. . OCIAO .
An Object Oriented Programming model

using CIAQO Prolog

A. Pineda, M. Hermenegildo

Computer Science Department
Technical University of Madrid (UPM), Spain
{apineda,herme}@clip.dia.fi.upm.es

Abstract

There have been several previous proposals for the integration of Object Oriented Pro-
gramming features into Logic Programming, resulting in much support theory and several
language proposals. However, none of these proposals seem to have made it into the main-
stream. Perhaps one of the reasons for these is that the resulting languages depart too much
from the standard logic programming languages to entice the average Prolog programmer.
Another reason may be that most of what can be done with object-oriented programming can
already be done in Prolog through the meta- and higher-order programming facilities that the
language includes, albeit sometimes in a more cumbersome way. In light of this, in this paper
we propose an alternative solution which is driven by two main objectives. The first one is
to include only those characteristics of object-oriented programming which are cumbersome
to implement in standard Prolog systems. The second one is to do this in such a way that
there is minimum impact on the syntax and complexity of the language, i.e., to introduce the
minimum number of new constructs, declarations, and concepts to be learned. Finally, we
would like the implementation to be as straightforward as possible, ideally based on simple
source to source expansions.

1 Introduction

Since the first steps on object oriented programming, many attempts has been made in order
to join both logic and object oriented programming styles into a single language. Most of those
proposals depart from the standard Prolog language, perhaps due to the starting point of view
used to design them. In this paper, we will try another approximation taking an existing Prolog
platform as starting point. First, we will try to locate those concepts present on the Prolog
language which are very similar to those involved on object oriented languages. Then we will
discuss how those concepts may be modified to reach object oriented behavior.
Traditionally, four main concepts are involved in Object Oriented Programming:

e State encapsulation.
¢ Instantiation.
e Inheritance relationships.

e Polymorphism.

State enacapsulation is already provided by Prolog in the form of modules. In this way, the
concept of module is something very similar to the concept of class. Following this reasoning, we
may say that the concept of attribute (also known as property) is something very similar to the
concept of dynamic predicate. And the concept of public method is something very similar to the
concept of exported predicate.

Polymorphism is also provided by a Prolog system. This is done in two ways:

¢ Since Prolog is not a typed language, polymorphic declarations inside the same encapsulation
have no sense.

For example, the following C++ polymorphic declarations :

void myclass::method(int)
void myclass: :method(float)

are written in Prolog as follows :

method (Arg) :-
integer (Arg),
',

method (Arg) :-

float (Arg),

e Support for polymorphic method calling is already present in the form of higher-order (or
meta-programational) structures. For example, suppose that method/0 is both exported by
modules m1 and m2:

:— use_module(ml).
:— use_module(m2) .
main :-

aux(mil),

aux (m2) .
aux(I) :-

I:method.

Notice that the module qualificator for method/0 predicate is just a variable.

As a result, we must center our efforts in providing instantiation and inheritance to our
Prolog system. In the following sections, we will first describe our object-oriented programming
model,then we will discuss some implementation issues.

2 The object-oriented programming model

Classes are declared the same way as modules, where original source code will suffer a source-to-
source expansion which is called the class expansion. Since O’CIAQ is based on the CIAO Prolog
system, we will describe here the needed syntax for this Prolog system:

:— class(ClassName).
or (SICStus-like module declaration):
:— module(ClassName, [], [class]).

The following example declares a class which implements an “imperative-style” stack of ele-
ments:

:- class(stack).
:- dynamic storage/1.
:- export ([push/1,pop/1,top/1]).

push(Item) :-
nonvar (Item),
asserta(storage(Item)).
pop(Item) :-
var(Item),
retract(storage(Item)).
top(Top) :-

storage(Top),
!,

Notice the similarity with a traditional Prolog module. In fact, this kind of class may be called
an instantiable module, just because there is no usage of object oriented specific declarations (i.e.
inheritance relationships). The concept of instantiable module is a previous step to the concept of
class. There is only one point of difference between a module and an instantiable module: “copies”
of the instatiable module may be (both dynamically and statically) generated:

:- use_class(stack).
:—- stackl instance_of stack.
:— stack2 instance_of stack.
main :-
Stack3 new stack,
stackl:push(a),
stack2:push(b),
Stack3:push(c).

In the example above, stack! and stack2 are declared to be instances of the stack module.
Those instances are used as they were loaded modules. Additionaly, instances may be also created
at run-time (this is the case of Stack3) by the usage of the new/2 operator.

From this point, the idea of instantiable modules is enriched in order to become an object
oriented programming model based on the Prolog module system. Basically, this is reached by
both adding a few new declarations and changing the meaning of some existing ones: dynamic/1
declarations change their semantics to attribute declarations. export/1 declarations also change
their meaning to public predicate declarations.

2.1 Inheritance relationships

We have based most of the O’CIAQ inheritance model on that provided by the Java program-
ming language. This language makes use of two different kinds of inheritance relationships: code
inheritance and interface inheritance.

Code inheritance is very similar to usage relationships already provided by Prolog!, differences
are relative to these points:

e Predicates are re-exported by default (known as public inheritance).

e As a consequence of previous point, there is transitivity on the inheritance relationship:
whether “a” inherits from “b” and “b” from “c”, there is an implicit inheritance relationship
between “a” and “c”.

e Ambiguous predicate callings are solved in a different way.

¢ Visibility of predicates can not be restricted: an inherited private predicate may be exported,
but an inherited public predicate will not become a private one. This ensures an uniform
public interface along the inheritance line.

Luse_module/1 declaration.

Code inheritance works towards source code maintenance and reusability. Since it was the
first kind of inheritance to be developed, it is usually known simply as “inheritance”. We have
implemented single code inheritance by adding a new declaration 2:

:— inherit_class(Source).

Another declaration is needed in order to distinguish between private predicates and those
that may be inherited by descendant classes 3. Predicates are private by default, so inheritable
predicates must be explicitly marked*:

:- inheritable(F/A).

The following example illustrates the usage of those mentioned declarations. The “item” class
declares set_value/1, get_value/1 and datum/1 to be inherited by descendant classes, in particular,
they are inherited by the “tagged_item” class:

:— class(item).
:— export([set_value/1,get_value/1]).
:— inheritable(datum/1).
:- dynamic datum/1.
set_value(X) :-

retractall(datum(_)),

assert (datum(X)) .
get_value(X) :-

datum(X) .

:- class(tagged_item).
:—- inherit_class(item).
:- export([set_tag/1,get_tag/1]).
:- dynamic tag/1.
set_tag(X) :-
atom(X),
retractall(tag(l)),
assert (tag(X)).
get_tag(X) :-
tag(X).

Interface inheritance works towards external world (and concept) modeling and uniform usage
of different pieces of code. Unfortunately, there is no similar concept present on Prolog systems.
However, there is no much difficult on implementing it: the compiler must ensure that a particular
source will export the same set of predicates as another one. Interface inheritance has been
implemented by adding the following declaration:

:- implements(Source).

Where Source may be a class-expanded source or an interface-expanded source. interface-
ezpanded sources are similar to the interface declarations provided by the Java language. Only
export/1 and data/1 declarations are allowed. For example:

:- interface(must_be_implemented) .
:- export([a/1,b/1]).

And this code illustrates how interfaces are used:

2Multiple code inheritance is not supported.
3Usually known as protected predicates.
4Except for exported predicates, which are inheritable by default.

:- class(itf_example).

:- implements (must_be_implemented) .
:— implements(item).

a(l).

b().

set_value(_).

get_value(_).

The following example has the same effect as the previous one, and will introduce the meaning
of interface inheritance:

:- class(itf_example).

:— export([a/1,b/1]).

:— export([set_value/1,get_value/1]).
a(l).

b(l).

set_value(_).

get_value(_).

2.2 Object Initialization

Classes may be improved by the usage of constructors and destructors. Constructors are implicitly
declared by writing clauses of a predicate whose functor matches the class name (any and all arity
is allowed). Destructors are also implicitly declared by writing clauses for a destructor/0 predicate.
Those are mainly used to allocate/release system resources at the proper time. For example:

:— class(file_reader).
:- export(get_char/1).
:- dynamic handler/1.
file_reader(FileName) :-
open(FileName,read,Handler),
assert (handler (Handler)).
destructor :-
handler(H),
close(H).
get_char(C) :-
handler(H),
current_input (014IN),
set_input (H),
get_code(I),
set_input (01dIN),
I =\=-1.

Constructors are usefull to perform some initialization just after object creation takes place.
State initialization is a particular case which is also provided in the traditional Prolog way:

:— class(has_initial_state).
:- dynamic state/1.
state(active).

2.3 Virtual method calling

Virtual method calling allows descendant classes to provide different implementations for a pred-
icate. This is a popular programming technique known as code specialization. The ancestor will
allways call that version defined deeper in the inheritance line. O’CTAQO provides the virtual/1
declaration in order to do so:

:- class(generic_item).
:— export([set_value/1,get_value/1]).
:- inheritable(datum/1).
:- dynamic datum/1.
set_value(X) :-
validate_item(X),
retractall(datum(_)),
assert (datum(X)).
get_value(X) :-
datum(X) .
:— virtual validate_item/1.
validate_item(I) :-
nonvar (I).

:- class(integer_item).
validate_item(I) :-
integer (I).

In the previous example, any object derived from “integer_item” class will accept (only) an inte-
ger as argument to set/1, regardless of the validate_item/1 check implemented in the “generic_item”
class.

2.4 Predicate overriding

Overriden predicates are also known as redefined predicates. A predicate is said to be overriden
when it has been inherited from any ascendant class, but the same predicate has been defined at
current source. In order to distinguish between both definitions there is an inherited /1 predicate
qualificator. By default, the local predicate is used, if the inherited predicate definition needs to
be called, it must be qualified using the inherited/1 operator:

:— inherit_class(defines_predicate_foo).

foo(9). % predicate overriding

example :-
foo(X), % local definition is called.
inherited foo(X). % inherited definition is called.

2.5 Retrieving self instance identifier

Sometimes, an object needs to know what its name is: the self instance identifier. There is a self/1
predicate in order to do so. Usually this feature is used to tell another object who is making a
call, this enables the called object to invoke the first one again. Example:

:— class(clonation).

:- dynamic some_data/1.

clone(Object) :-
retractall(some_data(_)),
Object:some_data(X),
assert (some_data(X)),
fail.

clone(_).

copy_to(Destination) :-
self (Me),
Destination:clone(Me).

2.6 Object creation and manipulation
First step in order to handle object oriented code is to load the objects CIAO package:
:—- use_package (objects).

which is something very similar to an include/1 declaration.

This procedure will load a run-time support library, declare some operators, and enable the
use_class/1 declaration: such declaration establishes an usage relationship between the current
code and the given class. This behavior is analogous to those provided by the use_module/1
declaration. For example :

:- use_package(objects) .
:- use_class(library(file_reader)).
main([FileName]) :-
File new file_reader(FileName),
echo(File).
echo(File) :-
File:get_char(I),
put_code(I),
fail.
echo ().

Object creation will take effect by the ways of the new /2 operator. This operator will take a
free variable as first argument (which will be binded to an unique instance identifier), and a class
constructor as second argument. For example:

7- X new xmessage(’Hello there !!!7).
X = 7193847705’ 7

yes
?_

Whether no class constructors were defined, a default constructor (with zero-arity) may be
used. Instance creation will fail whenever the given constructor fails.

Once the object has been created, any exported (public) predicate may be called as a traditional
module-qualified goal:

X new myclass , X:mymethod(Z)

This package also provides the instance_of/1 operator which checks whether an instance was
derived from a class, or any of its descendants:

foo(0Obj) :-
Obj instance_of myclass,
Obj:method.

3 Implementation issues

Intuitively, our main implementation challenge is derived from providing instantiation. There is
a very simple solution which has been used before for some beginner Prolog programmers: the
“extra” argument. This solution adds a new argument to every dynamic predicate which identifies
the instance (object) owner. Such a solution must be avoided since Prolog indexing is broken®. Tt
brings up important performance slowdown when the number of dynamic clauses grow up. This

5Notice that Prolog indexing is not broken at static predicates whether the “extra” argument is the last argument.

fact led us to a new implementation restriction: performance slowdown must be avoided as long
as possible. As a result, any source-to-source expansion must also work in this way.

Another difficult on implementation is derived from the interdependency between inheritance
and instantiation solutions. new/2 implementation and performance is fully dependant from that
code auto-generated by the class expansor. Unfortunately, the class expansion robustness and
efficiency is dependant from the underlining Prolog compiler capabilities. In general lines, the
most information is known by the class expansion, the better performance is reached.

CIAO Prolog compiler allows code expansion in two stages. At the first stage, declarations
are processed in order to generate any needed interface information. At the second stage, module
dependences has been solved by the compiler. This seems that code may be generated taking
account of other module (and class) declarations in relation with the current code being expanded.
This interesting feature allows O’CIAO class expansor to suppress many run-time checks, generate
many static code, and perform exhaustive semantic analysis on class code.

3.1 The class expansion

The class expansor performs several tasks:
e Semantic analysis.
e Enable instance distinction.
e Help on instance creation.

Semantic analysis on object oriented declarations will be easy to implement whenever module
dependences are known by the code-expander. It will report any semantic error or warning due to
incorrect usage of declarations. Currently, O’CIAQO performs over 35 different checks over class-
expanded code. To illustrate which kind of semantic errors could be found, we enumerate some of
those checkings:

e Multiple inheritance declarations.

e Trying to establish an inheritance relationship with no class-expanded code.

Trying to declare constructors/destructors as dynamic or multifile predicates.

Exporting (publishing) predicates not related to object oriented programming.

Trying to export (or mark as inheritable) a predicate not defined nor inherited at current
class.

3.1.1 Enabling class code to distinguish between different instances

Fach time a method predicate is called, the involved code must notice which is the current instance
being executing. This is needed for the assert/retract predicates to operate over the proper state
encapsulation.

This situation implies that the previously mentioned “extra” argument can not be avoided, but
must be hidden from the user. In fact, this extra argument is also known as the hidden argument
in other object oriented languages. These approach is also adopted by O’CTAO which will add a
hidden argument to every static clause® present at the user code. The following approximation
illustrates the idea”:

method (V) :-
assert(attr(V)).

6And only to every static clause, in order to preserve Prolog indexing. Dynamic predicates must be treated in
a different way.
TInstance identifiers are assumed to be simple atoms.

will be expanded to something like:

method (V,Instance) :-
assert(Instance:attr(V)).

3.1.2 Providing state encapsulation

As mentioned before, state encapsulation is also provided by Prolog in the form of modules. This
seems that an instance (object) will be some kind of run-time generated Prolog module, which will
be (basically) build of dynamic predicates. However, there are two implementation alternatives
when inheritance is present:

One run-time generated module in representation of each class: For each class along the
inheritance line, a module is generated in representation of that class state. Then, a simple
relationship is internally allocated between those modules. Each time an inherited call is
performed, the needed module must be first determined (at run-time).

Advantages:

e Attribute overriding is trivial. There is no possible confusion between two attributes
with the same functor and arity defined at different classes.

Drawbacks:

e Attribute inheritance is not trivial. When a given attribute is not known to be de-
fined at current class, we must determine which class (along the inheritance line) has
the proper definition®. Then, the module in representation of such a class must be
determined at run-time.

o Virtual method calling will be difficult to implement. Some kind of virtual method table
will be needed in order to perform such a kind of calling. That table must be run-time
generated for each instance.

Those drawbacks will have a direct impact on new/2 performance, and method calling slow-
down.

One run-time generated module in representation of all classes: Only one run-time gen-
erated module will hold all attributes defined in all classes along the inheritance line.

Advantages:

e Attribute inheritance is trivial, since all attributes are allocated into the same encap-
sulation.

e Virtual method calling is trivial. This behavior will be discussed later.

e There is no method calling slowdown?.

Drawbacks: attribute overriding is not trivial. Two identical attribute definitions on different
classes can not be distinguished due to the use of a unique state encapsulation. Obviously,
this problem can be solved by ensuring unique attribute names across the inheritance line.
This can be easily reached by using some kind of name convention. For example:

:- class(myclass).
:- dynamic attr/1.
method (Value) :-
assert (attr(Value)).

8Most times, this can be done at compile time.
9Except for that derived from the presence of an extra argument, which can not be avoided.

will be expanded to something like:

:— module(myclass) .
method(Value,Instance) :-
assert(Instance: ’myclass::attr’ (Value)).

Unfortunately, such a solution led us to another problem: attributes can not be trivially
exported (published) because of that name translation. For example:

main :-
X new someclass,
assert (X:attr(V)).

needs to be expanded!? to:

main :-
X new someclass,
assert(X:’someclass::attr’(V)).

This implementation will require some kind of global analysis technique in order to
determine which class derived the instance denoted by the involved variable. As an example,
consider the following code:

aux(X) :-
assert (X:attr(V)).

Note that (using traditional compiling techniques) there is no chance to know whether attr/1
is a valid attribute and how it must be expanded.

There are other chances to solve this problem:

e Not to allow attribute exportation. This is not a hard restriction since good program-
mers will usually provide a set of methods in order to control state access.

e To define predicate aliases for exported state. This feature must be supported by the
underlining Prolog engine. Predicate aliases are symbol table entries which points to
the same set of clauses as the aliased predicate!!.

e To allow attribute exportation only for goal calling porpouses. This solution is easy to
implement using “chaining clauses” for attributes (this technique is discussed later in
section 3.2).

O’CIAQO is currently implemented using only one run-time generated module. Attributes are
exported only for goal calling porpouses (assert/retract predicates are not allowed to operate over
exported attributes).

3.1.3 Helping on instance creation

As user-code is being expanded, some usefull information may be recorded in relation to instance
creation. So, some new clauses (not present at the user code) should be generated using that
information. The easiest way to store that information, which will be used at run-time, is by the
usage of multifile predicates. That set of multifile clauses will build a class template in order to
help instance creation.

That class template will hold the following information:

10Such an expansion should be performed by the objects package.
1 Predicate aliases also solves some other problems present at traditional Prolog module system.

10

e The class name.

The class ancestor (if present).

A relation of public predicates: usefull whether run-time checks are needed.

e A relation of attributes and how to create them.

A relation of methods and which classes defined them. The usage of this information will
be discussed on section 3.2.

e State initialization information.

This is an example of those multifile clauses generated for the “generic_item” and “integer_item”
classes:

class(generic_item).

public(generic_item,set,1).

public(generic_item,get,1).
attribute_template(generic_item,datum,1,’generic_item::datum’).
method_template(generic_item,set(X),generic_item:set(X,_)).
method_template(generic_item,get (X),generic_item:get(X,_)).
method_template(generic_item,validate_item(X),generic_item:validate_item(X,_)).

class(integer_item).

super (integer_item,generic_item) .

public(integer_item,set,1).

public(integer_item,get,1).
attribute_template(integer_item,datum,1,’generic_item: :datum’).
method_template(integer_item,set(X),generic_item:set(X,_)).
method_template(integer_item,get(X),generic_item:get(X,_)).
method_template(integer_item,validate_item(X),integer_item:validate_item(X,_)).

3.2 Providing instantiation

Object creation takes place by the usage of the new/2 operator. Most of its implementation is
based on the underlining Prolog engine primitives, such as dynamic predicate creation. Those are
the needed tasks for new/2 to perform:

¢ Generating an unique instance identifier.

e State encapsulation creation.

Method interface creation (discussed below).

Enabling Virtual method invokation.

Calling the needed constructor.

State encapsulation is easily performed from the proper auto-generated template!2:

state_creation(ID,Class) :-
attribute_template(Class,Functor,Arity,RealFunctor),
module_concat (ID,RealFunctor ,NewFunctor),
’$define_predicate’ (NewFunctor/Arity,interpreted),
fail.

12 A]] those implementation examples has been simplified.

11

Public methods needs to be called in the same way as attributes: i.e. Obj:method(Arg), but the
implemented goal must be called as proper_class:method (Arg,0bj). Method interface creation
allows this situation using chaining clauses:

method_creation(ID,Class) :-
method_template(Class,Goal,Class_or_ancestor:RealGoal),
functor (RealGoal,_,LastArg),
arg(LastArg,RealGoal,ID),
assert((ID:Goal :- Class_or_ancestor:RealGoal)),
fail.

Whether ’123” were the instance identifier, and foo/3 a public method, the following clause
should be asserted:

’1237:foo(A,B,C) :- proper_class:foo(A,B,C,?1237%).

Knowing this, virtual methods are easily enabled. Whether a virtual method call is present,
for example:

:— virtual validate_item(X).
set(X) :-
validate_item(X),
retractall(datum(_)),
assert (datum(X)) .

code must be expanded in this way:

set(X,Instance) :-
Instance:validate_item(X),
retractall(Instance:’generic_item: :datum’(_)),
assert(Instance:’generic::datum’ (X)).

3.3 Enabling code to manipulate objects

As mentioned before, usage relationships are needed for some code to create objects or manipulate
them. The objects package is in charge of such a task. Usage relationships may be also implemented
by the usage of a single multifile predicate: used_class(Class,Module), which denotates “Class is
used by Module”!®. This information is used in conjuction with the public/3 template in the
following way:

The underlining Prolog engine will use some kind of dynamic predicate which holds information
about module importation/exportation. That information is used to determine whether a module
is allowed to call a given predicate from a given module. If not, an exception is usually raised.
CIAO Prolog uses the predicate imports(Module, From_module,F,A), which stands for: “Module
imports F/A from From_module”. So, object’s public interface accesibility may be controled using
this trick!:

object_interface_creation(Object,Class) :-
assert((imports(Module,Object,F,A) :-
used_class(Class,Module),
public(Class,F,A))),
super (Class, Super) ,
!
object_interface_creation(0bj,Super).
object_interface_creation(_,_).

13Where Module may be another class, a Prolog module, or a main program.
4 Note: Object and Class variables will be binded to atoms at call time.

12

3.4 Object destruction

Object creation makes use of some amount of memory and system resources that must be released
when no longer needed, this is called instance destruction or object destruction.

Two implementation alternatives are known to solve this problem: explicit and implicit de-
struction.

Explicit destruction makes use of some kind of operator in order to do so. This operator must
be manually called by the programmer, who must ensure that no more references to the object
are left in memory. Some popular languages uses explicit instance destruction, such as C++ and
Object Pascal.

Implicit destruction works transparently to the programmer. This implementation first ensures
that no references to a particular object are left in memory, then it destroys the given object.
Implicit destruction needs a garbage collector to perform such a task. Java language has
implemented this approach with successfull results. Prolog engine also works using a garbage
collector, so there is a chance to implement implicit destruction.

At current stage of O’CIAO development, instance destruction is explicitly invoked by a de-
stroy/1 operator.

4 Performance tests

Three different benchmarks were used to compare O’CIAO performance against CIAO normal
module system. At first sight, we may predict runtime slowdown due to instance creation (new/2
operator) and instance distinction issues. This last behavior has a direct impact on method
execution performance. So, the main target of this test is to determine whether lost on performance
is justifiable by the gaining on object oriented enhancement, or not.

4.1 Instance creation and destruction overhead

Instance creation as well as instance destruction may be considered as “wasted time” since it does
not execute user code (except for constructors and destructors), but it can not be avoided whether
object oriented programming is needed.

Execution time on new/2 for a given class depends on those factors:

e The whole number of attributes: all attributes defined in all classes along the inheritance
line.

The whole number of methods.

Constructor code (if present).

State initializations (if present).

The actual size of the Prolog database, internal index tables, and so on. This is due to the
usage of dynamic predicates and atoms as instance identifiers.

Constructor and state initialization execution time was not considered on benchmarking since
it involves useful user actions which can not be avoided. Figure 1 shows execution time ratios on
both creating and destroying an instance, the involved classes had the following characteristics:

e Different number of attribute declarations.
e No inheritance nor method declarations.
¢ No state initialization nor constructor/destructor definitions.

Figure 2 shows execution time ratios when involved classes declare methods instead of at-
tributes.

Average execution time is 0.07 ms per attribute and 0.22 ms per method. So, first important
result is that creating a method is three times slower than creating an attribute.

13

11 | | | | | | | | |
= 10F
c 9
< 8
g 7
- 6
S 5
o 4
$ 3
W

1

0O 50 100 150 200 250 300 350 400 450 500
Number of attributes

Figure 1: Involved execution time in creating and destroying an instance versus number of at-
tributes.

4.2 Predicate calling overhead

The porpouse of this benchmark was to measure goal calling slowdown due to instance distinction
issues. The test compared execution times for Object : goal versus test_module:goal once Object
new test_class was executed. Code for “test_class” was just the same as “test_module” except
for the necessary class expansion. Both dynamic predicate and static predicate calling was tested.
Benchmarking result was:

e 9.5 % slower on static predicate calling.

e 16.7 % slower on dynamic predicate calling.

4.3 assert/retract overhead

This test was designed to evaluate assert/retract slowdown due to the usage of run-time generated

state encapsulations. assert(data(l)) ,retract(data(.)) was compared against assert (Object:data(1)) ,retract(l

which is the same code but class-expanded.Such class-expanded code resulted to be 23.3 % slower.

5 Previous related work and final conclusions

First steps on Logic and Object Oriented Programming are found in relation to Parallel and
Concurrent Programming in the eighties. As signaled by [8], Object Oriented behavior may be
used as a modeling tool for processes and their intercommunication. This tentative is based on
the KL1 language, which is not a traditional Prolog system.

Then, many efforts has been focused on the formal semantics of objects and their logical
meaning in First Order Logic ([5]) and High Order Logic ([4],[2]). Following this line, there have
been also many advances in the area of Linear Logic ([1],[6]).

Another critical point of discussion is inheritance behavior ([3],[7]).

Most of those proposal has derived on a number of new languages which have not spread so
much over the programming community, perhaps, due to the resulting complexity on language
syntax.

14

Execution time (ms)

0O 50 100 150 200 250 300 350 400 450 500
Number of methods

Figure 2: Involved execution time in creating and destroying an instance versus number of meth-
ods.

O’CIAO was designed keeping in mind that an experienced Prolog programmer will be reticent
about learning a lot of new declarations and syntax extensions. On the other side, O’CIAQ provides
a good tool for the imperative-style programmer to learn about declarative languages. Most of
the involved concepts (inheritance, state encapsulation, etc) are very similar to those related to
imperative object oriented languages. Another point of difference between O’CIAO and previous
proposals is that it has been implemented over a first order logic based language such as Prolog
which, in addition, is becoming a very popular language day by day.

Other authors has focused their efforts on the declarative semantics of Object Oriented Pro-
gramming. We prefer not to worry so much about this stuff basing our development on the
well-known semantics of the Prolog module system, and focusing our efforts on implementation
and performance of the system.

References

[1] Jean-Marc Andreoli and Remo Pareschi. Linear objects: Logical processes with built-in inher-

itance. In Proceedings of the Seventh International Conference on Logic Programming, June
1990.

[2] Hassan At-Kaci. An introduction to life — programming with logic, inheritance, functions and
equations. In Proceedings of the 1993 International Symposium on Logic Programming, 1993.

[3] M. Bugliesi. A declarative view of inheritance in logic programming. In Proceedings of the
Joint International Conference and Symposium on Logic Programming, 1992.

[4] Weidoing Chen and David Scott Warren. Objects as intensions. In Proceedings of the Fifth
International Conference and Symposium on Logic Programming, August 1988.

[5] John S. Conery. Logical objects. In Proceedings of the Fifth International Conference and
Simposium on Logic Programming, August 1988.

[6] Maurizio Martelli Giorgio Delzanno. Objects in forum. In Proceedings of the 1995 International
Symposium on Logic Programming, December 1995.

15

[7] Laks V. S. Lakshmanan Hassan M. Jammil. A declarative semantics for behavioral inheri-

tance and conflict resolution. In Proceedings of the 1995 International Symposium on Logic
Programming, December 1995.

[8] K. Furukawa M. Ohki, A. Takeuchi. An object-oriented programming language based on the
parallel logic programming language kl11. In Proceedings of the Fourth International Conference
on Logic Programming, May 1987.

16

