
Applications of Static Slicing in Cost Analysis of

Java Bytecode

Samir Genaim?

CLIP, Technical University of Madrid, E-28660 Boadilla del Monte, Madrid, Spain

genaim@fi.upm.es

Java bytecode [?] is a low-level object-oriented language which is widely used
in the context of mobile code due to its security features and the fact that it is
platform independent. Recent works study advanced properties of Java bytecode
like cost analysis [?] or termination [?]. Automatic cost analysis has interesting
applications in the context of Java bytecode. For instance, the receiver of the
code may want to infer cost information in order to decide whether to reject
code which has too large cost requirements in terms of computing resources (in
time and/or space), and to accept code which meets the established requirements
[?,?,?]. Also, in parallel systems, knowledge about the cost of different procedures
in the object code can be used in order to guide the partitioning, allocation and
scheduling of parallel processes.

Given an input program, cost analysis aims at inferring Cost Equations Sys-

tems (CES) which define the cost of the program as a function of (some of) its
data input size. CES are a general form of describing the resource consumption
of programs and, in a particular application, they can be used to infer heap
consumption [?], number of executed bytecode instructions [?], etc. Essentially,
CES are generated by abstracting the structure of the program such that when
the program contains an iteration the CES contains a corresponding recursion,
which in addition includes information about how the sizes of the different vari-
ables change when the program goes through this recursion. The traditional
approach is to infer upper bounds of the cost by solving the CES, for instance
using Computer Algebra Systems (CAS) like Mathematica, Maple, etc.

Cost Analysis of Java bytecode presents some peculiar features which stem
from its unstructured and object-oriented nature:

a) loops originate from different sources (conditional and unconditional jumps,
method calls, or even exceptions);

b) size measures must consider supported data types (primitive types, objects,
and arrays);

c) data can be stored in local variables, operand stack elements or heap loca-
tions.

The approach to cost analysis as described in [?] makes two initial steps in order
to obtain a structured representation for the bytecode:

? Joint work with Elvira Albert, Puri Arenas, German Puebla and Damiano Zanardini



1. The first step consists in constructing a control flow graph from the bytecode
which makes all implicit branching explicit. A control flow graph consists of
guarded basic blocks and edges which describe how control flows between
blocks. Basic blocks are sequences of non-branching bytecode instructions,
and edges are obtained from instructions which might branch such as virtual
method invocation, conditional jumps, exceptions, etc;

2. In the next step, the CFG is represented in a procedural way by means of an
intermediate representation. This representation consists of a set of guarded

rules which are obtained from the blocks in the CFG. A principal advantage
is that all possible forms of loops in the program are represented now in a
uniform way (feature a) above).

In principle, each rule of the intermediate representation contains the following
arguments: (1) the corresponding method’s local variables; (2) the active stack

elements at the block’s entry and exit, i.e., the stack elements are considered
as local variables; and (3) a single variable which corresponds to the method’s
return value. Therefore, all data is represented in a uniform way (feature b)
above).

In the last step, size analysis is applied to the above intermediate represen-
tation and a CES – involving the above arguments – is generated from such
representation (feature c) above).

After performing cost analysis, the CES is traditionally solved using existing
CAS. An important observation is that many of the above arguments may not
be relevant to the cost. For instance, typical accumulating parameters which
merely keep the value of some temporary result do not affect the control flow
nor the cost of the program. Such tools are more likely to fail in providing useful
information if the corresponding CES includes information which originates from
the program’s parts that does not affect its cost. Therefore, eliminating those
superfluous parts from the CES is crucial in practice. This elimination problem
can be formalized as a backward slicing problem.

Basically, given a rule, the arguments which can have an impact on the cost
of the program are those which may affect directly or indirectly the program
guards (i.e., they can affect the control flow of the program), or are used as
input arguments to external methods whose cost, in turn, may depend on the
input size. The problem of computing a safe approximation of these arguments
can be formalized as a backwards slicing problem using the reachable guards
and external methods as the slicing criterion [?].

In the talk, we discuss several aspects of the role of static slicing to minimize
the number of arguments which need to be taken into account in CES. We will
focus on two benefits of eliminating the arguments which do not have an impact
on the cost of the program. On one hand, analysis can be more efficient if we
reduce the number of variables. And also CES are more likely to be solved by
standard CAS. In addition, we discuss when slicing should be performed. We
consider the scenarios of (1) applying it on the intermediate representation (2)
versus applying it on the CES.



Acknowledgments

This work was funded in part by the Information Society Technologies program
of the European Commission, Future and Emerging Technologies under the IST-
15905 MOBIUS project, by the Spanish Ministry of Education (MEC) under the
TIN-2005-09207 MERIT project, and the Madrid Regional Government under
the S-0505/TIC/0407 PROMESAS project. S. Genaim was supported by a Juan

de la Cierva Fellowship awarded by MEC.


