
QAPL 2008

Oracle-Based Partial Evaluation

Claudio Ochoa1

Software Solutions Group
Intel

Argentina

Germán Puebla2

School of Computer Science
Technical University of Madrid

Boadilla del Monte, Spain

Abstract

We present Oracle-Based Partial Evaluation (OBPE), a novel approach to on-line Partial Evaluation (PE)
which decides the control strategy to use for each call pattern by using an oracle function which com-
pares the results of specializing such call pattern w.r.t. a set of strategies. Our proposal is motivated
by Poly-Controlled Partial Evaluation (PCPE), which allows using different control strategies for different
call patterns. Given a set CS of control strategies, the best PCPE specialized programs outperform the
specialized programs obtained by traditional PE for any of the control strategies in CS, especially when
resource-aware specialization is performed. Unfortunately, computing all PCPE specialized programs and
then choosing a posteriori the best one is too costly in practice. In contrast, in OBPE a single specialized
program is computed. We have developed an empirical oracle whose parameters are approximated from
a set of training data, by using constraint logic programming. Our experimental results show that the
additional cost of OBPE when compared with traditional PE is a constant factor and that, at least in our
experiments, OBPE obtains significantly better specializations. We argue that our proposal is relevant in
practice and introduces clear improvements over standard PE. Our work is developed in the context of logic
programs, though the ideas are in principle of interest to the PE of any programming language.

Keywords: Program Transformation, Partial Evaluation, Resource-Aware Specialization, Logic
Programming

1 Introduction

Partial Evaluation (PE) [7] optimizes programs by specializing them w.r.t. part
of their input, which is known as the static data. Those computations which only
depend on the static data are performed at specialization-time, whereas those which
depend on dynamic data remain in the specialized program. The idea, of course,
is that the running-time of the specialized program should be smaller than that of
the original program, since in the former fewer execution steps are performed at
run-time.

1 Email: claudio.j.ochoa@intel.com
2 Email: german@fi.upm.es

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:claudio.j.ochoa@intel.com
mailto:german@fi.upm.es

Ochoa, Puebla

Partial evaluation algorithms are typically parametric w.r.t. a control strategy,
which guides the PE process. Different control strategies produce different spe-
cialized programs with varying degrees of quality. The study of control strategies
for PE has received considerable attention (see e.g. [9] and its references for an
overview of control strategies in PE of logic programs) and sophisticated strategies
exist which allow obtaining powerful specializations. However, it is well known (see
e.g. [14,3]) that a given control strategy can be very appropriate for some cases
but produce low quality results in others. This is especially the case if we take
factors such as the size of the specialized program into account, since most of the
work on partial evaluation has concentrated on improving time-efficiency, largely
ignoring such other factors. Some relevant exceptions are the works of Debray [4]
and Craig-Leuschel [3]. The latter is able to perform resource-aware specialization
based on off-line partial evaluation techniques.

Poly-Controlled Partial Evaluation [13] (PCPE) is a powerful approach to on-
line partial evaluation of logic programs. Rather than using a fixed control strategy
(as done in traditional partial evaluation algorithms), PCPE allows considering a set
CS of control strategies. For each call pattern, PCPE can choose any of the control
strategies in CS. This allows using different control (or specialization) strategies
for different call patterns. Thus, PCPE can produce residual programs that are
not directly achievable by traditional partial evaluation using any of the considered
control strategies in isolation. This often results in hybrid solutions with better
fitness value than any of the solutions achievable by traditional PE, for a number
of different resource-aware fitness functions [11].

As a result of the use of sets of control strategies, given a program, a description
of the initial call patterns, and a set of control strategies, PCPE can obtain multiple
specialized programs. The execution of PCPE can be depicted as a tree whose leaves
correspond to the different specialized programs.

main(A,B,C) :-
exp(B,2,C),
p(A).

exp(B,E,R):-
exp_ac(E,B,1,R).

exp_ac(E,_,R,R):-
E =< 0.

exp_ac(E,B,T,R):-
E > 0,
E1 is E - 1,
N is T * B,
exp_ac(E1,B,N,R).

p(B):-
C is B + 1,
q(C).

q(1).
q(2).
q(3).
q(4).
q(5).
q(6).

T2

T1

T3 T4

T5 T6

T7

S4

S1

S2 3S

S5

nll

nl

l

Q=3.7

{p(X)}

{}

{q(X)}
{p(X)}

l

{q(X)}

{exp_ac(0),p(X)}

Q=−6.2

l nl

Q=−8.9 Q=−23.4

nl

l nl

nl
l

nl

o=<7,0,5,4.0,0>

{}

{}

{}

{}

l

o=<13,4,15,8.0,0>

Fit=1.00 (0.82x1.22)

Fit=1.80 (1.49x1.21)

Fit=2.33 (2.01x1.16)

Fit=1.63 (1.61x1.01)

Fit=1.20 (1.15x1.04)

o=<3,2,0,1.3,8>

o=<1,2,0,0.6,6> o=<3,2,0,0.4,0>

Q=−10.7
o=<1,0,0,1.0,6>

Q=−9.4

{main}

{exp_ac(1),p(X)}

Fig. 1. A motivating example and its PCPE tree

2

Ochoa, Puebla

1.1 A Motivating Example

Let us consider the program P listed in the left-hand side of Fig. 1. Consider
also that we are interested in specializing this program w.r.t. the single call pat-
tern main(A,B,C), and that the set of control strategies CS ={〈G1, U1〉, 〈G1, U

l
1〉},

where G1 and U1 are an abstraction function and an unfolding function, respectively,
which are both based on homeomorphic embedding [9,8]. Both G1 and U1 are de-
scribed in more detail in Section 6. Finally, U l

1 is a restricted version of U1 which
can only perform leftmost derivation steps. On the right-hand side of Fig. 1 we can
see a complete PCPE-tree. Leaves in this tree, represented with a square, corre-
spond to final states (specialized programs). Intermediate nodes, represented with
circles, have two children, one for each control strategy. Left branches, annotated
with l, correspond to applying 〈G1, U

l
1〉 to the selected call pattern (underlined in

the figure), and right branches, annotated with nl, to the application of 〈G1, U1〉. In
T3, T6 and T7 there is only one child because both strategies result in identical spe-
cialization. As can be seen, even for this simple example, five different specialized
programs can be obtained using PCPE. Since PE applies a single control strategy
to all call patterns, it can obtain S1 using 〈G1, U

l
1〉 or S5 using 〈G1, U1〉. The three

other programs can only be obtained by PCPE using hybrid strategies, i.e., using
different control strategies for different call patterns.

1.2 Choosing a PCPE Specialized Program

Since in partial evaluation we are interested in obtaining a single specialized pro-
gram, we need some way of automatically choosing the best program among those
obtainable using PCPE. In our motivating example, we should choose one program
among S1, . . . , S5. For this purpose, an evaluation step [13] is introduced which uses
a fitness function. This function assigns a numerical value to each specialized pro-
gram, which is an estimate of how good the program is. The specialization process
can be resource-aware by using a fitness function which takes into account factors
such as the size and memory-efficiency of the specialized programs, in addition to
time-efficiency. In our motivating example, the best program is S3, which is twice
as fast as the original program (2.01) and somewhat smaller (1.16), the product
of which, i.e., the balance fitness function (see Section 5.1) is 2.33. In the path to
S3 we have performed nonleftmost unfolding in state T2 (where we specialize the
atom exp ac(1, B, T,R)), and leftmost in T1 and T4. In this example it can be seen
that nonleftmost unfolding can slow down programs, as S5 is slower (0.82) than the
original program. On the other hand, restricting ourselves to leftmost precludes
important optimizations, since S1 is both slower and larger than S3. This is an
example where it is difficult to know a priori which is the best strategy to use. But
there are many more situations where allowing to try out different strategies and
compare the results is desirable. An important thing to note is that the fitness
function can only be applied to leaves of the PCPE tree in order to decide a pos-
teriori which specialized program is the best. I.e., we need to compute all PCPE
specialized programs to be able to tell which one is the best. This generate+evaluate
approach to PCPE [13] has been implemented and tested on several benchmarks,
showing that PCPE can obtain better specialized programs than traditional partial

3

Ochoa, Puebla

evaluation. Unfortunately, this approach to PCPE is too costly in practice, even
with the techniques for reducing the search space studied in [11], since the number
of states in the search space grows exponentially with the cardinality of CS.

In this work we investigate the possibility of using an oracle which decides
which is the most promising control strategy for each call pattern based on the
specialization results for such call patterns using the different strategies. All other
branches in the tree are pruned away. In our example, the oracle should be able to
tell us: in T1, after specializing using the two control strategies, the most promising
state between T2 and S5 is T2. Then, between T3 and T4, the latter is preferable.
Then, T6 is preferable to S4. Finally, from T6 we can only reach S3. The benefits
of building such an oracle are twofold, since a single specialized program would be
computed. First, we do not spend time generating multiple specialized programs.
Second, as in the case of PE, we do not need an evaluation phase, which can be very
costly. However, this approach can only be useful in practice if the oracle makes
good decisions, since some of the PCPE specialized programs outperform PE (such
as S3), but others produce bad results (such as S5 or S2).

In the rest of this paper we present an empirical oracle whose parameters are
approximated from a set of training data, gathered from a set of calibrating examples
and converted into a constraint logic program. Our experimental results show that
specialization based on our empirical oracle introduces a constant overhead factor
w.r.t. PE, while obtaining significantly better specialized programs.

2 On-Line Partial Evaluation of Logic Programs

We recall some terminology on logic programming. See for example [10] for more
details. An atom A is a syntactic construction of the form p(t1, . . . , tn), where p/n,
with n ≥ 0, is a predicate symbol and t1, . . . , tn are terms. The function pred applied
to an atom A, i.e., pred(A), returns the predicate symbol for A. A clause is of the
form H ← B where its head H is an atom and its body B is a conjunction of atoms.
A definite program is a finite set of clauses. In what follows, we restrict ourselves
to definite programs. A goal (or query) is a conjunction of atoms. We denote by
{X1 7→ t1, . . . , Xn 7→ tn} the substitution σ with Xiσ = ti for all i = 1, . . . , n (with
Xi 6= Xj if i 6= j) and Xσ = X for any other variable X, where ti are terms. A
substitution θ is a unifier of a finite set S of simple expressions if Sθ is a singleton.
A unifier θ is called most general unifier (mgu) for S, if for each unifier σ of S,
there exists a substitution γ such that σ = θγ. Two terms t and t′ are variants,
denoted t ≈ t′, if there exist substitutions θ and σ s.t. t = t′θ and t′ = tσ. We now
recall some concepts of on-line partial evaluation of logic programs (LP), which is
traditionally presented in terms of SLD semantics ([10]).

Definition 2.1 [derivation step] Let G be a goal ← A1, . . . , AR,. . . ,Ak. Let AR be
the selected atom. Let C = H ← B1, . . . , Bm be a renamed apart clause in P . Then
G′ is derived from G and C via AR if the following conditions hold:

θ = mgu(AR, H)
G′ is the goal ← (A1, . . . , AR−1, B1, . . . , Bm, AR+1, . . . , Ak)θ

As customary, given a program P and a goal G, an SLD derivation for P ∪{G}

4

Ochoa, Puebla

consists of a possibly infinite sequence G = G0 : G1 : G2 : . . . of goals, a sequence
AR1 : AR2 : . . . of selected atoms, a sequence C1 : C2 : . . . of properly renamed apart
clauses of P , and a sequence θ1 : θ2 : . . . of mgus such that each Gi+1 is derived
from Gi and Ci+1 via ARi using θi+1.

A derivation step can be non-deterministic when AR unifies with several clauses
in P , giving rise to several possible SLD derivations for a given goal. Such SLD
derivations can be organized in SLD trees. A finite derivation G = G0 : G1 : G2 :
. . . : Gn is called successful if Gn is empty. In that case θ = θ1 : θ2 : . . . : θn is
called the computed answer for goal G. Such a derivation is called failed if it is not
possible to perform a derivation step with Gn.

In partial evaluation, SLD semantics is extended in order to also allow incomplete
derivations which are finite derivations of the form G = G0, G1, G2, . . . , Gn and
where no atom is selected in Gn for further resolution. This is needed in order to
avoid (local) non-termination of the specialization process. Also, the substitution
θ = θ1θ2 . . . θn is called the computed answer substitution for goal G. An incomplete
SLD tree possibly contains incomplete derivations.

Given a program P and an atom A, an unfolding rule U computes a SLD tree τ
for P ∪{← A}, denoted U(P,A) = τ . Given a finite SLD tree τ containing the SLD
derivations D1, . . . , Dn where Di = A, . . . , Gi with computer answer substitution
θi for i = 1, . . . , n, the resultants of τ , denoted resultants(τ), is the set of clauses
{Aθ1 ← G1, . . . , Aθn ← Gn}. Then, an abstraction function G is applied before
adding the atoms in the right-hand sides of resultants to the set of atoms to be
partially evaluated. This abstraction function performs the global control and is
in charge of guaranteeing that the number of atoms which are specialized remains
finite. This is done by replacing atoms by more general ones, i.e., by losing precision
in order to guarantee termination. Given an atom A and an set of atoms H, we use
A′ = G(A,H) to denote that A′ is the abstraction of A computed by G w.r.t. H.
It is a correctness requirement that A = A′θ.

3 Poly-Controlled Partial Evaluation

We now provide a general formalization of the PCPE process, which can be used
as a basis for both the PCPE approach in [13] and the one proposed here. PCPE
takes as input a program P , a set A of atoms describing the initial call patterns,
and a set CS of control strategies. As output, PCPE can generate potentially
multiple specialized programs. The PCPE process starts from an initial state and
obtains from it a child state until a final state is reached. Since we allow several
control strategies, non-final states can have several children states. Depending on
the approach used, a different number of states will be expanded and thus, different
(sets of) specialized programs will be obtained.

Definition 3.1 [state] A state is a pair 〈S,H〉, where S is a set of atoms and H is
a set of tuples of the form 〈A,A′, U〉. The set S contains the atoms to be specialized
and H contains the specialization history: for each previously specialized atom A

we store, in addition to A itself, the result A′ of applying an abstraction function
to it, and the unfolding rule U which has been applied on A′.

5

Ochoa, Puebla

The atom A is stored in each tuple in H for precise predicate renaming, while U
is stored in order to use exactly such unfolding rule during code generation (see
Def. 3.5). A state is initial when it is of the form 〈A, ∅〉. A state is final when it is
of the form 〈∅, H〉. States that are not final are called intermediate states. In Fig. 1,
T1 is the initial state and S1,...,S5 are final states. Also, each state is adorned with
its S set. The H set of each state is not shown explicitly, but it can be retrieved by
traversing the tree from each node upwards up to the root.

As customary in PE, we consider the existence of an arbitrary function, which
we call TakeOne, which given an intermediate state 〈S,H〉, decides the atom A

to be specialized among those in S, denoted A = TakeOne(S). Also, a control
strategy CS is a pair 〈G,U〉 s.t. G is an abstraction function and U is an unfolding
rule. We assume the existence of a function atoms that extracts the generalized
atoms out of the tuples in H. I.e. given H = {〈A1, A

′
1, U1i〉, . . . , 〈An, A

′
n, Unj〉},

atoms(H) = {A′1, . . . , A′n}. In an abuse of notation, when referring to abstraction
functions we simply write A′ = G(A,H) instead of A′ = G(A, atoms(H)). Finally,
given a state T = 〈S,H〉 and a program P , we use τ = CS(T) to denote that
A = TakeOne(S), A′ = G(A,H) and τ = U(P,A′).

Definition 3.2 [PCPE-step] Let T = 〈S,H〉 be an intermediate state, and let
A = TakeOne(S). Let CS =〈G,U〉 be a control strategy. Then a PCPE-step for T
using CS generates a new state T ′ = 〈S′, H ′〉, denoted T ;CS T

′, s.t.

• S′ = (S − {A}) ∪ {B ∈ leaves(CS(T)) | ∀ 〈C, , 〉 ∈ H . B 6≈ C}
• H ′ = H ∪ {〈A,A′, U〉}, with A′ = G(A,H)

where the function leaves collects the atoms in the bodies of resultants(CS(T)).

If T ;CS T
′ then T ′ is a child of T . From PCPE-steps we get PCPE-paths.

Definition 3.3 [PCPE-path] A PCPE-path consists of a sequence T0 : T1 : . . . : Tp

of states and a sequence CS1 : CS2 : . . . : CSp of control strategies s.t. for i = 1..p,
Ti ;CSi+1 Ti+1.

A PCPE-path T0 ;CS1 . . . ;CSp Tp is complete iff T0 is an initial state and Tp is
a final state. A state T ′ is reachable from a state T iff there is a path of the form
T ;CS1 . . . ;CSp T

′, p ≥ 0. Paths can be organized into PCPE-trees.

Definition 3.4 [PCPE-tree] A PCPE-tree is a tree where each node of the tree
corresponds to a state, and which satisfies:

• The root node is an initial state.
• Leaves are final states.
• There is an arc from node T to node T ′ iff there is a control strategy CS ∈ CS

s.t. T ;CS T
′.

The generate+evaluate algorithm of [13] traverses the complete PCPE-tree, gather-
ing a set of final states. From each of these states we can obtain a PCPE specialized
program. As usual in partial evaluation, during code generation we will rename apart
atoms in order to avoid the independence requirement [6]. We use rename to refer
to a procedure which assigns a fresh predicate name to each atom A′i ∈ atoms(H)

6

Ochoa, Puebla

and performs appropriate renamings (using the pairs of atoms Ai, A
′
i in the tuples

of H) in the head and body of resultants so that each program point uses a correct
(and as optimized as possible) version.

Definition 3.5 [PCPE specialized program, SP] Let T = 〈∅, H〉 be a final state.
Then the PCPE specialized program PT obtained from T , denoted PT = SP (T), is
PT =

⋃
〈Ai,A′

i,Ui〉∈H rename(resultants(Ui(P,A′i)), H).

From an (intermediate) state we can reach a set of final states, each one corre-
sponding to a possibly different specialized program.

Definition 3.6 [solutions] Let T be a state. The set of solutions for T is defined
as solutions (T) = {SP (T ′) | T ′ is reachable from T ∧ T ′ is final}.

In order to choose the best PCPE specialized program, in [13] we apply an
evaluation step which uses a fitness function F to assess how good each specialized
program PT is w.r.t. the original program P . The fitness function returns a value in
[0 . . .∞), with larger fitness values indicating better programs. Also, values smaller
than one indicate that the specialized program is worse than the original one. As
noted in [3,13], fitness functions can be resource-aware.

Definition 3.7 [maximal fitness value, mfv] Let T be a state. Let F be a fitness
function. Then the maximal fitness value of T w.r.t. F , denoted mfvF (T), is defined
as max({F (P1), . . . , F (Pn)}), where solutions(T) = {P1, . . . , Pn}.

As usual, max(R) returns the largest value in the set R. We can now define a
PCPE-path leading to a solution of maximal fitness.

Definition 3.8 [PCPE-path of maximal fitness] A complete PCPE path T0 ;CS1

. . . ;CSp Tp is of maximal fitness w.r.t. a fitness function F iff mfvF (Tp) =
mfvF (T0).

Note that for all pairs of states T and T ′, if T ′ is reachable from T then
mfvF (T) ≥ mfvF (T ′), for any fitness function F . In a path of maximal fitness,
we always perform PCPE-steps which preserve the maximal fitness value. Next, we
study whether it is possible to guess which PCPE-steps lead to paths of maximal
fitness, without traversing the complete PCPE-tree.

4 Oracle-Based Partial Evaluation

The central idea behind Oracle-based PE (OBPE) is to traverse only one complete
PCPE-path. For this, given a state, we generate all of its children using each control
strategy in CS, and choose the most promising child according to some oracle that
uses information from the specialization process of each child.

Definition 4.1 [oracle] Let P be a program. Let T be a state. Let CS ∈ CS be a
control strategy s.t. CS(T) = τ . An oracle is a function which receives as input T ,
τ and P and returns a number Q ∈ IQ. This is denoted Q= oracle(T, τ, P).

A perfect oracle always obtains a solution of maximal fitness value.

7

Ochoa, Puebla

Definition 4.2 [perfect oracle] Given a fitness function F , an oracle function oracle
is perfect w.r.t. F if for any state T ,

(T ;CSi Ti ∧ T ;CSj Tj) ∧
(oracle(T,CSi(T), P) ≥ oracle(T,CSj(T), P))⇒

mfvF (Ti) ≥ mfvF (Tj)

Finding a perfect oracle function will in general be impossible since the informa-
tion available to the oracle is not quite enough in order to make perfect decisions.
However, as our experimental results show, good results can be obtained without a
perfect oracle function.

Since the oracle can rank two children with the same value, we impose an order
on the generated children of a given state, by using a sequence of control strategies
instead of a set. We can then use this order to break any possible tie.

We define now a function mpchild, which chooses a most promising child out of
a sequence of children states. In case of a tie, mpchild selects the first state in the
sequence having the highest Q value.

Definition 4.3 [mpchild] Let T be a state. Let CS =CS1 : . . . : CSm be a sequence
of control strategies. Let T = T1 : . . . : Tm with T ;CSi Ti be the children of T .
Let T ′ = Ti1 : . . . : Tin be the maximal sub-sequence of T s.t. ∀Tij ∈ T ′ oracle
(T,CSij(T), P) = Q and ∀Tk ∈ T oracle (T,CSk(T), P) ≤ Q. Then Ti1 is the most
promising child of T , denoted Ti1 = mpchild(T).

In OBPE, steps are deterministic: only the most promising child is expanded.

Definition 4.4 [OBPE-step] Let T be a state. Then an OBPE-step for T generates
a new state T ′ s.t. T ′ = mpchild(T).

OBPE receives as input a program P , a set A of atoms describing the initial
call patterns, a sequence CS of control strategies, and a selection function TakeOne.
It starts by building an initial state 〈A, ∅〉, and then performs a series of OBPE-
steps until a final state 〈∅, H〉 is reached, i.e., it traverses a complete PCPE-path,
therefore generating only one specialized program P ′ = SP (H).

5 An Empirical Oracle Function using a Linear Model

We now propose an oracle model which makes the problem of empirically determin-
ing an oracle function tractable. Furthermore, using this model, we obtain oracle
functions which can be executed efficiently. This is important since during the
specialization process the oracle is applied many times.

We propose to decompose the oracle function into two parts. The first one
corresponds to computing the numerical value of a vector of observables, which
should capture the relevant information about the specialization process. For this
we use an auxiliary function quantify, which takes as input a state T , an SLD tree τ ,
and a program P and extracts the numeric value corresponding to each observable,
denoted o = quantify(T, τ, P). The second part corresponds to the oracle function
proper, which returns a numerical value as a function of the values of the observables.

8

Ochoa, Puebla

5.1 Useful Observables for Resource-Aware Specialization

Since the oracle function will make its decisions based on the values of the observ-
ables, the practical success of OBPE has as prerequisite determining the right set of
observables for the considered fitness function. Those aspects of the specialization
process which have a lot of impact on the quality of a specialized program should
be considered. Otherwise, the oracle will not be able to make good decisions. In
our case, as an example of a resource-aware specialization policy, we consider the
fitness function balance [13,3], which takes into account both the time and space
efficiency of the specialized program PT w.r.t. the original program P :

balance(PT) = speedup(PT)× reduction(PT) =
Time(P)
Time(PT)

× Size(P)
Size(PT)

Fig. 1 shows the fitness value of the specialized program obtained from each final
state, and also shows, in parentheses, the speedup and reduction values. Thus, the
observables considered should somehow take these two factors into account. In all
our experiments we consider the following observables, where the first three ones
are mostly related to time efficiency, and the last two to space efficiency:

D: The number of derivation steps that have been performed during unfolding and
thus no longer need to be performed at runtime.

E: The number of evaluation steps that have been performed during unfolding.
This indicates the number of calls to builtins and library predicates which have
been evaluated [12] at specialization-time.

N: The number of atoms whose computation is replicated in several clauses as a
result of non-deterministic non-leftmost unfolding. It is well-known that non-
leftmost unfolding can increase the amount of computation required, by replicat-
ing the computation of atoms to the left of the selected one.

C: An estimation of the growth of the residual code, computed as a factor between
the size (using a variation of the term size metrics [5]) of the specialized code
for the selected atom A and the size of the original definition of the predicate
pred(A).

S: An estimation of the code size for the atoms added to S as a result of the current
PCPE-step. Since no specialized code is available for these atoms, we use their
original definition in P as an estimate of their size.

In most existing control strategies, which are focused on time efficiency, observ-
ables C and S are not explicitly handled and most heuristics aim at maximizing
D and E while keeping N with the value zero. Observable S is an example of
information which is just partial when applying the oracle: in order to obtain a
covered program, the code for the new atoms in S may in turn need including code
for other atoms not yet covered. Perfect information can only be determined by
actually expanding the PCPE-tree and observing it a posteriori.

Example 5.1 Given the tree in Fig. 1, the value of the observables 〈D,E,N,C, S〉
which correspond to T1 ;〈G1,U l

1〉
T2 is 〈3, 2, 0, 1.3, 8〉. This is because 3 derivation

9

Ochoa, Puebla

steps have been performed during unfolding of main(A,B,C) with the U l
1 rule, and

2 calls to builtins have been evaluated. In this case, as well as in all states obtained
by applying U l

1, the value of N is 0, since U l
1 only performs leftmost derivation

steps. The growth of the residual code w.r.t. the original definition of main/3 is
1.3, and the estimation of the size of the code associated to the atoms exp ac(1)
and p(X) added to S is 8. Furthermore, in the case of T1 ;〈G1,U1〉 S5, the vector
is 〈13, 4, 15, 8.0, 0〉 because U1 has performed 13 derivation steps and 4 evaluation
steps. However, it replicates 15 atoms by doing non-deterministic non-leftmost
unfolding. The growth of the residual code w.r.t. the original definition of main/3
is 8.0 and S = 0 since no new atoms appear in the resultants.

5.2 A Linear Model for the Oracle

In order to simplify our oracle model as much as possible, we will restrict ourselves
to linear oracle functions.

Definition 5.2 [linear oracle function] Let o = 〈o1, . . . , on〉 be an observable vector.
A linear oracle function oracle receives o as input and returns a numeric value
Q ∈ IQ which is defined as Q = oracle(o) =

∑
i∈{1,...,n} ki×oi, where k = 〈k1, . . . , kn〉

is a vector of oracle constants, ki ∈ IQ.

To obtain a vector of oracle constants to be used with a given fitness function F ,
we build complete PCPE-trees, compute the mfvF of all nodes, and then use this
information as training data. For this, O-constraints are generated.

Definition 5.3 [O-constraint] Let F be a fitness function and T a state. Let
T1 and T2 be two children of T s.t. T ;CS1 T1 and T ;CS2 T2. Let o1 =
quantify(T,CS1(T), P) and o2 = quantify(T,CS2(T), P). Then the O-constraint for
the pair (T1, T2) is oracle(o1) R oracle(o2), where mfvF (T1) R mfvF (T2), R ∈ {<
,≤,=,≥, >}.

Given a PCPE-tree Tree, we use C(Tree) to denote the set of O-constraints which
can be obtained from Tree. The cardinality of C(Tree) is usually quite large: for each
intermediate node T in Tree with p children we can build

(
p
2

)
constraints for T . Thus,

for a realistic tree Tree it is not possible to find a vector of oracle constants which
allow satisfying all constraints in C(Tree) simultaneously. There are several reasons
for this. First, we have restricted ourselves to linear functions. It could be the case
that there exists a non-linear oracle function which satisfies all constraints. However,
the advantage of linear functions is that there exist tools capable of handling them,
whereas inferring non-linear functions is a rather complicated task. Second, as
already mentioned, a perfect oracle function does not exist in general, since it has
to make decisions based on partial information, i.e., without expanding the complete
tree below the current node.

We can formulate the process of finding a vector of oracle constants as a Maxi-
mum Constraint Satisfaction Problem (Max CSP): though the set of O-constraints
is unsatisfiable, the goal is to find a vector of oracle constants that maximizes the
number of satisfied constraints in C(Tree). Unfortunately, the cardinality of C(Tree)
is large in general, and finding an optimal solution to this Max CSP problem is quite

10

Ochoa, Puebla

costly. A simpler model results from collecting only (some of) the O-constraints oc-
curring in a PCPE-path of maximal fitness.

Definition 5.4 [step-constraint] Let T be a state. Let CS = CS1 : . . . : CSm. Let
T1 : . . . : Tm be the children of T with T ;CSi Ti. Let Ti = mpchild(T). Then a
step-constraint for T is

∧
j=1..m∧j 6=i oracle(oi) ≥ oracle(oj).

Example 5.5 In the PCPE tree of Fig. 1, we have labeled some arcs with a vector
o = 〈D,E,N,C, S〉 containing the actual values the function quantify would return,
and with the value Q computed for each vector o by using the empirical linear
oracle function oracle we have obtained in our experiments. As can be seen in
the figure, the PCPE-path traversed by OBPE would be T1 ;〈G1,U l

1〉
T2 ;〈G1,U1〉

T4 ;〈G1,U l
1〉
T6 ; S3, which coincides with the solution of maximal fitness value

S3. This is because −8.9 ≥ −23.4, 3.7 ≥ −6.2, and −9.4 ≥ −10.7. Also, an
example of O-constraint generated for the pair (T2, S5), using the simplified linear
model defined above, would be 3 × D + 2 × E + 0 × N + 1.3 × C + 8 × S ≥
13×D+ 4×E+ 15×N + 8×C+ 0×S, since mfvF (T2) ≥ mfvF (S5), F= balance.
This is also a step-constraint for T1.

By collecting only those step-constraints in a PCPE-path of maximal fitness we
have an instance of a Max CSP that is more tractable than the original model that
considered all O-constraints in a complete PCPE-tree. We have used as calibration
benchmarks those used in [11], since they are a representative set of PCPE examples
for which it is possible to compute the complete PCPE tree. For each benchmark we
collect a set Cj of step-constraints. Then, we enumerate all possible subsets C′ji ⊆ Cj
and input each C′ji to a Constraint Logic Programming solver 3 , larger subsets first,
until we find a maximal satisfiable subset C′ji for each benchmark and its solution
kj = 〈kj1, . . . , kjn〉.

After collecting a set {k1, . . . , kp} of oracle constants, one for each of the calibra-
tion benchmarks, we normalize the value of each vector kj by forcing the absolute
value of the first constant kj1 (in our case corresponding to the observable D) to be
1 (written |kj1| = 1). This is done by multiplying all constants kj1, . . . , kjn in each
vector by 1/|kj1|. Note that this is a correct transformation since by multiplying
a vector by a constant greater than zero, all constraints which were satisfied are
again satisfied. Finally, the calibrated oracle constants result from computing the
arithmetic mean over each normalized constant kji.

6 Experimental Results

We have run a series of experiments in order to both evaluate the quality of the
specialized programs obtained by means of OBPE and to compare the cost of
this approach w.r.t. other specialization techniques. Three different specializa-
tion techniques have been considered: standard PE (column PE), the optimized
generate+evaluate PCPE presented in [11], which prunes the PCPE-tree using a
combination of heuristics and branch and bound techniques (column PB-PCPE),
and Oracle-based PE (column OBPE).

3 We have used the clpq solver available in Ciao [2].

11

Ochoa, Puebla

Benchmark LOC Size
PE PB-

PCPE
OBPE

CS1 CS2 CS3 CS4

analysis 343 39985 0.0001 0.69 0.02 1.03 - 1.19

boyer 407 36619 0.33 0.52 0.59 0.99 1.04 1.01

browse 119 12579 0.78 1.76 2.21 2.55 2.65 2.57

credit 264 16932 1.64 1.39 0.72 1.37 - 1.81

exp p 34 5639 0.55 0.86 0.57 0.96 0.95 0.86

gr unify 78 10164 5.76 4.63 0.27 1.01 - 6.04

prolog read 396 28300 0.08 0.10 0.94 0.96 - 5.09

qplan 397 37512 0.84 0.84 1.02 1.04 - 0.99

vanilla db 110 13395 32.21 1.09 32.39 1.02 36.61 32.50

Geom Mean 180.28 18502.74 0.40 0.88 0.77 1.15 - 2.56

Table 1
Quality of Specialized Programs

We have used four control strategies, i.e., CS =CS1 : CS2 : CS3 : CS4 with
CS1 = 〈G1, U1〉, CS2 = 〈G1, U2〉, CS3 = 〈G2, U1〉, and CS4 = 〈G2, U2〉. G1 is
an abstraction function based on homeomorphic embedding [9,8] and flags atoms
as potentially dangerous (and are thus generalized) when they homeomorphically
embed any of the previously visited atoms. G2 abstracts away the value of all
arguments of the atom and replaces them with distinct variables. U1 is an unfolding
rule based on homeomorphic embedding (see [12]). It can handle external predicates
safely and can perform non-leftmost unfolding as long as unfolding is safe (see [1])
and local (see [12]). Finally, U2 performs deterministic unfolding.

The first phase of the experiments involves obtaining an empirical oracle func-
tion. For this, we have used the benchmarks in [11] and have executed PB-PCPE
over them using the set CS mentioned above. We do not show results of this phase
due to lack of space. We just mention that running PE with the four strategies in
CS, the one which obtains the best overall results is CS1. During the second phase,
we have used a set of benchmark programs not included in the set of calibrat-
ing benchmarks 4 , since we are interested in knowing whether our oracle function
obtains good results for arbitrary programs. Some of these programs are actual
libraries from existing Prolog systems, and most of them contain several hundred
lines of source code, as shown in column LOC of Table 1. In this table, column
Size shows the size of the compiled bytecode of each benchmark.

Table 1 compares the quality of the specializations obtained in terms of the
fitness value (using balance) of the (best) solution found by each approach. In
order to be as fair as possible, we compare both PB-PCPE and OBPE using CS
against traditional PE using all control strategies in CS. For each benchmark, we
specify in bold the fitness value of the winning control strategy using PE. These
values are not very high in several benchmarks. This is mainly because not much
static data is available for such benchmarks. By looking at this table it seems
that, at least for the balance fitness function, there is no single control strategy
which allows consistently obtaining good results. For instance, if we look at CS1,
which was the winning strategy for the calibration benchmarks, we see that in
some cases it produces specialized programs that are considerably better than the

4 Source code available at http://clip.dia.fi.upm.es/Systems/pcpe.

12

Ochoa, Puebla

original program—groundunify simple, gr unify in the tables for short, (5.76)
and vanilla db (32.21)—while in most cases it obtains specialized programs that
are worse than the original program (fitness values below 1). An interesting case
is analysis. The original program has 343 lines of code, the program obtained
by CS1 has over 38000 lines of code, and its compiled bytecode is over 5Gb. This
is because U1 is an aggressive unfolding rule and it tries to unfold as much as
possible, in this case resulting in code explosion, which is harmful in resource-
aware program specialization. Indeed, the fitness value for this benchmark is so
low that the geometric mean computed over all benchmarks but analysis is 1.14
(vs 0.40). By looking at the overall results (row Geom Mean), it seems that the
best control strategy for dealing with these benchmarks is CS4. However, this is a
quite conservative control strategy, and does not benefit from the static information
provided to the specializer. Thus, for many of the benchmarks, fitness results using
CS4 are close to 1, as observed in the table, with the exceptions of browse and
credit.

PB-PCPE runs out of memory for several benchmarks, indicated with “−” in
the table. As a result, we do not compute its geometric mean. OBPE, on the
other hand, performs well in most cases, finding specialized programs that are, in
average, 2.56 times better than the original one, as indicated in the Geom Mean
row, and consistently similar or slightly better than the program obtained by the
best PE, with a couple of exceptions. In the case of exponential peano (exp p
in the tables for short), the specialized program is worse than that achieved using
CS4. This is an indication that, for this benchmark, our empirical oracle function
has not made perfect decisions. The other exception is prolog read, where the
program obtained by OBPE is considerably better than any of the four programs

Benchmark
PE OBPE

CS1 CS4 States Path Ties

analysis 334 54 227 77 2

boyer 83 32 44 15 7

browse 15 11 14 6 0

credit 28 25 82 32 3

exp p 8 7 18 8 0

gr unify 8 13 59 22 0

prolog read 184 48 212 54 6

qplan 53 51 161 49 3

vanilla db 7 4 19 10 0

Overall 33.9 19.6 58.4 21.6 7.69 %

Table 2
Number of States and Details on Specialization

13

Ochoa, Puebla

obtained by PE, which in all cases have a fitness below 1. This is an indication
that OBPE allows obtaining hybrid solutions which are not achievable using any of
the control strategies in isolation, and which outperform the solutions of PE. Note
that, if we decide to use PE with several control strategies, we would again need to
introduce an evaluation step (as in PB-PCPE) and which is not needed in OBPE.
Finally, it is worth mentioning that OBPE outperforms PE using any of the four
control strategies in isolation by a factor of 2.22 or higher.

In addition to evaluating the benefits of OBPE, it is also important to evaluate
its cost. Table 2 shows the number of states generated by PE and OBPE for each
benchmark, and in the case of OBPE, some additional data. We no longer include
PB-PCPE, since as already seen in Table 1, it runs out of memory in several of
the benchmarks and it is not a realistic alternative to traditional PE in general
purpose specialization. The row Overall shows the geometric mean computed over
the different benchmarks, except for the column Ties, which is discussed below.
For simplicity, in this figure the comparison is against PE using CS1 and CS4 only,
denoted PECS1 and PECS4 respectively, since they are the two most interesting
cases. The former is the most aggressive control strategy (and the winning strategy
in the calibration bencharks), while the latter is the most conservative one (and
also the one which obtains the best fitness values in Table 1). It is important to
note that the number of states generated by OBPE is bounded by the length of
the PCPE path chosen by the oracle multiplied by the cardinality of CS (in our
case, four). However, it can be seen in the table that, at least in our experiments,
the number of states generated by OBPE (58.4), as shown in column States under
OBPE, is slightly less than twice as many states as PECS1 (33.9), and three times
as many states as PECS4 (19.6). There are several reasons for this. One is that
the best solution under balance tends to have fewer predicates in the residual code,
which implies that the path traversed is shorter. This can be observed in the column
Path, which indicates the length of the PCPE-path whose overall is smaller (21.6)
than that of PECS1 (33.9) and quite similar to that of PECS4 (19.6).

Another reason for this is that, for efficiency, in the implementation abstraction
functions are applied first, and then those generalized atoms which are different are
unfolded, i.e., if after abstraction we obtain two identical generalized atoms, only
two children states are generated, instead of four. Column Ties shows the number

Bench.
PE (CS1) PE (CS4) OBPE

Spec CG Tot Spec CG Tot Spec Ora CG Tot

analysis 7571 30648 38219 462 260 721 13612 1254 339 13951

boyer 11077 296 11374 14494 254 14748 11037 25 203 11240

browse 587 71 658 854 62 915 623 4 50 673

credit 238 161 399 285 144 429 492 26 161 653

exp p 109 30 139 153 29 181 110 2 23 133

gr unify 122 36 158 177 61 238 208 10 52 260

prolog read 880 1847 2728 405 306 711 1839 438 616 2455

qplan 373 438 811 799 429 1228 642 81 447 1089

vanilla db 9700 2546 12246 186 41 227 15675 7 3714 19389

G. Mean 925 394 1598 517 121 690 1392 29 206 1709

Table 3
Specialization Time

14

Ochoa, Puebla

of times the oracle returns the same value for two children. If this number were too
high, it would probably indicate that the set of observables chosen does not convey
enough information, and the possibility of choosing the wrong path would increase.
However, this happens only 7.69% of the total number of decisions taken.

Finally, Table 3 shows the specialization times (in msecs) of both PE (using CS1

and CS4) and OBPE. In all cases, total specialization times (in columns Tot) are
split into time spent doing partial evaluation (columns Spec), and code generation
(columns CG). In the case of OBPE, we also add a column Ora to indicate the
time spent by the oracle function when selecting the most promising child state.
Experiments have been run using Ciao 1.13 over a 2.6 Linux kernel, on a Pentium
IV 3.4GHz CPU, with 512Mb of RAM. We can see that the total specialization
time of OBPE (1708.5) is quite similar to that of PECS1 (1597.5), and 2.47 times
higher than that of PECS4 (690.0). These times are consistent with the number of
states which need to be generated in the different approaches, plus the cost of code
generation. An important point to mention is that the cost of OBPE represents
a constant overhead factor w.r.t. PE. Such factor is directly proportional to the
cardinality of CS. For aggressive strategies, such as CS1, the cost of OBPE is quite
close to that of PE. Also, we can see that the time spent by the oracle function is
negligible when compared to the total specialization time.

7 Discussion

Control of PE has received considerable attention, but there is still plenty of room
for improvement, especially in the context of resource aware specialization. Many
decisions have to be taken during PE and it is often not obvious which is the right
choice. The main advantage of PCPE is that we do not need to restrict ourselves to
a single control strategy, but rather we can use several ones. This opens up the door
to obtaining hybrid specializations which often outperform pure ones. However, the
main problem of the generate+evaluate approach to PCPE [13] is that, even with
the optimizations proposed in [11], it is too expensive in practice: it is an alternative
only when the quality of the specialized program is of much importance, and the
PCPE tree has a moderate size.

In this paper we have presented Oracle-based PE. This approach, in contrast to
previous work [13,11], introduces a constant overhead factor, instead of an expo-
nential one, to the complexity of standard PE. At least in our experiments, OBPE
obtains specialized programs which are significantly better than those generated by
standard PE and the constant overhead factor is quite reasonable.

Acknowledgments

The authors would like to thank Samir Genaim for useful discussions on the use of
constraint logic programming for calibrating the oracle.

This work was funded in part by the Information Society Technologies program
of the European Commission, Future and Emerging Technologies under the IST-
15905 MOBIUS project, by the Spanish Ministry of Education under the TIN-
2005-09207 MERIT project, and by the Madrid Regional Government under the

15

Ochoa, Puebla

S-0505/TIC/0407 PROMESAS project.

References

[1] Albert, E., G. Puebla and J. Gallagher, Non-Leftmost Unfolding in Partial Evaluation of Logic
Programs with Impure Predicates, in: 15th International Symposium on Logic-based Program Synthesis
and Transformation (LOPSTR’05), number 3901 in LNCS (2006), pp. 115–132.

[2] Bueno, F., D. Cabeza, M. Carro, M. Hermenegildo, P. López-Garćıa and G. P. (Eds.), The
Ciao System. Ref. Manual (v1.13), Technical report, C. S. School (UPM) (2006), available at
http://www.ciaohome.org.

[3] Craig, S.-J. and M. Leuschel, Self-tuning resource aware specialisation for Prolog, in: PPDP ’05:
Proceedings of the 7th ACM SIGPLAN international conference on Principles and practice of
declarative programming (2005), pp. 23–34.

[4] Debray, S. K., Resource-Bounded Partial Evaluation, in: Proceedings of PEPM’97, the ACM Sigplan
Symposium on Partial Evaluation and Semantics-Based Program Manipulation (1997), pp. 179–192.

[5] Debray, S. K. and N. W. Lin, Cost analysis of logic programs, ACM Transactions on Programming
Languages and Systems 15 (1993), pp. 826–875.

[6] Gallagher, J., Tutorial on specialisation of logic programs, in: Proceedings of PEPM’93, the ACM
Sigplan Symposium on Partial Evaluation and Semantics-Based Program Manipulation (1993), pp.
88–98.

[7] Jones, N., C. Gomard and P. Sestoft, “Partial Evaluation and Automatic Program Generation,” Prentice
Hall, New York, 1993.

[8] Leuschel, M., On the power of homeomorphic embedding for online termination, in: G. Levi, editor,
Static Analysis. Proceedings of SAS’98, LNCS 1503 (1998), pp. 230–245.

[9] Leuschel, M. and M. Bruynooghe, Logic program specialisation through partial deduction: Control
issues, Theory and Practice of Logic Programming 2 (2002), pp. 461–515.

[10] Lloyd, J., “Foundations of Logic Programming,” Springer, second, extended edition, 1987.

[11] Ochoa, C. and G. Puebla, Poly-Controlled Partial Evaluation in Practice, in: ACM Partial Evaluation
and Program Manipulation (PEPM’07) (2007), pp. 164–173.

[12] Puebla, G., E. Albert and M. Hermenegildo, Efficient Local Unfolding with Ancestor Stacks for
Full Prolog, in: 14th International Symposium on Logic-based Program Synthesis and Transformation
(LOPSTR’04), number 3573 in LNCS (2005), pp. 149–165.

[13] Puebla, G. and C. Ochoa, Poly-Controlled Partial Evaluation, in: Proc. of 8th ACM-SIGPLAN
International Symposium on Principles and Practice of Declarative Programming (PPDP’06) (2006),
pp. 261–271.

[14] Venken, R. and B. Demoen, A partial evaluation system for prolog: some practical considerations, New
Generation Computing 6 (1988), pp. 279–290.

16

	Introduction
	A Motivating Example
	Choosing a PCPE Specialized Program

	On-Line Partial Evaluation of Logic Programs
	Poly-Controlled Partial Evaluation
	Oracle-Based Partial Evaluation
	An Empirical Oracle Function using a Linear Model
	Useful Observables for Resource-Aware Specialization
	A Linear Model for the Oracle

	Experimental Results
	Discussion
	References

