressions.

We define a predicate call with context as a tuple of the form r :p(t̄), where
r, the context, is a cost center (i.e., a predicate from ♦) and p(t̄) is a predicate
call. Then, we define profiled states as tuples of the form 〈α ; θ ; κ〉 where α is a
sequence of predicate calls with context, θ is a substitution that maps variables
to calling data, and κ, the cost assignment, is a family of real numbers indexed
by the cost centers ♦. The profiled resource semantics is defined as the smallest
relation →P over profiled states satisfying:

q = update♦(p,r) (p(s̄) :- β) ∈ Pρ σ is an m.g.u. of s̄ and t̄θ

〈r :p(t̄), α ; θ ; κ〉 →P 〈q :β, α ; θ ◦ σ ; κ[q 7→ κq + costp]〉

σ is an m.g.u. of t and [sθ]

〈r :(t is s), α ; θ ; κ〉 →P 〈α ; θ ◦ σ ; κ〉
where:

– q :β, α is a notation for the sequence q :p1(s̄1), ...,q :pn(s̄n), α, assuming β
is the sequence p1(s1), ...,pn(sn).

– [s] stands for the arithmetic evaluation of s (if s is not a ground arithmetic
expression, then [s] is not defined, as well as the rule using it),

– ρ stands for a renaming with fresh variables,
– κ[q 7→ c] is the assignment that maps p to c if p = q or to κp otherwise, and
– update♦(p,r) equals either p if p ∈ ♦, or r otherwise.

The first rule can be understood as an extension of SLD resolution with cost.
Concretely, the cost costp of the called predicate p is added to the value of the



current cost center, the cost center being updated beforehand to the current
predicate if the latter is in fact a cost center, and left unchanged otherwise. The
latter rule characterizes the semantics of the built-in is/2, where we assume
w.l.o.g. that the operation has no cost. Standard left-to-right evaluation is simply
recovered by ignoring the cost assignment together with the calling contexts. In
the following section, we will use the notation (α ; θ), where α is a sequence
of predicate calls and θ a substitution, to denote a standard (non-profiled) LP
state.

In the following, we use Π as the set of tuples of terms, and R to denote
the set of real numbers. For any cost center p ∈ ♦, the profiled resource usage
function is the function Cp♦ : 2Π → 2R

n

defined as:

Cp♦(T̄ ) =


{
κ | t̄ ∈ T̄ & 〈p :p(t̄) ; ε ; 0̄〉 →∗P 〈� ; θ ; κ〉

}
if p(t̄) terminates

universally ∀t̄ ∈ T̄
Rn otherwise

where 0̄ stands for the trivial cost assignment that maps any cost center to 0,→∗P
is the reflexive and transitive closure of →P , � denotes the empty sequence of
predicate calls, ε is the identity substitution, and n is the number of cost centers.
We use the “top” element in 2R

n

(i.e., Rn) to denote a “don’t know” cost for
non-terminating programs, which, for simplicity, are currently not defined in our
framework. Note that the cost κp in an infinite derivation can be (asymptotically)
different from +∞ as (1) p can be the context of only a finite number of the
steps involved in an infinite derivation, and (2) because costs of predicates can
be zero or negative. The profiled semantics is a natural generalization of the
standard resource usage semantics which is able to handle several costs which
are accumulated in the cost centers. Indeed the resource usage function inferred
by the standard analysis can be understood as the function Cp = Cp{p} defined
over a unique cost center.
Cpq(T̄ ) denotes the cost accumulated in q from the calls p(t̄) (t̄ ∈ T̄ ), that is,

the union of the ith component of all tuples in Cp♦(T̄ ) if q is the ith cost center in

♦ (formally Cpq(T̄ ) =
{
κq | κ ∈ Cp♦(T̄ )

}
). In particular, if p(t̄) deterministically

succeeds (e.g., when it is obtained by translation of some imperative program)
the cost accumulated in q from p(t̄) is unique, i.e., Cpq({t̄}) = {c} for some
c ∈ R. In such a case, by a slight abuse of notation, we denote the unique value
by Cpq(t̄).

Example 2. Consider the deterministic program given in example 1. If we profile
the program, defining all the predicates of the program as cost centers except
add/4 and mult/4, the costs accumulated in eval const/3, eval add/4
and eval mult/4 for a call of the form eval(E,M,R) are respectively bounded
by 0, (0.5× 2depth(E)× M), and (0.5× 2depth(E)× M2). This makes it easier to spot
the source of most of the cost, i.e., eval mult/4. Therefore, to improve the
efficiency of the whole program, it can be useful to concentrate on this predicate,
either by optimizing its implementation or by reducing the number of times it
is called.



We write p  q if q is reachable from q, that is, if q(t̄) →∗P (p(s̄), α) for
some calling data t̄ and s̄, and some sequence of calls α. Given a set ♦ of cost
centers assigned to a program P and some predicate p, we define the set of
reachable cost centers from p as the sequence ♦p = {q | q ∈ ♦ ∧ p ? q}.

Theorem 1. Let P be a program and ♦ ⊆ pred(P) a set of cost centers for it.

Then, for all p ∈ ♦: for all T̄ ⊂ Π it holds that: Cp(T̄ ) =
{∑

q∈♦p
Cpq(T̄ )

}
. In

particular, if p(t̄) deterministically succeeds Cp(t̄) =
∑

q∈♦p
Cpq(t̄).

Note that theorem 1 provides the basis for a compositional and modular
definition of the standard (i.e., single call) cost analysis, from the results of the
accumulated cost analysis. Note also that (by definition of reachable cost center)
p is always reachable from itself, even though p does not call itself.

5 Inferring Accumulated Cost via Transformation

As mentioned before, our implementation of the static profiler is based on a
source-to-source transformation. In this section we show such a transformation
that allows obtaining accumulated cost information for cost centers by perform-
ing a sized type analysis in CiaoPP. Basically, the transformation consists of
adding shadow arguments to each predicate of the Horn clauses that represent
the accumulated cost for each cost center.

5.1 The Transformation

In this section we assume there is exactly n cost centers and ♦ is defined as the
family {pi}i∈0..n−1. The transformation proposed consists of adding n+1 shadow
arguments to each predicate, such that on success those variables will be assigned
to the costs accumulated in the program. There are n shadow arguments for the
cost accumulated in the cost centers called by the predicate, and an additional
one for the cost associated with the calling context, which is not known statically.

Formally, the transformation is defined by the functions J·K♦ and J·Kn that
respectively translate clauses and goals. The function J·Kn : A∗ → (A∗ × En+1)
(E is the set of possibly non-ground arithmetic expressions) that translates se-
quences of atoms is defined recursively on the length of the goal as:

– Jq(t̄), αKn = ((q(t̄, x̄), β), x̄ + ē) where (β, ē) = JαKn
– J�Kn = (�, 0̄)

where x̄ (resp. 0̄) stands for a sequence of (n+ 1) fresh variables (a sequence of
(n + 1) zeros). On the other hand the function J·K♦ : C → C is defined by cases
as follows:

Jq(t̄) :- αK♦ =


(q(t̄, x̄) :- β,

x̄ is ē[ēn ← 0][ēi ← (costq + ei + en)] if q = pi ∈ ♦
(q(t̄, x̄) :- β,

x̄ is ē[ēn ← (costq + en)] otherwise



where (β, ē) = JαKn, x̄ is a sequence of n + 1 fresh variables, and x̄ is ē
is a notation for x0 is e0, . . . , xn is en (assuming x̄ = (x0, . . . ,xn) and
ē = (e0, . . . ,en)).

The translation of a clause is defined by case on the predicate q it defines.
Suppose q is some cost center pi ∈ ♦. In this case the costs associated with
q itself (i.e., costq) are assigned to the argument corresponding to q, namely
ei. Furthermore the costs in evaluating q that are not associated to any other
cost center (i.e., en) are also assigned to ei. Thus we have ē[ēn ← 0][ēi ←
(costq + ei + en)]. On the other hand, if q is not a cost center, then the costs
associated with q are associated to its context, namely en, and thus we have
ē[ēn ← (costq + en)].

Example 3. We show now the translation of the code corresponding to our run-
ning example, given in Example 1, assuming that the cost centers are eval/3,
eval const/4, eval add/4, and eval mult/4. In the translation the out-
put arguments Ce, Cc, Ca, and Cm correspond to the cost accumulated in the
respective cost centers. On the other hand, the output C is the cost that has not
been accumulated in any of the cost centers. Within the translation we leave
the actual implementations of add/4 and mult/4 unspecified and marked by
(...).

1 eval(const(A),M,R,Ce,Cc,Ca,Cm,C) :-
2 eval_const(A,M,R,De,Dc,Da,Dm,D),
3 Ce i s De+D, Cc i s Dc, Ca i s Da, Cm i s Dm, C i s 0.
4 eval(A+B,M,R,Ce,Cc,Ca,Cm,C) :-
5 eval_add(A,B,M,R,De,Dc,Da,Dm,D),
6 Ce i s De+D, Cc i s Dc, Ca i s Da, Cm i s Dm, C i s 0.
7 eval(A*B,M,R,Ce,Cc,Ca,Cm,C) :-
8 eval_mult(A,B,M,R,De,Dc,Da,Dm,D),
9 Ce i s De+D, Cc i s Dc, Ca i s Da, Cm i s Dm, C i s 0.

10 eval_const(A,_M,R,Ce,Cc,Ca,Cm,C) :- R=A,
11 Ce i s 0, Cc i s 0, Ca i s 0, Cm i s 0, C i s 0.
12 eval_add(A,B,M,R,Ce,Cc,Ca,Cm,C) :-
13 eval(A,M,RA,De,Dc,Da,Dm,D), eval(B,M,RB,Ee,Ec,Ea,Em,E),
14 add(RA,RB,M,R,Fe,Fc,Fa,Fm,F),
15 Ce i s De+Ee+Fe, Cc i s Dc+Ec+Fc, Ca i s Da+Ea+Fa+D+E+F,
16 Cm i s Dm+Em+Fm, C i s 0.
17 eval_mult(A,B,M,R,Ce,Cc,Ca,Cm,C) :-
18 eval(A,M,RA,De,Dc,Da,Dm,D), eval(B,M,RB,Ee,Ec,Ea,Em,E),
19 mult(RA,RB,M,R,Fe,Fc,Fa,Fm,F),
20 Ce i s De+Ee+Fe, Cc i s Dc+Ec+Fc, Ca i s Da+Ea+Fa,
21 Cm i s Dm+Em+Fm+D+E+F, C i s 0.
22 add(RA,RB,M,R,Ce,Cc,Ca,Cm,C) :-
23 (...)
24 Ce i s 0, Cc i s 0, Ca i s M, Cm i s 0, C i s 0.
25 mult(RA,RB,M,R,Ce,Cc,Ca,Cm,C) :-
26 (...)
27 Ce i s 0, Cc i s 0, Ca i s 0, Cm i s M*M, C i s 0.



The following theorem states that the translation of a given program simu-
lates the original one, while reifying the cost assignment as a first-order argu-
ment.

Theorem 2. Assume a given program P profiled according n cost centers ♦ =
{p0, . . . ,pn−1} and a predicate p different from is.

(Soundness) If (p(t̄, x̄) ; θ) →∗JPK♦ (� ; σ) (for some sequence of pairwise x̄

distinct variables free in t̄ and θ) then there exists a derivation of the form
〈pi :p(t̄) ; θ ; 0̄〉 →∗P 〈� ; σ′ ; κ〉, with t̄σ′ = t̄σ, κpj = xjσ (for j ∈ 1, ..., n−1
and j 6= i), and κi = xiσ + xnσ.

(Completeness) If 〈pi :p(t̄) ; ε ; 0̄〉 →∗P 〈� ; θ ; κ〉, then there exists a deriva-
tion of the form (p(t̄, x̄) ; ε) →∗JPK♦ (� ; σ), with t̄θ = t̄σ, κpk = xjσ (for

j ∈ 1, ..., n− 1 and j 6= i), and κi = xiσ + xnσ.

5.2 Performing the Resource Usage Analysis

The Horn Clause program resulting from the transformation described above,
whose predicates are augmented with shadow output arguments representing the
accumulated cost for each cost center, is analyzed in order to infer lower and
upper bounds on the sizes of such arguments, which actually represent bounds
on the respective accumulated costs.

In order to obtain such bounds, we use the size analysis presented in [27,
28], integrated in the CiaoPP system. The goal of this analysis is to infer lower
and upper bounds on the sizes of output arguments as a function on the sizes of
input arguments. This analysis is based on the abstract interpretation framework
present in CiaoPP, and basically infers sized types for output arguments. Sized
types are representations that incorporate structural (shape) information and
allow expressing both lower and upper bounds on the size of a set of terms and
their subterms at any position and depth. For a more detailed explanation of
this process, we refer the reader to [27].

Continuing with our running example, consider the output argument Ca,
which represents the accumulated cost of the cost center eval add/4 when it
is called from eval/4. In a preprocessing step, the program is unfolded in order
to avoid mutual recursion, which makes the analysis harder. After the unfolding
step, the analysis infers types for the predicate arguments by using an existing
analysis for regular types [31]. This analysis infers that for a call to a transformed
version of eval/4 (with shadow variables) of the form:

eval(Exp,M,R,Ce,Cc,Ca,Cm,C)
with Exp and R bound and the rest of arguments as free variables, then Ca gets
bound to a number upon success, i.e., a term of type num. From the inferred
regular type, the analysis derives a sized type schema, which is just a sized type
with variables in bound positions, along with a set of constraints over those
variables.

In this case, the corresponding sized type for num is num(α,β), where α and
β are variables representing lower and upper bounds on the size of the elements



that belong to such type. The metric we use for the size of a number is its
actual value, since num is a basic type. For compound types, e.g., lists, trees
or arithmetic expressions, we can use several metrics for the size of any term
belonging to them, such as the depth of such term (as in our example), or the
number of type rule applications needed for the type definition to succeed for
such term.

The next step involves setting up recurrence relations between size variables.
Thus, for β, that represents the upper bound of the size of Ca, we obtain the
following equation (where Sizepredarg is the size of the argument arg corresponding
to predicate pred):

β = SizeevalCa (Sizeexp,M) =

{
2 ∗ SizeevalCa (Sizeexp − 1,M) +M if Sizeexp > 1

0 otherwise

At this point, we have obtained a recurrence relation that represents the size
of the output argument. However, such expression is not useful for some appli-
cations. One disadvantage of using recurrence relations is that the evaluation of
them given concrete input values usually takes longer than the evaluation of an
equivalent non-recursive expression. In addition, it is not easy to see the com-
plexity order of a given procedure just by looking at its recurrence relation, and
the comparison with other functions is also more difficult. For this reason, the
analysis uses a solver for obtaining closed-form representations for recurrence
relations. Such closed forms can be either exact solutions or safe overapproxi-
mations. In our example, the closed-form version for the recurrence is:

β = SizeevalCa (Sizeexp,M) = (2Sizeexp − 1) ∗M

Assuming that the metric for the size of arithmetic expressions is the depth
of the term representing them, we have that Sizeexp = depth(exp). Thus, we
can finally conclude that the accumulated cost of eval add/4 when called from
eval/3 (i.e., the size of Ca in the transformed version of the program), is given
by

(2depth(exp) − 1) ∗M

6 Experimental Results

We have performed an experimental evaluation of our techniques with the pro-
totype implementation described in Section 5 over a number of selected bench-
marks from [28]. The benchmarks are written directly as Horn Clause programs
(in Ciao). In each benchmark, a number of predicates are marked as cost cen-
ters. The results are shown in Table 1. Static profiling was performed for each
cost center, capturing the accumulated cost with respect to an entry predicate
(marked with a star, e.g., appendAll2∗). While in the experiments both upper
and lower bounds were inferred, for the sake of brevity we only show upper
bound functions. Also, each clause body is assumed to have unitary cost.



Table 1. Experimental results.

Program Cost-Center
Predicate

Accumulated
Cost UB

Static
Vs.Dyn

Standard UB NoOf Calls

appendAll2
appendAll2∗ b1 0% 2b1b2b3+b1b2+b1 1
appendAll b1b2 33% b1b2 b1
append 2b1b2b3 61% β b1b2 + b1

hanoi
hanoi∗ 2v − 1 0% 2v+1 − 2 1
processMove 2v − 1 0% 1 2v − 1

coupled
coupled∗ 1 0% v + 1 1

f v
2

+ (−1)v

4
+ 3

4
1.2% v v

2
− (−1)v

4
+ 1

4

g v
2

+ (−1)v

4
− 1

4
0% v v

2
+ (−1)v

4
− 1

4

minsort
minsort∗ β + 1 0% (β+1)2

2
+ β+1

2
1

findmin (β+1)2

2
+ β−1

2
7% β β + 1

dyade
dyade∗ β1 0% β1(β2 + 1) 1
mult β1β2 0% β β1

variance variance∗ 1 0% 2β2 1
naive sq diff β − 1 0% 2β2β1 − 2β2 β − 1

mean 2β2 − β 0% β − 1 β

variance
variance∗ 1 0% 5β + 3 1
sq diff β 0% β β
mean 4β + 2 0% 2β + 1 2

listfact
listfact∗ β 0% β(δ + 2) 1
fact βδ + β 47% δ + 1 β

– ln(αi,βi)(n(γi,δi)) represents the size of the list of numbers Li, where βi and δi (resp. αi and γi) denote
the upper (resp. lower) bounds on the length of the list and size of its numbers respectively.

– llln(a1,b1)(lln(a2,b2)(ln(a3,b3)(n(a4,b4)))) represents the size of the list of list of list of numbers similarly.

– n(µ,v) denotes the size of a number with lower µ and upper v bounds.

Column 1 of Table 1 shows the list of benchmarks while column 2 provides the
list of cost centers for each benchmark. Column 3 shows the parametric accumu-
lated cost inferred for each cost center, as a resource usage upper bound function
on input data sizes of the entry predicate. Column 4 compares the parametric
accumulated cost function of each cost center from column 3 with the results
from a dynamic profiling tool [17]. Although the analysis infers upper bounds
on the accumulated cost, for some benchmarks these are exact upper bounds (in
fact, exact costs) and for others these are correct but relatively imprecise. The
imprecision introduced in the benchmarks listfact and appendAll2 is due to the
fact that the cost not only depends on the input data sizes but also on the sizes
of the sub-terms in the input data, since the analysis statically assumes an upper
bound on the sizes of the sub-terms. Note that CiaoPP is the only analysis tool
that infers concrete upper bound functions over sized types (costs that depend
on the sizes of subterms) [28].



Column 5 shows for comparison the cost inferred by the standard (i.e., non-
accumulated) cost analysis [28] for each program and its auxiliary predicates
(also marked as cost centers). The comparison of the accumulated and standard
cost functions (columns 3 vs. 5) shows the usefulness of our approach: the upper
bounds on cost centers display accumulated costs for program parts that were
not visible with the standard analysis. For instance, similarly to Example 1,
the coupled benchmark has two auxiliary mutually recursive predicates f and g
that are processing elements of a list alternatively until the list becomes empty.
The standard analysis infers almost the same upper bound for both functions
due to the mutual recursion, whereas the accumulated cost precisely points out
the source of cost in the mutually recursive parts. Similarly, in hanoi, although
the cost of processMove (processing a single hanoi move) is unitary, we can see
that it is called an exponential number of times. The analysis is providing hints
to the programmer about the parts of the program that are most profitable
candidates for optimization. Note that the upper bound cost functions inferred
by static profiling for each cost center predicate are on the input data sizes of
the program (entry predicate), in contrast to the standard analysis where the
cost functions are on the input data sizes of the predicate that the cost function
corresponds to.

Finally, in column 6 an additional noOfCalls cost is presented, indicating the
number of times each predicate is called, as a function of input data sizes of the
entry predicate. These cost functions are inferred using the standard analysis
by defining explicitly a noOfCalls resource for each cost center predicate. A big
complexity order in the number of calls to a predicate (in relation to that of a
single call) might give hints to reduce the number of calls to such predicate in
order to effectively reduce its impact on the overall cost of the program (i.e., the
cost of a call to the entry point). More interestingly, since both the Accumulated
and noOfCalls costs of a predicate q are expressed as functions of input data
sizes of the entry predicate, their quotient (col3 / col6) is meaningful and will
give an approximation of the cost of a single call to q as a function of input
data sizes of the entry predicate. Note that the standard analysis (column 5)
also provides an upper-bound approximation of this cost but as a function of
the input data sizes of predicate q.

7 Related Work

Static profiling in the context of Worst Case Execution Time (WCET) Analysis
of real-time programs is presented in [4]. It proposes an approach to computing
worst-case timing information for all code parts of a program using a comple-
mentary metric, called criticality. Every statement of a real-time program is
assigned with a criticality value, expressing how critical the respective code is
for the global WCET. Our approach is not limited to WCET, since it is able
to obtain results for a general class of user-defined resources. Furthermore, our
inferred metrics are parametric on the input data sizes of the main program, in
contrast to the criticality metric, which is a numeric value in the range [0, 1]. In



addition, our approach is modular and compositional, able to compute accumu-
lated costs w.r.t. calls originating from different procedures of the program, and
not only the main program entry point. In [3] the authors present static profiling
techniques to estimate the execution likelihood and frequency of program points
in order to assess whether the cost of certain compile-time optimizations would
pay off. To this end, they explore the use of some static analysis techniques for
predicting the result of conditional branches, such as assuming uniform distribu-
tion over all branches, making heuristic based predictions, and performing value
range propagation. In this context, our approach can be used to infer bounds on
the number of times a certain program point will be called from a given entry
point, as functions on input data sizes, in contrast with a single value repre-
senting the execution likelihood or frequency. Besides, since our techniques are
supported mainly by the theory of abstract interpretation, the approximations
inferred are correct by design.

8 Conclusions

In this paper we have presented a novel approach of static profiling of accumu-
lated cost that infers upper and lower bounds of the resource usage accumu-
lated in particular parts of the program as a function on input data sizes of the
program. We have constructed a prototype implementation of the proposed ap-
proach using the CiaoPP program analysis framework. Preliminary experimental
results with the tool support the usefulness of our approach where precise accu-
mulated upper bound cost functions were inferred for parts of the program for
which the standard analysis was not able to infer precise information. The upper
bound functions inferred by the static profiling were also evaluated against a dy-
namic profiling tool [17], and showed promising accuracy for the static analysis.
However in cases where the cost depended on sizes of the sub-terms of the input,
the upper bound accumulated cost loses precision.

Acknowledgements: This research has received funding from the European
Union 7th Framework Programme agreement 318337, ENTRA, Spanish MINECO
TIN’12-39391 StrongSoft project, and the Madrid M141047003 N-GREENS pro-
gram.

References

1. E. Albert, P. Arenas, S. Genaim, and G. Puebla. Closed-Form Upper Bounds in
Static Cost Analysis. Journal of Automated Reasoning, 46(2):161–203, February
2011.

2. E. Albert, S. Genaim, and A. N. Masud. More Precise yet Widely Applicable
Cost Analysis. In 12th Verification, Model Checking, and Abstract Interpretation
(VMCAI’11), volume 6538 of Lecture Notes in Computer Science, pages 38–53.
Springer Verlag, January 2011.

3. C. Boogerd and L. Moonen. On the use of data flow analysis in static profiling. In
Source Code Analysis and Manipulation, 2008 Eighth IEEE International Working
Conference on, pages 79–88, Sept 2008.



4. F. Brandner, S. Hepp, and A. Jordan. Static profiling of the worst-case in real-time
programs. In Proceedings of the 20th International Conference on Real-Time and
Network Systems, RTNS 2012, pages 101–110, New York, NY, USA, 2012. ACM.

5. S. K. Debray and N. W. Lin. Cost Analysis of Logic Programs. ACM Transactions
on Programming Languages and Systems, 15(5):826–875, November 1993.

6. S. K. Debray, N.-W. Lin, and M. Hermenegildo. Task Granularity Analysis in Logic
Programs. In Proc. of the 1990 ACM Conf. on Programming Language Design and
Implementation, pages 174–188. ACM Press, June 1990.

7. S. K. Debray, P. López-Garćıa, M. Hermenegildo, and N.-W. Lin. Lower Bound
Cost Estimation for Logic Programs. In 1997 International Logic Programming
Symposium, pages 291–305. MIT Press, Cambridge, MA, October 1997.

8. J. Giesl, T. Ströder, P. Schneider-Kamp, F. Emmes, and C. Fuhs. Symbolic eval-
uation graphs and term rewriting: a general methodology for analyzing logic pro-
grams. In PPDP, pages 1–12. ACM, 2012.

9. B. Grobauer. Cost recurrences for DML programs. In Proceedings of the Sixth
ACM SIGPLAN International Conference on Functional Programming, ICFP ’01,
pages 253–264, New York, NY, USA, 2001. ACM.

10. M. Hermenegildo, G. Puebla, F. Bueno, and P. Lopez-Garcia. Integrated Program
Debugging, Verification, and Optimization Using Abstract Interpretation (and The
Ciao System Preprocessor). Science of Computer Programming, 58(1–2):115–140,
October 2005.

11. M. V. Hermenegildo, F. Bueno, M. Carro, P. López, E. Mera, J.F. Morales,
and G. Puebla. An Overview of Ciao and its Design Philosophy. The-
ory and Practice of Logic Programming, 12(1–2):219–252, January 2012.
http://arxiv.org/abs/1102.5497.

12. J. Hoffmann, K. Aehlig, and M. Hofmann. Multivariate amortized resource analy-
sis. ACM Transactions on Programming Languages and Systems, 34(3):14:1–14:62,
2012.

13. A. Igarashi and N. Kobayashi. Resource usage analysis. In Proceedings of the 29th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’02, pages 331–342, New York, NY, USA, 2002. ACM.

14. U. Liqat, K. Georgiou, S. Kerrison, P. Lopez-Garcia, M. V. Hermenegildo, J. P.
Gallagher, and K. Eder. Inferring Parametric Energy Consumption Functions
at Different Software Levels: ISA vs. LLVM IR. In Proc. of FOPARA, LNCS.
Springer, 2015. To appear.

15. U. Liqat, S. Kerrison, A. Serrano, K. Georgiou, P. Lopez-Garcia, N. Grech, M.V.
Hermenegildo, and K. Eder. Energy Consumption Analysis of Programs based on
XMOS ISA-level Models. In Proceedings of LOPSTR’13, volume 8901 of LNCS,
pages 72–90. Springer, 2014.

16. M. Méndez-Lojo, J. Navas, and M. Hermenegildo. A Flexible (C)LP-Based Ap-
proach to the Analysis of Object-Oriented Programs. In 17th International Sym-
posium on Logic-based Program Synthesis and Transformation (LOPSTR 2007),
number 4915 in Lecture Notes in Computer Science, pages 154–168. Springer-
Verlag, August 2007.

17. E. Mera, T. Trigo, P. López-Garćıa, and M. Hermenegildo. Profiling for Run-Time
Checking of Computational Properties and Performance Debugging. In Practical
Aspects of Declarative Languages (PADL’11), volume 6539 of Lecture Notes in
Computer Science, pages 38–53. Springer-Verlag, January 2011.

18. R. G. Morgan and S. A. Jarvis. Profiling Large-Scale Lazy Functional Programs.
Journal of Functional Programing, 8(3):201–237, 1998.



19. K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable
Dependency Using Abstract Interpretation. Journal of Logic Programming,
13(2/3):315–347, July 1992.

20. J. Navas, M. Méndez-Lojo, and M. Hermenegildo. Safe Upper-bounds Inference of
Energy Consumption for Java Bytecode Applications. In The Sixth NASA Langley
Formal Methods Workshop (LFM 08), pages 29–32, April 2008. Extended Abstract.

21. J. Navas, M. Méndez-Lojo, and M. Hermenegildo. User-Definable Resource Usage
Bounds Analysis for Java Bytecode. In Proceedings of the Workshop on Bytecode
Semantics, Verification, Analysis and Transformation (BYTECODE’09), volume
253 of Electronic Notes in Theoretical Computer Science, pages 65–82. Elsevier -
North Holland, March 2009.

22. J. Navas, E. Mera, P. López-Garćıa, and M. Hermenegildo. User-Definable Re-
source Bounds Analysis for Logic Programs. In 23rd International Conference on
Logic Programming (ICLP’07), volume 4670 of Lecture Notes in Computer Science.
Springer, 2007.

23. F. Nielson, H. Nielson, and H. Seidl. Automatic complexity analysis. In Program-
ming Languages and Systems, volume 2305 of Lecture Notes in Computer Science,
pages 243–261. Springer Berlin Heidelberg, 2002.

24. G. Puebla and M. Hermenegildo. Optimized Algorithms for the Incremental Anal-
ysis of Logic Programs. In International Static Analysis Symposium (SAS 1996),
number 1145 in Lecture Notes in Computer Science, pages 270–284. Springer-
Verlag, September 1996.

25. M. Rosendahl. Automatic Complexity Analysis. In 4th ACM Conference on Func-
tional Programming Languages and Computer Architecture (FPCA’89), pages 144–
156. ACM Press, 1989.

26. Patrick M. Sansom and Simon L. Peyton Jones. Time and Space Profiling for
Non-Strict, Higher-Order Functional Languages. In Ron K. Cytron and Peter
Lee, editors, Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL’95, pages 355–366, New York, NY,
USA, 1995. ACM.

27. A. Serrano, P. Lopez-Garcia, F. Bueno, and M. Hermenegildo. Sized Type Analysis
for Logic Programs (technical communication). In T. Swift and E. Lamma, editors,
Theory and Practice of Logic Programming, 29th Int’l. Conference on Logic Pro-
gramming (ICLP’13) Special Issue, On-line Supplement, volume 13, pages 1–14.
Cambridge U. Press, August 2013.

28. A. Serrano, P. Lopez-Garcia, and M. Hermenegildo. Resource Usage Analysis
of Logic Programs via Abstract Interpretation Using Sized Types. Theory and
Practice of Logic Programming, 30th Int’l. Conference on Logic Programming
(ICLP’14) Special Issue, 14(4-5):739–754, 2014.

29. V. Tiwari, S. Malik, and A. Wolfe. Power Analysis of Embedded Software: a First
Step Towards Software Power Minimization. IEEE Trans. VLSI Syst., 2(4):437–
445, 1994.

30. P. Vasconcelos and K. Hammond. Inferring Cost Equations for Recursive, Polymor-
phic and Higher-Order Functional Programs. In Proceedings of the International
Workshop on Implementation of Functional Languages, volume 3145 of Lecture
Notes in Computer Science, pages 86–101. Springer-Verlag, September 2003.

31. C. Vaucheret and F. Bueno. More Precise yet Efficient Type Inference for Logic
Programs. In International Static Analysis Symposium, volume 2477 of Lecture
Notes in Computer Science, pages 102–116. Springer-Verlag, September 2002.

32. B. Wegbreit. Mechanical Program Analysis. Communications of the ACM,
18(9):528–539, September 1975.


