
A Practical Type Analysis for Verification
of Modular Prolog Programs

Paweł Pietrzak
School of Computer Science, Technical

University of Madrid, Spain
pawel@fi.upm.es

Jesús Correas
School of Computer Science,

Complutense University of Madrid,
Spain

jcorreas@fdi.ucm.es

Germán Puebla
School of Computer Science, Technical

University of Madrid, Spain
german@fi.upm.es

Manuel V. Hermenegildo
School of C.S., T.U. Madrid, IMDEA-Software Institute, Spain

Depts. of CS and ECE, Univ. of New Mexico
herme@fi.upm.es

Abstract
Regular types are a powerful tool for computing very precise de-
scriptive types for logic programs. However, in the context of real-
life, modular Prolog programs, the accurate results obtained by reg-
ular types often come at the price of efficiency. In this paper we
propose a combination of techniques aimed at improving analysis
efficiency in this context. As a first technique we allow optionally
reducing the accuracy of inferred types by using only the types de-
fined by the user or present in the libraries. We claim that, for the
purpose of verifying type signatures given in the form of asser-
tions the precision obtained using this approach is sufficient, and
show that analysis times can be reduced significantly. Our second
technique is aimed at dealing with situations where we would like
to limit the amount of reanalysis performed, especially for library
modules. Borrowing some ideas from polymorphic type systems,
we show how to solve the problem by admitting parameters in type
specifications. This allows us to compose new call patterns with
some precomputed analysis info without losing any information.
We argue that together these two techniques contribute to the prac-
tical and scalable analysis and verification of types in Prolog pro-
grams.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—Assertion checkers; F.3.1
[Logics and Meanings of Programs]: Specifying and Verifying
and Reasoning about Programs—Assertions; F.3.2 [Logics and
Meanings of Programs]: Semantics of Programming Languages—
Program analysis; D.2.5 [Software Engineering]: Testing and
Debugging—Debugging aids, Diagnostics, Symbolic execution;
D.3.2 [Software Engineering]: Language Classifications—Constraint
and logic languages

General Terms Languages, Verification

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PEPM’08, January 7–8, 2008, San Francisco, California, USA.
Copyright c© 2008 ACM 978-1-59593-977-7/08/0001. . . $5.00

Keywords Program Analysis, Abstract Interpretation, Types, Ver-
ification, Modular Logic Programs, Logic Programming, Scalabil-
ity

1. Introduction
Types are widely recognized as being useful for several purposes,
which include early detection, i.e., at compile-time, of certain pro-
gramming errors, enforcement of disciplined programming, and
documentation of code. In the terminology of (Pierce 2002), Pure
Logic Programming is a safe programming language in that the se-
mantics of programs is well-defined and the execution of a program
does not depend on the particular compiler used. This is achieved,
without the need for types, thanks to the declarative nature of Pure
Logic Programming, which is untyped. However, as soon as we
introduce predefined operations in the programming language, for
example arithmetic, certain type checks are required in order to pre-
serve the safety of the programming language. As a result, Prolog,
which is the most widely used logic programming language, is no
longer an untyped programming language, but rather it is a dynami-
cally checked typed language: In order to preserve language safety,
calls to predefined operations which do not satisfy their calling con-
ventions result in run-time errors or exceptions. However, some of
the desirable features of types mentioned above in fact only apply
to statically checked typed languages.

A clear possibility in order to obtain a statically checked typed
logic programming language is to design a new programming lan-
guage from scratch with static checking in mind. Two proposals
along these lines are Gödel (Hill and Lloyd 1994) and Mercury (So-
mogyi et al. 1996). In these languages, types (called prescriptive
types) are a part of the language itself (both the syntax and se-
mantics). In spite of the undoubted contribution of these propos-
als, Gödel is no longer maintained and Mercury, while certainly
interesting in many ways, deviates in a number of respects from
logic programming. In practice, Prolog (including its different ex-
tensions) remains by far the most widely used logic programming
language.

Another possibility, which is the one we will focus on in this
work, is to provide a mechanism for performing static checking of
types directly for Prolog. We believe that this will have more prac-
tical impact than designing yet another strongly typed logic pro-
gramming language. Several proposals have been made and imple-

mented in the direction of augmenting Prolog with static checking,
such as, e.g., Ciao (Hermenegildo et al. 2005; Bueno et al. 2006).
In this context, even though the language itself is not statically
typed, it is possible to infer static information about the program
in terms of regular types. The types inferred are called descriptive
types in that they describe the program behavior, but they do not
provide directly any assurance about the nonexistence of run-time
errors since we can obtain descriptive types for any program. In
Ciao, users can optionally provide type definitions and assign types
to predicate arguments and thus describe the expected behavior of
the program (Hermenegildo et al. 2005). Success of static checking
occurs if the descriptive types inferred imply the type declarations
provided by the user and those present in system libraries. Alterna-
tively, type-related errors may be detected statically.

Abstract interpretation-based type analysis using regular types
is a powerful technique for computing very precise descriptive
types for logic programs in general and for Prolog in particular. In
Ciao, a multi-variant, context sensitive analysis engine (Hermenegildo
et al. 2000) is used which is parametric w.r.t. the abstract domain
of interest and which can analyze (Correas et al. 2006; Puebla
et al. 2004) and check (Pietrzak et al. 2006) modular programs.
Unfortunately, in this setting, the analysis of real-life, modular Pro-
log programs, using regular types turns out to be too expensive
in practice. The abstract domain of regular types is infinite and in
order to guarantee termination of the analysis process a widening
operator is required. Such operators may, in some cases, be quite
sophisticated procedures (cf. (Mildner 1999)). It is this ability of
the widening-based analyses to create new types that brings the
precise results, but at the same time the presence of a large number
of very detailed types inevitably affects analysis performance.

In this paper we propose a combination of techniques aimed
at improving analysis efficiency in this context while preserving
a reasonable accuracy. The techniques proposed are implemented
as extensions of the generic analyzer in the Ciao Preprocessor,
CiaoPP (Hermenegildo et al. 2000, 2005), with the type domains
of (Janssens and Bruynooghe 1992; Vaucheret and Bueno 2002).
As a first technique we allow optionally reducing the accuracy of
inferred types by using only the types defined by the user or present
in the libraries. In every iteration our analysis replaces the inferred
types with such types. We will show that in this way we ensure
faster convergence to the fixed point and that analysis times can
indeed be reduced significantly. Also, we claim that, for the purpose
of verifying type signatures given in the form of assertions, the
precision obtained using this approach is adequate.

Our second technique is aimed at dealing with situations where
we would like to limit the amount of reanalysis performed for li-
brary modules while increasing precision. To this end we allow us-
ing parametric type assertions in the specification. Such assertions
are specially useful in libraries implementing generic data manip-
ulation predicates (like, e.g., lists or AVL-trees) which we do not
want to have to reanalyze every time we analyze a program that
uses the library. In this case we can instantiate parameters in the
trusted assertion (now playing the role of module interface) accord-
ing to the actual call pattern, and simply reuse the resulting success
pattern without analyzing the library module. In this way we incor-
porate some specific characteristics of polymorphic type systems
for logic programming (Mycroft and O’Keefe 1984; Hill and Lloyd
1994), without changing the source language and while remaining
in descriptive types, i.e., types which describe approximations of
the program semantics.

The main application of our analysis is in verification of pro-
grams with respect to a partial specification written in the form of
a number of type assertions and type definitions (see (Puebla et al.
2000; Pietrzak et al. 2006)). Note that any assertion present in the
program must refer to types which are defined in user or library

modules anyway, and therefore in this case we may not lose many
opportunities for verifying assertions.

2. Related work
The issue of introducing type systems for static checking of types
in logic programming dates back to the early papers of Mishra
(Mishra 1984) and Mycroft–O’Keefe (Mycroft and O’Keefe 1984).
There has been a number of proposals since then for providing
adequate notions of types and typing (see for example (Pfenning
1992)).

As mentioned before, our work follows the descriptive typing
approach in which types approximate the program semantics. This
idea was first presented in (Mishra 1984), where types are described
by regular term grammars that reappeared in the literature in one
formalism or another.

Deriving descriptive types from a program (this process is also
called “type inference” or “type analysis”), essentially means find-
ing, at compile-time, an approximate description (in our context, a
safe approximation) of the values that program variables can take
at run-time. Descriptive types can be inferred that approximate var-
ious semantics of a logic program. In (Heintze and Jaffar 1990) de-
scriptive types are computed using set constraints analysis. Their
types approximate the declarative semantics of programs. Another
approach to approximate the declarative semantics is to construct
an abstract counterpart of the immediate consequences operator,
TP , (see e.g. (Lloyd 1987)) in order to obtain a superset of the suc-
cess set of the program. An example of this approach is (Gallagher
and de Waal 1994), in which regular descriptive types are called
“regular approximations”). Also, the TP operator is approximated
in (Yardeni and Shapiro 1990), but with the goal of verifying a
program w.r.t. given success types, rather than inferring the types.
The relative power of different regular approximations of TP is dis-
cussed in (Heintze and Jaffar 1992).

In other approaches, descriptive types approximate operational
semantics, following a top-down execution strategy with the Pro-
log selection rule. This allows distinguishing call and success
types, which makes it feasible to verify call patterns for certain
predicates. Examples of this line are (Janssens and Bruynooghe
1992; Van Hentenryck et al. 1995; Vaucheret and Bueno 2002).
In our approach we also deal with operational semantics. As al-
ready mentioned, we use a generic, context-sensitive, multi-variant
analysis framework (Hermenegildo et al. 2000; Bruynooghe 1991;
Muthukumar and Hermenegildo 1992; de la Banda et al. 1996)
based on abstract interpretation (Cousot and Cousot 1977) and
specialized to our type domain.

In the above mentioned approaches, types are constructed on
the fly during the iterative analysis process over an abstract do-
main of types which is infinite. Therefore a widening operator is
introduced, to ensure that no infinite ascending chain is generated
during the fixed point computation, and thus that the computation
terminates. For a comprehensive study of different widening oper-
ators see (Mildner 1999).

In our approach, also new type definitions are generated on-
the-fly. However, as soon as they are generated, the analyzer tries
to replace them by picking a type from a predefined collection
of definitions. These definitions correspond to the types which
have been defined by the user or which are present in library
modules used by the program. This type replacement has to be
correct –we always replace types with super-types– and accurate
–we never lose more precision than strictly required. Therefore, the
type definitions present in the abstract descriptions at each iteration
step originate from a finite set. This guarantees termination without
the need for a widening operator.

Another alternative to the widening option is to generate a type
domain which is specific to a given program. An example of such

an approach is (Gallagher and Puebla 2002), which proposes an
abstract interpretation over non-deterministic tree automata. The
authors exploit the observation, due to (Cousot and Cousot 1995),
that for a particular program one may automatically build a finite
domain of tree automata (or regular tree grammars), and thus make
sure that the analysis (a fixed point iteration) terminates. Another
approach that allows constructing program-specific type domains
is proposed in (Gallagher and Henriksen 2004). The constructed
domain incorporates also instantiation information and it is con-
densing, i.e., combining the result of bottom-up analysis with an
initial goal pattern is as precise as the output of analyzing the pro-
gram top-down in the goal-dependent fashion, for the same initial
goal pattern. The fact that the domain is condensing is attractive for
intermodular analysis as it enables fully compositional approach.
Nevertheless, in our view, a disadvantage of these approaches w.r.t.
considering the defined types is that since types are automatically
generated the resulting types are not intuitive and are hard to un-
derstand.

Our approach is strongly related to other work in which types
for each function symbol are defined prior to the analysis, and anal-
ysis itself infers types for predicates. In these analyses, the output
shown to the user contains familiar types and, thus, it is easy to in-
terpret. Among other papers, (Lu 1995) follows this line, and shows
an analysis method that combines types with sharing and aliasing.
A rather complex polymorphic analysis is presented in (Lu 1998).
In contrast, as our main concern is simplicity and efficiency, we do
not infer polymorphic types, even if we do make use of paramet-
ric type rules for describing module interfaces (see Section 5). In
some of this work, like (Barbuti and Giacobazzi 1992), only a well-
typed part of the program semantics (a success set in this case) is
described by the analysis output. In this sense (Barbuti and Gia-
cobazzi 1992) is a prescriptive typing approach. Types for function
symbols are also required by (Codish and Lagoon 2000), where
an elegant theory of ACI-unification (associative, commutative and
idempotent) is used to infer (polymorphic) type information from
the program (abstractly compiled before the analysis). The result-
ing domain is condensing. A technique which for given type defi-
nitions infers a combination of prescriptive and descriptive types is
given in (Saglam and Gallagher 1995). In all the above work, typing
rules for function symbols are given prior to the analysis. In some
cases, (like for example (Codish and Lagoon 2000)) the rules are
quite restrictive and require that each function symbol is of exactly
one type. In our work, predefined types are used differently. There
is no notion of a type signature for function symbols. Instead, dur-
ing the analysis the inferred (descriptive) types are inspected and
replaced by predefined types that match them as precisely as possi-
ble.

There are also some similarities between our work and strongly
typed logic languages such as Gödel (Hill and Lloyd 1994) or Mer-
cury (Somogyi et al. 1996) (whose type systems are based on (My-
croft and O’Keefe 1984)), especially as regards the usage of para-
metric rules. However, in both Gödel and Mercury the programmer
is required to write, together with the code, the types, both for func-
tion symbols and for predicates. Moreover, subtyping is often not
permitted. In contrast, in our setting writing type definitions is op-
tional and subtyping is allowed.

The way we handle parametric type rules resembles that of
(Drabent et al. 2002), where complete specification given in the
form of parametric descriptive types (called therein parametric set
constraints) was required from the programmer and used to verify
a program and diagnose errors. In our approach parametric type
rules have different application - they facilitate separate analysis
and verification of modules in multi-modular programs.

Our work is thus unique in combining both the flexibility of
descriptive typing approaches, where type definitions are optional

and have clear semantics, with some features of prescriptive types,
where the output of analysis is presented in terms of types known
to the user, and parametric type rules are allowed.

3. Preliminaries
3.1 Static (modular) program analysis

We assume that the reader is familiar with the basic concepts of
logic programming (see e.g.(Lloyd 1987)). As a technique for pro-
gram analysis we use abstract interpretation (Cousot and Cousot
1977) in which the semantics of the program is conservatively ap-
proximated using an abstract domain Dα (equipped with a par-
tial order v) which is simpler than the actual, concrete domain D.
Abstract values and sets of concrete values are related via a pair
of monotonic mappings 〈α, γ〉: abstraction α : D → Dα, and
concretization γ : Dα → D. Goal dependent abstract interpreta-
tion takes as input a program R and an initial call pattern1 P :λ,
where P is an atom, and λ is a restriction of the run-time bind-
ings of P expressed as an abstract substitution in the abstract do-
main Dα. Such an abstract interpretation computes a set of triples
analysis(R, P :λ) = {〈P1, λ

c
1, λ

s
1〉, . . . , 〈Pn, λc

n, λs
n〉}. In each

triple 〈Pi, λ
c
i , λ

s
i 〉, Pi is an atom and λc

i and λs
i are, respectively,

the abstract call and success substitutions. Let P :λ be an abstract
initial call pattern, and let Q be the set of concrete queries de-
scribed by P :λ, i.e., Q = {Pθ | θ ∈ γ(λ)}. An analysis is
said to be multivariant on calls if more than one triple 〈P, λc

1, λ
s
1〉,

. . . , 〈P, λc
n, λs

n〉 n ≥ 0 with λc
i 6= λc

j for some i, j may be com-
puted for the same predicate. An analysis is said to be multivariant
on successes if more than one triple 〈P, λc, λs

1〉, . . . , 〈P, λc, λs
n〉

n ≥ 0 with λs
i 6= λs

j for some i, j may be computed for the
same predicate p and call substitution λc. Different analyses may
be defined with different levels of multivariance (Muthukumar and
Hermenegildo 1992; Van Hentenryck et al. 1993). In general, goal
dependent, multivariant analysis algorithms are more precise than
those obtained with goal independent or monovariant analyses.
Many implementations of abstract interpreters are multivariant on
calls. However, most of them are not multivariant on successes,
mainly for efficiency reasons. The analysis tool used for this paper
is the analyzer in CiaoPP, which allows both types of multivariance,
but multivariance on success is switched off by default.

Throughout this paper we deal with modular programs, for
which we assume a strict module system, i.e., a system in which
modules can only communicate via their interface. The interface
of a module contains the names of the exported predicates and the
names of the imported modules. We extensively use the framework
for modular program analysis presented in (Puebla et al. 2004).
In summary, this framework works as follows: given the top-level
module m, analysis computes an intermodular fixed point by iter-
ating through the modules in the entire program unit (i.e., the set of
modules reached from m), analyzing them one by one. When the
intermodular fixed point has been reached, the analysis results for
exported predicates can be found in a Global Answer Table, in the
form of atom/call pattern/success pattern triples similar to the ones
computed by non-modular analyses.

Since an intermodular fixed point computation is performed,
and the analysis is context sensitive, it may often be the case that
the analysis of one module requires the analysis results for call
patterns of imported predicates which have not been analyzed yet,
or that have been analyzed for different call patterns. In that case,
the success information for that call pattern must be approximated
by applying a success policy to decide how to approximate the

1 We will use sets of initial calls patterns in the rest of the paper. Extending
the framework is trivial.

information not yet available for the imported predicate, either
over-approximating the existing results of the analysis (SP +), or
under-approximating them (SP−) (Puebla et al. 2004).

3.2 Regular types domain

Assume a finite set F of ranked function symbols. Let Term(F ,V)
denote a set of terms built from function symbols F and variables
V . A regular term grammar is a tuple G = 〈T ,F , R〉, where:

• T is a set of non-terminal symbols (constants), called here type
symbols,

• R is a set of rules of the form l → r, where l ∈ T , r =
f(T1, . . . , Tn) (f/n ∈ F , Ti ∈ T).

We use the notation t1 ⇒G t2 (or t1 ⇒ t2 if G is clear from
the context) to denote the usual derivability relation, i.e. if t2 is
obtained from t1 by replacing t (where t is a subterm of t1) by a
term r where t → r ∈ R. Let

∗
⇒ denote the transitive and reflexive

closure of ⇒.
A type symbol T defined in grammar G denotes a (regular)

set of ground terms TypeG(T) = {t ∈ Term(F , ∅) | T
∗
⇒

t}. As before, we drop the subscript G if it is clear from the
context. In order to describe sets of numbers or Prolog atoms,
we introduce base types and corresponding base type symbols,
like int, num, atm, etc., denoting respectively sets of integers, all
numbers, Prolog atoms, etc. The base types can be seen as defined
by a set of rules, fixed for a fixed signature, with constants in the
right hand sides. Moreover, we introduce the “top” type symbol >,
s.t. Type(>) = Term(F , ∅) (i.e. > denotes the set of all ground
terms) and “bottom” type symbol ⊥, s.t. Type(⊥) = ∅.

The regular type domain (e.g., (Dart and Zobel 1992)) is
equipped with standard operations that satisfy the corresponding
properties:

(inclusion v) T1 v T2 iff Type(T1) ⊆ Type(T2)
2

(intersection u) Type(T1 u T2) = Type(T1) ∩ Type(T2)

(union t) Type(T1 t T2) ⊇ Type(T1) ∪ Type(T2)

Also, we use equality between type symbols T1 = T2 as a shortcut
for Type(T1) = Type(T2). Note that type union is approximate.
This is due to the fact that we, as many other researchers, use
deterministic (or tuple distributive) types, in which if f(a, b) ∈
Type(T) and f(c, d) ∈ Type(T) then also f(a, d) ∈ Type(T) and
f(c, b) ∈ Type(T).

We use regular types as abstract domain for the analysis. An ab-
stract substitution is then a mapping from variables to types. Let
dom(λ) denote a domain of an abstract substitution λ, and let
λ|X be a projection of λ over variables X . For an abstract sub-
stitution λ = {X1/T1, . . . , Xn/Tn}, a value of the concretization
function γ is given by: γ(λ) = {{X1/t1, . . . , Xn/tn} | ti ∈
Type(Ti), 1 ≤ i ≤ n}.

4. Type Analysis with Predefined Types
As mentioned before, our type analysis is a part of the Ciao Prepro-
cessor, CiaoPP (Hermenegildo et al. 2005), and uses one of its anal-
ysis engines (Hermenegildo et al. 2000). Moreover, as an underly-
ing type inference system, we use the type analysis of (Janssens
and Bruynooghe 1992) and (Vaucheret and Bueno 2002) with var-
ious widenings (see (Mildner 1999) for a comprehensive study on
widenings in type domains). These analyses synthesize new types

2 As pointed out in (Lu 2001) this operation is incorrectly defined in (Dart
and Zobel 1992). Our system uses the correct version of v, implemented
by Pedro López Garcı́a, independently from (Lu 2001).

out of function symbols and constants present in the program. How-
ever, as a first technique in order to speed up analysis, especially in
the context of large programs, we introduce a key new feature: in
our analysis, types synthesized during analysis can be optionally
replaced by predefined types which are in the scope of the mod-
ule being analyzed. These may have been written by the user in
the module being processed, or imported from other user modules
or from a library. The predefined types chosen as replacements are
less precise or equivalent to the inferred ones, so that a safe (al-
beit potentially less precise) approximation of the semantics is still
obtained.

Let T0 denote a set of predefined type symbols, including >, ⊥,
and some more symbols. Every iteration of the analysis contains
two steps: (1) synthesizing new types T1, . . . , Tn, as explained
elsewhere (e.g., (Janssens and Bruynooghe 1992; Vaucheret and
Bueno 2002)), and (2) replacing them with dT1e, . . . , dTne where
d.e is a replacement operator which for T ′ = dT e satisfies the
following:

• it returns a predefined type, i.e., T ′ ∈ T0,

• it safely approximates T , i.e., T v T ′,

• and it is as precise as possible: 6 ∃T ′′ ∈ T0 s.t. (T ′′
@ T ′∧T v

T ′′).

Note that it is not always possible to find a unique best matching
predefined type for a given synthesized type. There may be two or
more types that are incompatible (or equivalent) and at the same
time match a given synthesized type. As a heuristics, in the case
of conflicts, we give priority to types which are defined in user
modules (over those in library modules) since they are likely to
look more familiar to the user. Also, types that are closer in the
module hierarchy (i.e., defined in the current module or a closer
module) are preferred.

In order to speed up the analysis, the v relation over T0 (let
us denote it v0) is initially precomputed (with library and builtin
types) before the analysis starts and, during the analysis of each
module, incrementally complemented with types specific to that
module. Thanks to this, checking the subtyping is efficient. Note
however, that since T0 contains arbitrary types (we make no as-
sumptions about T0 except that it always contains > and ⊥)
(T0,v0,u0,t0) cannot directly serve as an abstract domain, as the
following does not hold ∀T1,T2∈T0

Type(T1 u T2) = Type(T1) ∩
Type(T2). For example consider T0 = {list, atm,>,⊥}. The
g.l.b. of atm and list induced by v0 would give ⊥, whereas prop-
erly computed atm u list should contain the empty list. A remedy
for this is to use the standard u (like for example type intersection
of (Dart and Zobel 1992)) and apply d.e to the result, and thus to
redefine u0 so that ∀T1,T2∈T0

T1 u0 T2 = dT1 u T2e. Clearly, t0

can be directly computed by traversing the graph corresponding to
the v0 relation.

5. Using Parametric Rules and Type Assertions
In order to make any analysis which works with modular programs
realistic in practice, there must exist some degree of separate han-
dling of code fragments. I.e., for scalability reasons, it is not re-
alistic to expect that all modules related to an application should
be available to analysis. A clear example for this are library mod-
ules. For them, we would like to have analysis information read-
ily available, without the need of analyzing them over and over
again for each application which uses them. To this end, our second
technique consists in allowing developers of libraries (and modules
which can be reused) to write, besides the usual regular type def-
initions, parametric type rules. It is important to note that regular
types do not include in principle parametric type rules. Therefore,
analysis does not infer this kind of rules and checking them will

require some additional mechanism, as we propose in Section 5.3
below.

Let us introduce some notation. Let T V be a set of type vari-
ables or parameters. Now we admit also non-nullary symbols in
T . The notion of type symbol changes a bit, now it is a ground
(parameter-free) term built of symbols from T (i.e. an element
of Term(T , ∅)). Parametric type rules have the form l → r
where l ∈ Term(T , T V), r = f(T1, . . . , Tn) (f/n ∈ F , Ti ∈
Term(T , T V)), and vars(r) ⊆ vars(l).

EXAMPLE 5.1. Consider the standard definition of a list.

list(α) → []
list(α) → [α | list(α)]

In our framework parametric rules have no denotation unless
the parameters are instantiated to regular types by a parameter
substitution. Let T = t(α1, . . . , αn) (t/n ∈ T) where α1, . . . , αn

are parameters. Then, the parameter substitution Ψ is a mapping
{α1 7→ T1, . . . , αn 7→ Tn} where T1, . . . , Tn are regular type
symbols. Applying Ψ to T , written Ψ(T), means replacing any
occurrence of αi in rules defining T , by Ti. After that, the l.h.s. of
the rules become a type symbol (likewise all symbols in the r.h.s.),
and thus parametric rules becomes parameter-free grammar rules,
as presented in Section 3.2, and can be added to the type grammar.

Naturally, a parametric rule can be instantiated multiple times
with different types, and resulting in different types, e.g., list(int)
and list(atm). Note also that type list(⊥) denotes an empty list.

The process of replacing synthesized types by predefined ones
also takes parametric rules into account. During analysis, types
constructed by instantiating parametric rules are added to the set
T0 of predefined types. The new instances are created on the fly,
by generating type substitutions Ψ : T 7→ T0, such that for a
synthesized type T and a parametric type symbol Tp, the instance
of Tp can serve as a good approximation of T , i.e., Ψ(Tp) = dT e.

EXAMPLE 5.2. Assume that at some intermediate step of the anal-
ysis the following abstract substitution is generated λ = {X/T},
where Type(T) = {[a]}, i.e. T denotes a one-element list of a’s.
Assume also that the definition of list (see Example 5.1) is present
in the system. Since the constant a is described by the built-in type
atm the analyzer would generate the parameter substitution Ψ =
{α 7→ atm} and finally would replace T by dT e = Ψ(list(α)).

Obviously, an abstract domain constructed as described above
contains an infinite number of types, e.g., list(num), list(list(num)),
list(list(list(num))), . . . etc. Similarly to (Barbuti and Gia-
cobazzi 1992), we restrict the maximum depth of terms in para-
metric type symbols to an arbitrary number. Type symbols that
occur below the maximum depth are simply replaced by >. Our
experiments show that depth value 3 is seldom exceeded in many
programs and thus, in practice, no precision is usually lost in this
step.

5.1 Type assertions

Information about intended or inferred call and success patterns
is given in the form of assertions (Puebla et al. 2000). In this
paper we limit ourselves (without loss of generality) to just one
form of assertion, “pred” assertions, written (in simplified form) as
pred P : Pre ⇒ Post. P is a predicate descriptor, i.e., it has
a predicate symbol as main functor and all arguments are distinct
free variables, and Pre and Post are pre- and post-conditions re-
spectively. For our purposes it is sufficient to consider that Pre and
Post correspond to abstract substitutions (λPre and λPost resp.)
over variables of P .

The meaning of pred assertions is twofold. First, the precon-
dition Pre expresses properties which should hold in calls to P.

Second, the postcondition Post expresses properties which should
hold on termination of a successful computation of P, provided that
Pre holds on call. Types are by default understood in “instantiation”
mode (Puebla et al. 2000), i.e., => list(L) implies that at proce-
dure output L is instantiated to a list3, and => list(L,T) implies
that at procedure output L is instantiated to a list whose elements are
of type T. Note that type expressions in assertions differ from type
expressions as defined in previous sections. Their first argument is
a variable whose type is described by the expression (this first ar-
gument should not be confused with a type parameter). There can
be more than one pred assertion per predicate, each one describing
a different usage of the predicate, for example:

:- pred length(L,N) : (var(L), int(N)) => list(L).
:- pred length(L,N) : (var(N), list(L)) => int(N).

In this case the union (disjunction) of the Pre parts expresses the
properties which should hold in any call and the Post parts apply
for calls matching their respective Pre part.

Herein we are interested in call and success patterns conveying
only type information. It is possible to write a pred assertion with
parametric types like:

:- pred reverse(X,Y) : list(X,A) => list(Y,A).

This assertion tells us that the predicate reverse/2 is meant to
be invoked with the first argument bound to a list whose element
can be of any type, denoted by the type variable A. Upon success,
the procedure returns in the second argument a list whose elements
must be of type A.

5.2 Using parametric type assertions in modular analysis

Assume a scenario where assertions are written in a (library) mod-
ule and that for efficiency we do not want to analyze this module
if possible. If no assertions are present in the module for exported
predicates or if the preconditions in such assertions do not match
the calling patterns the module will simply be entered and ana-
lyzed during modular analysis, as described in Section 3 (see also
(Puebla et al. 2004; Pietrzak et al. 2006)). However, if suitable para-
metric assertions are present, assume that both precondition Pre
and postcondition Post contain parameters A and B respectively.
The assertion takes the following form: : −pred P : Pre(A) ⇒
Post(B). We require B ⊆ A. Our goal is to find, for a given
call pattern λc, a substitution Ψ of parameters A (and therefore B)
such that λc v λΨ(Pre(A)). Moreover, we are interested in finding
a Ψ that gives Ψ(Pre(A)) that is as precise as possible. In order to
achieve this we use the matching operation of (Drabent et al. 2002).
Matching resembles checking of type inclusion (see (Dart and Zo-
bel 1992; Lu 2001)). We match a parameterless type T1 against a
(possibly parametric) type T2, and denote this operation T1

.

v T2.
Matching finds a (possibly small) parameter substitution Ψ so that
T1 v Ψ(T2), or fails if such a substitution does not exist. The
whole procedure starts with empty Ψ. Then matching, similarly to
inclusion checking, traverses the type rules and involved terms re-
cursively, and compares the corresponding structures. If at some
point matching is about to compare a type parameter α and a type
symbol, say T , then α 7→ T is added to Ψ. It might however hap-
pen that another binding α 7→ T ′ is already present in Ψ. In this
case, α 7→ T ′ is replaced by α 7→ T ′ t T .

EXAMPLE 5.3. Assume the following assertion describing a use of
append/3:

:- pred append(X,Y,Z): (list(X,A), list(Y,A))
=> list(Z,A).

3 Alternatively we can consider “compatibility” mode, meaning that what-
ever L is instantiated to is compatible with being a list (this includes for
example [], [X|Y], or simply a variable).

If the analyzer finds a call to append(X1, X2, X3) with an
abstract substitution {X1/list(int), X2/list(int), X3/term}
matching will generate the parameter substitution {A 7→
int}. If however the call pattern has an abstract substitution
{X1/list(int), X2/list(atm), X3/term} then the parameter
substitution computed by matching would be {A 7→ int t atm}.

Note that parameter handling is substantially different in typed
logic programming (e.g., (Mycroft and O’Keefe 1984; Hill and
Lloyd 1994)), where type inference involves type unification that
tries to bind a type parameter to a single type and fails if any sub-
sequent binding is incompatible with the previous one. Obviously,
if T2 has no parameters in T1

.

v T2, matching reduces to inclusion
checking.

Note that without admitting parameters, in order to avoid re-
analysis of the library using our proposed rules, the library devel-
oper would have to write a specific assertion for each possible type
of list elements, which obviously is not feasible. Similarly, stan-
dard modular analysis would also save triples for each type of list
elements that occurs every time that analysis enters the library. An-
other remedy is to write the most general assertion:
:- pred reverse(X,Y): list(X,term) => list(Y,term).

but in this case we unnecessarily lose precision.

5.3 Parametric type assertions in verification and debugging

As mentioned above, proving an assertion with parameters, like the
one of Example 5.3, cannot be directly done by using the results
of analysis. E.g., consider the assertion : −pred P : Pre(A) ⇒
Post(B) (1) (where, as before, we assume that B ⊆ A). Es-
sentially, proving (1) means that we want to show: ∀Ψ(λc v
λΨ(Pre(A)) ⇒ λs v λΨ(Post(B))) (2) where λc and λs are, re-
spectively, the call and success patterns computed by abstract inter-
pretation. We propose a proving method which resembles the well-
known skolemization technique. For every parameter αi we intro-
duce a dummy type ci, such that ∀T ∈ T : T 6= > ⇒ ciuT = ⊥
and ∀T ∈ T : T 6= ⊥ ⇒ ci t T = >. The intuition is that
Type(ci) is disjoint from any terms in the program and initial goal.
Let Ψc be a parameter substitution {α1 7→ c1, . . . , αk 7→ ck}.

PROPOSITION 5.4. Consider assertion (1). If abstract interpreta-
tion for a top goal P with the initial call pattern λΨc(Pre(A)) com-
putes a success pattern λc = λΨc(Post(B)) then (2) holds.
Proof (outline): Inductively, for every abstract operation we show
that if the operation preserves a dummy type ci, it will preserve an
arbitrary type. Consider a conjunction of two abstract substitutions
λ1 ∧ λ2 = λ. Assume that a dummy type c occurs in λ1, i.e., for
some variable X ∈ dom(λ1) we have λ1|X = {X/c}. If c propa-
gates to the result of the conjunction, meaning that λ|X = {X/c},
then either X 6∈ dom(λ2), or λ2|X = {X/c}, or λ2|X = {X/>}
(as otherwise we would have λ|X = {X/⊥}). It is clear that in
either case any other type would propagate the same way as c. A
similar reasoning can be performed for disjunction and projection.
2

The intuition behind Proposition 5.4 is that if a dummy type can
be passed through the entire analysis process, meaning that it has
not been “touched” by any abstract operation, we can conclude that
any other type would be passed the same way.

6. Example
In this section we illustrate with a simple example our type analysis
and its application to program verification. Our example consists of
three modules. We start by describing the top-level module of the
application, called main, whose code is shown below:

:- module(main,[p/2],[assertions,regtypes,functional]).

:- use_module(qs,[qsort/2]).

:- pred p(X,Y): list(X,num) => dlist(Y). % #1
p(X,Y) :- dlist(X), qsort(X,Y).

:- regtype dlist/1. dlist := [] | [~digit|dlist].

:- regtype digit/1. digit := 0|1|2|3|4|5|6|7|8|9.

In this code, the first line of the program contains the module dec-
laration (in Ciao (Bueno et al. 2006)), which defines the module
name and the list of exported predicates, as well as declaring that
several packages should be used (e.g., for assertion processing).
Next, the use module declaration informs the compiler and ana-
lyzer that this module imports procedure qsort/2 from module qs.
The main module contains two definitions of regular types: dlist
and digit. These definitions are in fact also ordinary Prolog pro-
cedures written using Ciao’s functional syntax (Casas et al. 2006),
and therefore besides their use in the post-condition of assertion
#1 they can also be used as regular (test) procedures, as is actually
done in the clause defining p/2.

We now present the module qs, which implements quicksort,
and whose code is shown below:

:- module(qs, [qsort/2], [assertions]).
:- use_module(library(lists),[append/3]).

:- pred qsort(X,Y) : list(X,A) => list(Y,A).% #2
qsort([X|L],R) :-

partition(L,X,L1,L2),
qsort(L1,R1),
qsort(L2,R2),
append(R1,[X|R2],R).

qsort([],[]).

partition([],_B,[],[]).
partition([E|R],C,[E|Left1],Right):-

E @< C, !,
partition(R,C,Left1,Right).

partition([E|R],C,Left,[E|Right1]):-
E @>= C,
partition(R,C,Left,Right1).

An interesting feature of this implementation of quicksort is that
the qsort/2 procedure is not restricted to lists of numbers and can
in fact accept lists of any kind of elements due to the use of @< and
@>= in the comparisons. In this case, the developer of the module
has opted to include a pred parametric assertion, marked in the
code as #2. This assertion states that on call, the first argument of
the qsort/2 procedure is meant to be a list of elements of any type
A, whereas upon success, the second argument should be bound
to a list of type A. As can be observed, qs imports the standard
append/3 predicate, for list concatenation, from the lists library.
Therefore, the third and final module in our example is the lists
library. For our purposes, there is no need to show its code here.

Assume now that we want to prove assertion #1 by analyz-
ing statically module main. If we apply the inter-modular static
analysis in (Puebla et al. 2004) using standard regular types, we
can prove such assertion since analysis obtains the type dlist (or
equivalently list(digit)) for the second argument of p/2. How-
ever, and as already argued, in practice this approach is often too
costly (both time- and memory-wise) (Correas et al. 2006) since
analysis iterates over all modules, including libraries, analyzing for
different call patterns until a global fixed point is reached.

We now show on this example how our proposal preserves the
required accuracy in order to perform the verification task at hand,
i.e., proving assertion #1, while simplifying the analysis process.
A first step in our approach is, as described in Section 5, to avoid
analyzing libraries, which in general is desirable except in initial

Bench Mod Cls Orig Optim SU
ann 3 227 9711 7738 1.25
bid 8 69 7399 3392 2.18
boyer 4 145 1789 1905 0.94
manag proj 8 907 289564 30962 9.35
check links 6 576 41862 32392 1.29
grades 4 168 19392 9255 2.09
grade listing 10 1553 86410 17427 4.96

Wgt. Arith. mean 117194 21297 5.50
Wgt. Geom. mean 69387 18178 3.82

Table 1. Intermodular analysis from scratch, using an underap-
proximating success policy (SP−) and a top-down scheduling pol-
icy.

phases of library development, verification, and testing. For this,
the following assertion is present in the lists library:

:- checked pred append(X,Y,Z):(list(X,A),list(Y,A))
=> list(Z,A). % #3

Which states that, as expected, the result of concatenating (append-
ing) two lists of a given type A results in a list of exactly such type
A. The checked flag (Puebla et al. 2000) in front of the assertion
indicates that the assertion has been automatically proved to hold
using the method described in Proposition 5.4.

Next, assume that we restrict ourselves to defined types (using
the d.e operation) as described in Section 4. With this assumption,
when we analyze the procedure qsort/2 for the call pattern in-
duced by the main module, we get the type list(digit) in its
first argument. Since we know that the main module belongs to the
set of modules being analyzed, we consider the types defined in
main as defined types, and therefore no accuracy is lost due to the
use of defined types. Next, analysis will reach the call to append/3.
By using assertion #3, the analyzer can deduce, without reanalyz-
ing append, that upon success of append(R1,[X|R2],R) in the
first clause of qsort/2, R will be bound to list(digit). This
type is propagated through the success of qsort/2 to the calling
module main, consequently allowing the system to prove assertion
#1. Note that if we would like module qs to be reusable in any
context without reanalyzing qs over and over again for different
calling patterns, our approach allows introducing parametric asser-
tions, such as assertion #2. Then, Proposition 5.4 can again be used
to prove this parametric assertion once and for all.

7. Experimental evaluation
In order to evaluate the practical impact of our proposal, we have
performed some preliminary benchmarking of modular analysis, in
the context of inferring regular types, both with and without our
proposed optimizations.

The analysis framework implemented in CiaoPP and used for
this paper can be configured selecting specific values for several
parameters of the framework. The main parameters that can be se-
lected when performing intermodular analysis are the scheduling
policy and the success policy (see (Puebla et al. 2004) for more in-
formation on those and other parameters.) The scheduling policy al-
lows the user to select how the framework decides at each iteration
which module must be the next one selected for analysis during the
intermodular fixed point computation. Two main approaches have
been implemented: a top-down policy, traversing the intermodular
dependency graph and selecting first the module requiring analysis
which is higher in the graph (the top-level module is the top of the
graph). The bottom-up policy takes first the deepest module in the
intermodular dependency graph which requires analysis. When a
program is analyzed from scratch, the first module analyzed is al-
ways the top-level one. The success policy, as already mentioned,

selects how temporary results for calls to imported predicates are
approximated when the exact success pattern is not available in the
Global Answer Table. During the experiments, the parameters for
both policies have been set to the most advantageous setting for the
original type analysis, namely top-down and SP−, respectively, in
order to highlight the speedup obtained with just defined types.

The benchmark programs used are modular programs of medium
size, ranging from three to ten modules, and from 69 to 1553
clauses. The number of modules and clauses for each program is
detailed in Table 1. A brief description of the selected benchmarks
follows. ann is the &-Prolog implementation of the MEL automatic
parallelizer (by K. Muthukumar, F. Bueno, M. Garcı́a de la Banda,
and M. Hermenegildo) (Muthukumar and Hermenegildo 1990).
bid computes an opening bid for a bridge hand (by J. Conery).
The boyer benchmark is a reduced version of the Boyer/Moore
theorem prover (by E. Tick). The program has been separated
in four modules with a cycle between two modules. manag-
ing project is a program developed by the authors for EU project
management. check links is an sample program for the Pillow
HTML/XML/HTTP connectivity package (by D. Cabeza and M.
Hermenegildo) that checks that links contained in a given URL
address are reachable. Note that the whole Pillow package is ana-
lyzed together with the sample program. And finally, grades and
grade listing are programs used by the authors for grading stu-
dents, and are composed of 4 and 10 modules, respectively. The
experiments have been run on a Dell PowerEdge 4600 with two
Pentium processors at 2 Ghz and 4 Gb of memory, and normal
workload. Analysis time in the experiments corresponds to the
time spent (in milliseconds) analyzing code. Tasks related to pro-
gram loading and unloading, and saving analysis results to disk are
not part of the optimizations described in this paper and have been
excluded from the tables.

The first experiment involves analyzing from scratch the bench-
mark programs using the intermodular analysis algorithm. The re-
sults are shown in Table 1. Column Mod contains the number of
modules that compose each benchmark, while column Cls includes
the number of clauses. Column Orig is the time spent by the orig-
inal regular type analysis, and column Optim is the time spent by
the analysis with the optimizations described in this paper. Finally,
column SU (speedup) shows the improvement brought by the op-
timized version over the traditional type analysis. In this case the
improvement is considerable, supporting our thesis that the opti-
mizations proposed are specially appropriate for modular analysis.
The last two lines of tables 1 and 2 show the arithmetic and geo-
metric means of the results obtained for each column, weighted by
the number of clauses in each program. On average, our proposed
optimizations speed up intermodular analysis by a factor of 3.82-
5.5. One case in which our approach actually brings a slow-down is
boyer. In this case around one third of the time is spent in a single
module (equal.pl, 640 ms out of 1905 ms), which contains a few
tables with a relatively large set of facts each and which have com-
plex data structures as arguments. Types are inferred for all those
facts and then lubbed in order to use defined types only, which in
this case is more costly than simply creating new types.

Table 2 shows how the optimizations proposed improve the
analysis results when benchmark programs are reanalyzed in an
incremental way, after several specific modifications are made to
the source code. For evaluating this, it is important to make experi-
ments which are representative of the kind of changes which occur
in real-life. We have followed here the approach used in (Correas
et al. 2006), were three different kinds of source code modifications
have been studied. For the three classes of changes, one module is
modified each time and then the program is reanalyzed, in order
to incrementally recompute the analysis results visiting only the
modules that require reanalysis: the changed module, plus possibly

module touch more general clause recursion removal
Bench Orig Optim SU Orig Optim SU Orig Optim SU
ann 1798 1134 1.59 6026 3204 1.88 3335 1585 2.10
bid 620 206 3.01 2035 574 3.54 1068 297 3.60
boyer 222 559 0.40 331 625 0.53 401 595 0.67
manag proj 15134 15077 1.00 41664 14668 2.84 53383 1419 37.62
check links 7439 6449 1.15 18232 9958 1.83 10353 6964 1.49
grades 3385 734 4.61 5432 1196 4.54 4186 933 4.49
grade listing 4119 4557 0.90 36458 7173 5.08 16707 7353 2.27

Wgt. Arith. mean 6985 6843 1.02 29459 8570 3.44 22475 4757 4.72
Wgt. Geom. mean 5054 4741 1.07 21724 6838 3.18 14364 3406 4.22

Table 2. Reanalysis after several kinds of changes, using an underapproximating success policy (SP −) and a bottom-up scheduling policy
(in the case of recursion removal, SP + and top-down scheduling have been used.)

other modules transitively affected by this change. The numbers
shown in Table 2 are the average of the times taken by the reanal-
ysis of the program when each of the modules in the benchmark
programs is modified.

In the first kind of change, a simple modification is made in a
single module in such a way that this modification does not change
the results of analysis for that module (named module touch in
that table). This has been implemented by “touching” the module,
i.e., changing the modification time without actually modifying its
contents, in order to force CiaoPP to reanalyze it. It can be observed
that the optimizations introduced do not provide much speedup.
The main reason for this behavior is that only the modified module
is visited by the modular analysis. This means that the reduction in
the number of intermodular iterations and number of types used
is not relevant in this case. Also, a single module in a modular
program is typically a rather small piece of code, which may not
be large enough to take advantage of the use of just defined types.

The second kind of modification shown in Table 2 is a modifi-
cation in the source code such that after the change exported pred-
icates produce more general analysis results (named more general
clause in Table 2). It is implemented by adding a most general fact
to all exported predicates of a given module. This kind of change is
an extreme situation in which all exported predicates are affected.
This modification in general requires that not only the modified
module be reanalyzed, but also some other related modules, since
the analysis results for the modified module are different, and very
likely affect the modules which import the modified one. It is en-
couraging to observe that the optimizations introduced by our ap-
proach appear to be specially relevant in this case, since due to
them the process of reanalyzing the program is sped up by a factor
of more than three.

The third case corresponds to a source code modification in
which exported predicates produce a more precise answer pattern
(named recursion removal in Table 2). In this case all the clauses
of the exported predicates of a given module have been replaced by
the first non-recursive clause of the predicate. As in the previous
case, this is an extreme case in which all exported predicates are
affected, except that now a more particular answer is obtained for
them instead of a more general one. Again, the reanalysis of the
program after the change generally requires analyzing other mod-
ules besides the modified one. As shown in the table the modular
analysis is very competitive when using our proposed approach,
bringing significant speedup also in this case, by a factor of more
than four.

Finally, the third experiment, shown in Table 3, presents the
time spent when analyzing the programs in a non-modular way,
i.e., as if all the program code were located in a single module (we
refer to this as the “monolithic analysis”). The results suggest that
although the optimizations presented in this paper aim at improv-
ing modular analysis, they are also useful in the case of large non-

Bench Orig Optim SU
ann 1291 1605 0.80
bid 1972 731 2.70
boyer 973 935 1.04
manag proj 37177 28849 1.29
check links 10266 7158 1.43
grades 5653 2348 2.41
grade listing 60552 16052 3.77

Table 3. Time spent by the monolithic analysis of different bench-
mark programs.

modular programs, since the analysis speed improves for most of
the benchmarks. However, as can be seen for ann, there may be
cases where the original analysis is somewhat faster. This can be
explained by the fact that though using the d.e operation results in
analyzing fewer call patterns, the replacement operation also intro-
duces some overhead. The results also show that modular analysis
times remain, as expected, somewhat higher than when analyzing
in a monolithic way, but are reasonable in comparison, and the com-
parison with the analysis times for reanalysis after partial changes
are quite encouraging, since they often improve on the monolithic
analysis times, notably for some of the programs with larger execu-
tion times. Note also that of course modular analysis is vital when
programs cannot be analyzed monolithically due to, e.g., memory
limitations.

8. Conclusions
We have proposed a combination of techniques aimed at improving
analysis efficiency in type inference and verification for modular
Prolog programs. In particular, we have presented a type analy-
sis which optionally reduces the accuracy of inferred types during
the analysis process by using only the types defined by the user or
present in the libraries. Also, borrowing some ideas from polymor-
phic type systems, we have proposed a method that allows using
polymorphic type rules for specifying library module boundaries,
and we have proposed a novel method in order to use such type
rules in the context of a regular type-based analysis system. Finally,
we have also implemented our approach and reported experimental
results from the analysis of a number of modular programs.

Our experimental results suggest that the optimizations pre-
sented do contribute significantly to increasing analysis efficiency
both for the monolithic case and, even more, for the case of an-
alyzing programs module by module. This holds both when ana-
lyzing programs from scratch as well when doing it incrementally
after changes to a single module. Modular analysis times remain,
as expected, somewhat higher than analyzing them in a monolithic
way, but are reasonable, and the results from reanalysis after partial
changes are quite encouraging, improving sometimes on the mono-
lithic analysis times. Another advantage of the proposed approach

is that the output of analysis is more readable, since it is presented
to the user in terms of known types, rather than in terms of new,
inferred ones, which are typically more detailed and have automat-
ically generated names, and which can sometimes be difficult to
interpret. Furthermore, the precision obtained appears to be suffi-
cient for the purpose of verifying type signatures given in the form
of assertions, as the inferred types are exactly those which occur in
the assertions.

In summary, we argue that our proposal is of practical relevance,
since it allows reducing analysis cost significantly while preserving
a useful level of accuracy.

Acknowledgments
This work was funded in part by the Information Society Tech-
nologies programme of the European Commission, Future and
Emerging Technologies under project FP6 IST-15905 MOBIUS,
the Spanish Ministry of Science and Education under projects
TIN2005-09207-C03-01 and 03 MERIT-COMVERS and MERIT-
FORMS. M. Hermenegildo is also supported in part by the Prince
of Asturias Chair in Information Science and Technology at the
University of New Mexico. P. Pietrzak is supported by a “Juan de
la Cierva” grant provided by the Spanish MEC.

References
R. Barbuti and R. Giacobazzi. A bottom-up polymorphic type inference in

logic programming. Science of Computer Programming, 19(3):281–313,
1992.

M. Bruynooghe. A Practical Framework for the Abstract Interpretation of
Logic Programs. Journal of Logic Programming, 10:91–124, 1991.

F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-Garcı́a,
and G. Puebla (Eds.). The Ciao System. Ref. Manual (v1.13).
Technical report, C. S. School (UPM), 2006. Available at
http://www.ciaohome.org.

A. Casas, D. Cabeza, and M. Hermenegildo. A Syntactic Approach to
Combining Functional Notation, Lazy Evaluation and Higher-Order in
LP Systems. In The 8th International Symposium on Functional and
Logic Programming (FLOPS’06), Fuji Susono (Japan), April 2006.

M. Codish and V. Lagoon. Type Dependencies for Logic Programs using
ACI-unification. Journal of Theoretical Computer Science, 238:131–
159, 2000.

J. Correas, G. Puebla, M. Hermenegildo, and F. Bueno. Experiments in
Context-Sensitive Analysis of Modular Programs. In 15th Interna-
tional Symposium on Logic-based Program Synthesis and Transforma-
tion (LOPSTR’05), number 3901 in LNCS, pages 163–178. Springer-
Verlag, April 2006.

P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model
for Static Analysis of Programs by Construction or Approximation of
Fixpoints. In Proc. of POPL’77, pages 238–252, 1977.

P. Cousot and R. Cousot. Formal language, grammar and set-constraint-
based program analysis by abstract interpretation. In Proceedings of the
Seventh ACM Conference on Functional Programming Languages and
Computer Architecture, pages 170–181, La Jolla, California, 1995. ACM
Press, New York, NY.

P.W. Dart and J. Zobel. A Regular Type Language for Logic Programs. In
Types in Logic Programming, pages 157–187. MIT Press, 1992.

M. Garcı́a de la Banda, M. Hermenegildo, M. Bruynooghe, V. Dumortier,
G. Janssens, and W. Simoens. Global Analysis of Constraint Logic
Programs. ACM Transactions on Programming Languages and Systems,
18(5):564–615, September 1996.

W. Drabent, J. Małuszyński, and P. Pietrzak. Using parametric set con-
straints for locating errors in CLP programs. Theory and Practice of
Logic Programming, 2(4–5):549–611, 2002.

J. Gallagher and K. Henriksen. Abstract domains based on regular types. In
B. Demoen and V. Lifschitz, editors, ICLP 2004, Proceedings, volume

3132 of LNCS, pages 27–42. Springer-Verlag, 2004. ISBN 3-540-22671-
0.

J. Gallagher and G. Puebla. Abstract Interpretation over Non-Deterministic
Finite Tree Automata for Set-Based Analysis of Logic Programs. In
Fourth International Symposium on Practical Aspects of Declarative
Languages, number 2257 in LNCS, pages 243–261. Springer-Verlag,
January 2002.

J.P. Gallagher and D.A. de Waal. Fast and precise regular approximations
of logic programs. In Pascal Van Hentenryck, editor, Proc. of the 11th
International Conference on Logic Programming, pages 599–613. MIT
Press, 1994.

N. Heintze and J. Jaffar. A finite presentation theorem for approximating
logic programs. In Proc. 17th POPL, pages 197–209, 1990.

N. Heintze and J. Jaffar. Semantic types for logic programs. In Pfenning
(1992), pages 141–155.

M. Hermenegildo, G. Puebla, F. Bueno, and P. López Garcı́a. Integrated
Program Debugging, Verification, and Optimization Using Abstract In-
terpretation (and The Ciao System Preprocessor). Science of Computer
Programming, 58(1–2):115–140, October 2005.

M. Hermenegildo, G. Puebla, K. Marriott, and P. Stuckey. Incremental
Analysis of Constraint Logic Programs. ACM Transactions on Program-
ming Languages and Systems, 22(2):187–223, March 2000.

P.M. Hill and J.W. Lloyd. The Gödel Programming Language. Logic
Programming Series. MIT Pres, 1994.

G. Janssens and M. Bruynooghe. Deriving Descriptions of Possible Values
of Program Variables by means of Abstract Interpretation. Journal of
Logic Programming, 13(2 and 3):205–258, July 1992.

J.W. Lloyd. Foundations of Logic Programming. Springer, 2nd Ext. Ed.,
1987.

L. Lu. Type Analysis of Logic Programs in the Presence of
Type Definitions. In Proceedings of the 1995 ACM SIGPLAN
Symposium on Partial Evaluation and Semantics-Based program
manipulation, pages 241–252. The ACM Press, 1995. URL
http://www.oakland.edu/ l2lu/pubs/DetType.ps.

L. Lu. Polymorphic Type Analysis of Logic Programs by Abstract In-
terpretation. Journal of Logic Programming, 36(1):1–54, 1998. URL
http://www.oakland.edu/ l2lu/pubs/PolyType.ps.

L. Lu. On Dart-Zobel Algorithm for Testing Regular Type
Inclusion. SIGPLAN NOTICES, 36(9):81–85, 2001. URL
http://www.oakland.edu/ L2LU/pubs/DartZobel.ps.

P. Mildner. Type Domains for Abstract Interpretation: A Critical Study. PhD
thesis, Computing Science Department - Uppsala University, Uppsala,
1999.

P. Mishra. Towards a theory of types in prolog. In International Symposium
on Logic Programming, pages 289–298, Silver Spring, MD, February
1984. Atlantic City, IEEE Computer Society.

K. Muthukumar and M. Hermenegildo. The CDG, UDG, and MEL Meth-
ods for Automatic Compile-time Parallelization of Logic Programs for
Independent And-parallelism. In Int’l. Conference on Logic Program-
ming, pages 221–237. MIT Press, June 1990.

K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Vari-
able Dependency Using Abstract Interpretation. Journal of Logic Pro-
gramming, 13(2/3):315–347, July 1992.

A. Mycroft and R.A. O’Keefe. A Polymorphic Type System for Prolog.
Artificial Intelligence, 23:295–307, 1984.

F. Pfenning, editor. Types in Logic Programming. MIT Press, 1992.

Benjamin C. Pierce. Types and Programming Languages. MIT Press,
February 2002.

P. Pietrzak, J. Correas, G. Puebla, and M. Hermenegildo. Context-Sensitive
Multivariant Assertion Checking in Modular Programs. In 13th Interna-
tional Conference on Logic for Programming Artificial Intelligence and
Reasoning (LPAR’06), number 4246 in LNCS, pages 392–406. Springer-
Verlag, November 2006.

G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for
Constraint Logic Programs. In Analysis and Visualization Tools for
Constraint Programming, pages 23–61. Springer LNCS 1870, 2000.

G. Puebla, J. Correas, M. Hermenegildo, F. Bueno, M. Garcı́a de la Banda,
K. Marriott, and P. J. Stuckey. A Generic Framework for Context-
Sensitive Analysis of Modular Programs. In M. Bruynooghe and K. Lau,
editors, Program Development in Computational Logic, A Decade of Re-
search Advances in Logic-Based Program Development, number 3049 in
LNCS, pages 234–261. Springer-Verlag, Heidelberg, Germany, August
2004. ISBN 3-540-22152-2.

H. Saglam and J. Gallagher. Approximating constraint logic programs using
polymorphic types and regular descriptions. Technical Report CSTR-95-
17, Department of Computer Science, University of Bristol, Bristol BS8
1TR, 1995.

Z. Somogyi, F. Henderson, and T. Conway. The Execution Algorithm of
Mercury: an Efficient Purely Declarative Logic Programming Language.
JLP, 29(1–3), October 1996.

P. Van Hentenryck, A. Cortesi, and B. Le Charlier. Type analysis of prolog
using type graphs. Journal of Logic Programming, 22(3):179–209, 1995.

P. Van Hentenryck, O. Degimbe, B. Le Charlier, and L. Michael. The
Impact of Granularity in Abstract Interpretation of Prolog. In Workshop
on Static Analysis, number 724 in LNCS, pages 1–14. Springer-Verlag,
September 1993.

C. Vaucheret and F. Bueno. More Precise yet Efficient Type Inference for
Logic Programs. In International Static Analysis Symposium, number
2477 in LNCS, pages 102–116. Springer-Verlag, September 2002.

E. Yardeni and E.Y. Shapiro. A type system for logic programs. Journal of
Logic Programming, 10(2):125–154, 1990.

