
Modular Decompilation of Low-Level Code by Partial Evaluation

Miguel Gómez-Zamalloa
DSIC, Complutense University of Madrid

Elvira Albert
DSIC, Complutense University of Madrid

Gerḿan Puebla
CLIP, Technical University of Madrid

Abstract

Decompiling low-level code to a high-level intermedi-
ate representation facilitates the development of analyzers,
model checkers, etc. which reason about properties of the
low-level code (e.g., bytecode, .NET). Interpretive decom-
pilation consists in partially evaluating an interpreter for
the low-level language (written in the high-level language)
w.r.t. the code to be decompiled. There have been proofs-of-
concept that interpretive decompilation is feasible, but there
remain important open issues when it comes to decompile
a real language: does the approach scale up? is the qual-
ity of decompiled programs comparable to that obtained by
ad-hoc decompilers? do decompiled programs preserve the
structure of the original programs? This paper addresses
these issues by presenting, to the best of our knowledge, the
first modular scheme to enable interpretive decompilation
of low-level code to a high-level representation, namely, we
decompile bytecode into Prolog. We introduce two notions
of optimality. The first one requires that each method/block
is decompiled just once. The second one requires that each
program point is traversed at most once during decompila-
tion. We demonstrate the impact of our modular approach
and optimality issues on a series of realistic benchmarks.
Decompilation times and decompiled program sizes are lin-
ear with the size of the input bytecode program. This de-
mostrates empirically the scalability of modular decompi-
lation of low-level code by partial evaluation.

1 Introduction

Decompilation of low-level code (e.g., bytecode) to an
intermediate representation has become a usual practice
nowadays within the development of analyzers, verifiers,
model checkers, etc. For instance, in the context ofmo-
bile code, as the source code is not available, decompilation
facilitates the reuse of existing analysis and model check-
ing tools. In general, high-level intermediate representa-
tions allow abstracting away the particular language fea-
tures and developing the tools on simpler representations.
As a representative example, Java bytecode is decompiled
to a rule-based representation in [2], to clause-based pro-
grams in [23], to a three-address code view of bytecodes in
Soot [26] and to the typed procedural language BoogiePL in
[7]. Also, PIC programs are transformed to logic programs

in [13]. Rule-based representations used in declarative pro-
gramming in general—and in Prolog in particular—provide
a convenient formalism to define such intermediate repre-
sentations. E.g., as it can be seen in [2, 23, 26, 13], the
operand stack used in a low-level language can be repre-
sented by means of explicit logic variables and that its un-
structured control flow can be transformed into recursion.
As further examples of the use of declarative programming,
Java programs are transformed prior to be analyzed to term
rewriting systems in [11] and C++ programs to logic pro-
grams in [22].

All above cited approaches (except [13]) developad-
hocdecompilers to carry out the particular decompilations.
An appealing alternative to the development of dedicated
decompilers is the so-calledinterpretivedecompilation by
partial evaluation(PE) [14]. PE is an automatic program
transformation technique which specializes a program w.r.t.
part of its known input data. Interpretive compilation was
proposed in Futamura’s seminal work [8], whereby com-
pilation of a programP written in a (source) program-
ming languageLS into another (object) programming lan-
guageLO is achieved by specializing an interpreter for
LS written in LO w.r.t. P . The advantages of interpretive
(de-)compilation w.r.t. dedicated (de-)compilers are well-
known and discussed in the PE literature (see, e.g., [4]).
Very briefly, they include:flexibility, it is easier to modify
the interpreter in order to tune the decompilation (e.g., ob-
serve new properties of interest);easier to trust, it is more
difficult to prove that ad-hoc decompilers preserve the pro-
gram semantics;easier to maintain, new changes in the lan-
guage semantics can be easily reflected in the interpreter.

There have been several proofs-of-concept of interpre-
tative (de-)compilation (e.g., [4, 13, 17]), but there remain
interesting open issues when it comes to assess its power
and/or limitations to decompile a real language:(a) does the
approach scale? (b) do (de-)compiled programs preserve
the structure of the original ones? (c) is the “quality” of
decompiled programs comparable to that obtained by ded-
icated decompilers? This paper answers these questions
positively by proposing a modular decompilation scheme
which can be steered to control the structure of decompiled
code and ensure quality decompilations which preserve the

1

original program’s structure. Our main contributions are
summarized as follows:

1. We present the problems ofnon-modulardecompila-
tion and identify the components needed to enable a
modular scheme. This includes how to write an inter-
preter and how to control anonlinepartial evaluator in
order to preserve the structure of the original program
w.r.t. method invocations.

2. We present a modular decompilation scheme which is
correct and complete for the proposed big-step inter-
preter. Themodular-optimalityof the scheme allows
addressing issue(a) by avoiding decompiling the same
method more than once, and(b) by ensuring that the
structure of the original program can be preserved.

3. We introduce an interpretive decompilation scheme for
low-level languages which answers issue(c) by pro-
ducing decompiled programs whosequality is similar
to that of dedicated decompilers. This requires ablock-
leveldecompilation scheme which avoids code dupli-
cation and code re-evaluation.

4. We report on a prototype implementation which incor-
porates the above techniques and demonstrate it on an
set of realistic Java bytecode programs.

For the sake of concreteness, our decompilation scheme
is formalized in the context of logic programming but the
techniques to enable modularity can also be applied to com-
pilation for any instantiation of languages (not necessarily
low-level languages).

2 Basics of Partial Deduction
We assume familiarity with basic notions of logic pro-

gramming [20]. Executing a programP for a call A con-
sists in building anSLD treefor P∪{A} and then extracting
thecomputed answersfrom every non-failing branch of the
tree. PE in logic programming (see e.g. [9]) builds upon the
SLD trees mentioned above. We now introduce a generic
functionPE, which is parametric w.r.t. theunfolding rule,
unfold, and theabstraction operator, abstract and captures
the essence of most algorithms for PE of logic programs:

1: function PE (P,A, S0)
2: repeat
3: T pe := unfold(Si, P,A);
4: Si+1 := abstract(Si, leaves(T pe),A);
5: i := i + 1;
6: until Si = Si−1 % (modulo renaming)
7: return codegen(T pe, unfold);

Function PE differs from standard ones in the use of the
set of annotationsA, whose role is described below. PE
starts from a programP , a (possibly empty) set of annota-
tionsA and an initial set of callsS0. At each iteration, the
so-calledlocal control is performed by the unfolding rule

unfold (Line 3), which takes the current set of termsSi,
the program and the annotations and constructs apartial
SLD tree for each call inSi. Trees are partial in the sense
that, in order to guarantee termination of the unfolding pro-
cess, it must be possible to choosenot to further unfold a
goal, and rather allow leaves in the tree with a non-empty,
possibly non-failing, goal (these goals appear in the figure
within a frame). Let us consider the PE of programrev
(first two rules at the top left of Fig. 1) w.r.t. the initial set
S = {rev([1, 2|Xs], [], Zs)} andA = ∅. We show in the
figure the three partial SLD-trees computed byunfold dur-
ing the PE process. The particularunfold operator deter-
mines which call to select from each goal and when to stop
unfolding. For the SLD-trees shown in the figure, the un-
folding rule stops the derivation when the selected callem-
beds[16] a previous call, i.e., it is syntactically larger than
a previous call and thus threatens termination. In the top
right tree, the call in the framerev(Xs′, [X′, 2, 1], Zs) em-
beds the previous callrev(Xs, [2, 1], Zs), hence the deriva-
tion is stopped.

The partial evaluator may have to build several SLD-
trees to ensure that all calls left in the leaves (named
leaves(T pe) in L4) are “covered” by the root of some
tree. This is known as theclosednesscondition of PE
[21]. E.g., after having built the first SLD-tree for the
call rev([1, 2|Xs], [], Zs), the callrev(Xs′, [X′, 2, 1], Zs) is
not covered byrev([1, 2|Xs], [], Zs) because it is not an
instance of it. In theglobal control, those calls in the
leaves which are not covered are added to the new set of
terms to be partially evaluated, by the operatorabstract

(L4). At the next iteration, an SLD-tree is built for such
call, shown at the bottom left tree. Thus, basically, the al-
gorithm iteratively (L2-6) constructs partial SLD trees un-
til all their leaves are covered by the root nodes. An es-
sential point of the operatorabstract is that it has to per-
form “generalizations” on the calls that have to be par-
tially evaluated in order to avoid computing partial SLD
trees for an infinite number of calls. E.g., the framed calls
rev(Xs, [X′, X′′, 2, 1], Zs) andrev(Xs, [X, 2, 1], Zs) are gen-
eralized, resulting inrev(Xs, [A, B, C|D], Zs). Usually, the
generalized call is added to the setSi+1 and the instances
(i.e., rev(Xs, [X, 2, 1], Zs)) removed. At the next itera-
tion, an SLD tree is built for the generalized term (bot-
tom right). Without such generalization, the algorithm
would keep on adding callsrev(Xs, [X, X′, X′′, 2, 1], Zs),
rev(Xs, [X, X′, X′′, X′′′, 2, 1], Zs),. . . infinitely.

A partial evaluation ofP w.r.t. S is then systematically
extracted from the resulting set of callsT pe in the final
phase,codegen in L7. The notion ofresultant is used
to generate a program rule associated to each root-to-leaf
derivation of the SLD-trees for the final set of termsT pe.
Given an SLD derivation ofP ∪ {A} with A ∈ T pe end-
ing in B and θ be the composition of the mgu’s in the

2

rev([],L,L). // ORIG PROGRAM

rev([X|Xs],Ys,Zs):-rev(Xs,[X|Ys],Zs).

rev([1,2],[],[2,1]). // SPEC PROGRAM

rev([1,2,A|B],[],C) :- rev 1(B,[A,2,1],C).
rev 1([],[A,B,C|D],[A,B,C|D]).
rev 1([A|B],[C,D,E|F],G) :-

rev 1(B,[A,C,D,E|F],G).

rev([1, 2|Xs], [], Zs)

²²

rev([2|Xs], [1], Zs)

²²

rev(Xs, [2, 1], Zs)

{Xs 7→[],Zs 7→[1,2]}
vvnnnnn {Xs 7→[X′|Xs′]}

++WWWWW

true rev(Xs’,[X’,2,1],Zs)

rev(Xs, [X′, 2, 1], Zs)

{Xs 7→[],Zs 7→[X′,1,2]}
zzvv

vv
v {Xs 7→[X′′|Xs′]}

$$
HHH

true rev(Xs’,[X’’,X’,2,1],Zs)

rev(Xs, [A, B, C|D], Zs)

{Xs 7→[],Zs 7→[A,B,C|D]}
zzvv

vv
v {Xs 7→[X′|Xs′]}

$$
HH

H

true rev(Xs’,[X’,A,B,C|D],Zs)

Figure 1. Partial Evaluation (and unfolding SLD trees) for rev([1, 2|Xs], [], Zs).

derivation steps, the ruleθ(A) : −B is called theresul-
tant of the derivation. A PE is defined as the set of resul-
tants associated to the derivations of the constructed partial
SLD trees for allP ∪ T pe. The final setT pe contains the
callsrev([1, 2|Xs], [], Zs) andrev(Xs, [A, B, C|D], Zs) from
which the PE, at the top left, is generated. The first two re-
sultants are obtained from each derivation (branch) of the
top right tree, the last two ones from the bottom right tree.

The notions ofcompletenessandcorrectnessof PE [9]
ensure that the specialized program produces no less resp.
no more answers than the original program. A sufficient
condition to ensure completeness is that the specialized pro-
gram isclosedby the resulting set of termsT pe. Intuitively,
the closedness condition ensures that all calls which may
arise during the computation ofP ∪ S are instances ofT pe

and hence there is a matching resultant for them (solutions
are not lost). The abstraction operator is encharged of en-
suring that the closedness condition is met by means of a
proper generalization of calls. Correctness is achieved when
the resulting setT pe is independent, i.e., there are no two
calls inT pe which unify. Independence can be recovered by
a post-processing of renaming, which often does argument
filtering [9]. In addition, renaming has benefits for perfor-
mance because it reduces the number of rules per predicate.
Thus, though the calls inT pe for our example are indepen-
dent, we rename the second call for predicaterev to rev 1.

Finally, the role of the annotationsA (often manually
provided) inoffline PE is to give information to the con-
trol operators to decide when to stop derivations in the lo-
cal control and how to perform generalizations in the global
control to ensure termination. InonlinePE, all control deci-
sions are taken during the specialization phase, without the
use of annotations. We trivially turn functionPE into on-
line by just ignoring the annotations. In our method, though
they are not needed to ensure termination, we use anno-
tations to improve the quality of decompilation . Hence,
according to the above classification, we will adopt in this
work a (hybrid) online PE algorithm enhanced with some
offline annotations (automatically computed).

3 Non-Modular Interpretive Decompilation

This section describes the state of the art in interpretive
decompilation of low-level languages to Prolog, including

recent work in [13, 3, 12, 4]. We do so by formulating non-
modular decompilation in a generic way and identifying its
limitations. The low-level language we consider, denoted as
Lbc, is a simple imperative bytecode language in the spirit
of Java bytecode but, to simplify the presentation, without
object-oriented features (our implementation supports full
Java bytecode). It uses an operand stack to perform com-
putations. It has an unstructured control flow with explicit
conditional and unconditionalgoto instructions and ma-
nipulates only integer numbers. A bytecode programPbc

is organized in a set of methods which are the basic (de-
)compilation units ofLbc. The code of a methodm, denoted
code(m), consists of a sequence of bytecode instructions
BCm =<pc0 : bc0, . . . , pcnm

: bcnm
> with pc0, . . . , pcnm

being consecutive natural numbers. TheLbc instruction set
is:
BcInst::= push(x) | load(v) | store(v) | add | sub | mul | div | rem |

| neg | if ⋄ (pc) | if0 ⋄ (pc) | goto(pc) | return | call(mn)

where⋄ is a comparison operator (eq, le, gt, etc.),v a lo-
cal variable,x an integer,pc an instruction index andmn a
method name. Instructionspush, load andstore trans-
fer values or constants from the local variables to the stack
(and viceversa);add, sub, mul, div, rem andneg per-
form the usual arithmetic operations, beingrem the divi-
sion remainder andneg the arithmetic negation;if and
if0 are conditional branching instructions (with the spe-
cial case of comparisons with0); goto is an unconditional
branching;return marks the end of methods andcall
invokes a method. A methodm is uniquely determined by
its name. We writecalls(m) to denote the set of all method
names invoked within the code ofm. We usedefs(Pbc)
to denote the set ofinternal method names defined inPbc.
The remaining methods areexternal. We say thatPbc is
self-containedif ∀m ∈ Pbc, calls(m) ⊆ defs(Pbc), i.e.,Pbc

does not include calls to external methods.

3.1 Non-modular, Online, Interpretive Decomp.

We rely on the so-called “interpretive approach” to com-
pilation by PE described in Sect. 1, also known as first
Futamura projection [8]. In particular, the decompila-
tion of a Lbc-bytecode programPbc to LP (for short LP-
decompilation) might be obtained by specializing (with an
LP partial evaluator) aLbc-interpreter written in LP w.r.t.

3

main(Method,InArgs,Top) :-
build_s0(Method,InArgs,S0), execute(S0,Sf),
Sf = st(fr(_,_,[Top|_],_),_)).

execute(S,S) :-
S = st(fr(M,PC,[_Top|_],_),[]),
bytecode(M,PC,return,_).

execute(S1,Sf) :-
S1 = st(fr(M,PC,_,_),_), bytecode(M,PC,Inst,_),
step(Inst,S1,S2), execute(S2,Sf).

step(goto(PC),S1,S2) :-
S1 = st(fr(M,_,S,LV),FrS),
S2 = st(fr(M,PC,S,LV),FrS).

step(push(X),S1,S2) :-
S1 = st(fr(M,PC,S,L),FrS), next(M,PC,PC2),
S2 = st(fr(M,PC2,[X|S],L),FrS).

...
step(call(M2),S1,S2) :-

S1 = st(fr(M,PC,OS,LV),FrS), split_OS(M2,OS,Args,OS3),
build_s0(M2,Args,st(fr(M2,PC2,OS2,LV2),_)),
S2 = st(fr(M2,PC2,OS2,LV2),[fr(M,PC,OS3,LV)|FrS]).

step(return,S1,S2) :-
S1 = st(fr(_,_,[RV|_],_),[fr(M,PC,OS,LV)|FrS]),
next(M,PC,PC2), S2 = st(fr(M,PC2,[RV|OS],LV),FrS).

Figure 2. Fragment of (small-step)Lbc interpreter

Pbc. In Fig. 2 we show a fragment of a (small-step)Lbc in-
terpreter implemented in Prolog, namedIntLbc

. We assume
that the code for every method in the bytecode programPbc

is represented as a set of factsbytecode/3 such that, for
every pairpci : bci in the code for methodm, we have a
factbytecode(m,pci,bci). The state carried around by
the interpreter is of the formst(Fr,FrStack)whereFr
represents the current frame (environment) andFrStack
the stack of frames (call stack) implemented as a list.
Frames are of the formfr(M,PC,OStack,LocalV),
whereM represents the current method,PC the program
counter,OStack the operand stack andLocalV the list
of local variables. Predicatemain/3, given the method
to be interpretedMethod and its input method arguments
InArgs, first builds the initial state by means of predi-
catebuild s0/3 and then calls predicateexecute/2.
In turn,execute/2 calls predicatestep/3, which pro-
ducesS2, the state after executing the bytecode, and then
calls predicateexecute/2 recursively withS2 until we
reach areturn instruction with the empty stack. For
brevity, we only show the definition ofstep/3 for a se-
lected set of instructions and omit the code ofbuild s0/3
andlocalVar update/4. The latter simply updates the
value of a local variable. By using this interpreter, in a
purely online setting, we define anon-modulardecompila-
tion scheme in terms of the generic functionPE as follows.

Definition [DECOMPLbc
] Given a self-contained

Lbc-bytecode programPbc, the (non-modular) LP-
decompilation ofPbc can be obtained as:

DECOMPLbc
(Pbc) = PE(IntLbc

∪ Pbc, ∅, S)

whereS is the set of calls{main(m, ,) |m ∈ defs(Pbc)}.

Recent work in interpretive, online decompilation has fo-
cused on ensuring that the layer of interpretation is com-
pletely removed from decompiled programs, i.e.,effective

int gcd(int x,int y){
int res;
while (y != 0){

res = x%y; x = y;
y = res;}

return abs(x);}

int abs(int x){
if (x < 0) return -x;
else return x; }

int lcm(int x,int y){
int gcd = gcd(x,y);
if (gcd == 0) return 0;
else return x*y/gcd;}

int fact(int x){
if (x == 0)

return 1;
else

return x*fact(x-1);}

Method gcd/2
0:load(1)
1:if0eq(11)
2:load(0)
3:load(1)
4:rem
5:store(2)
6:load(1)
7:store(0)
8:load(2)
9:store(1)
10:goto 0
11:load(0)
12:call(abs)
13:return

Method abs/1
0:load(0)
1:if0ge(5)
2:load(0)
3:neg
4:return
5:load(0)
6:return

Method lcm/2
0:load(0)
1:load(1)
2:call(gcd)
3:store(2)
4:load(2)
5:if0ne 8
6:push(0)
7:return
8:load(0)
9:load(1)
10:mul
11:load(2)
12:div
13:return

Method fact/1
0:load(0)
1:if0ne(4)
2:push(1)
3:return
4:load(0)
5:load(0)
6:push(1)
7:sub
8:call(fact)
9:mul
10:return

Figure 3. Source code andLbc-bytecode for working example

decompilations are obtained. This requires the use of the
following advanced control techniques. Type-based home-
omorphic embedding (ET) [3] has been used both at the
local and global control to decide when to stop derivations
and when to generalize calls so that effectiveness of the
decompilation can be obtained in the presence of integers
without compromising termination. The unfolding operator
must also be able to accurately handle built-in predicates
and to safely perform non-leftmost unfolding steps as in
[5]. Operatorabstract must incorporate a polyvariance con-
trol mechanism [12] which avoids performing useless spe-
cializations that can introduce superfluous decompiled code
and thus degrade the decompilation effectiveness. Our start-
ing point is thus a state-of-the-art partial evaluator based
on an unfolding operatorunfoldET

and abstraction opera-
torabstractET

which incorporate such advanced techniques
and is able to remove the layer of interpretation.

3.2 Limitations of Non-Modular Decompilation

This section illustrates by means of the bytecode exam-
ple in Fig. 3 that non-modular decompilation does not en-
sure a satisfactory handling of issues(a) and (b). In the
examples, we often depict the Java source code for clar-
ity, but the partial evaluator works directly on the bytecode.
The program consists of a set of methods that carry out
arithmetic operations. Methodgcd computes the greatest-
common divisor,abs the absolute value,lcm the least-
common multiple andfact the factorial recursively. The
LP-decompilation obtained by applying Def. 3.1 is shown
in Fig. 4. The partial evaluator performs a post-processing
of renaming and argument filtering [9] for all calls except
for calls to themain predicate, (as they represent calls to
methods whose name we want to preserve). We identify the
following limitations of non-modular decompilation.

4

(L1) Method invocations fromlcm togcd (index 2) and
from gcd to abs (index 12) do not appear in the decom-
piled code. Instead, such calls have beeninlined within
their calling contexts and, as a consequence, the structure
of the original code has been lost. For instance, the last two
rules in the decompilation forlcm, execute 1, correspond
to thewhile loop of gcd. This happens because calls to
methods are dealt with in asmall-stepfashion within the in-
terpreter, i.e., the code of invoked methods is unfolded as if
it was inlined inside the “caller” method.

(L2) As a consequence, decompilation might become
very inefficient. E.g., ifn calls to the same method appear
within a code, such method will be decompiledn times.
Even worse, if there is a method invocation inside a loop,
its code will be evaluated twice in the best case, as we
have to perform the corresponding generalizations in the
global control before reaching a fixpoint, as in the exam-
ple of Sect. 2. This is worse in the case of nested loops.

(L3) The non-modular approach does not work incre-
mentally, in the sense that it does not supportseparatede-
compilation of methods but rather has to (re)decompile all
method calls. Thus, decompiling a real language becomes
unfeasible, as one needs to consider system libraries, whose
code might be not available. Limitation L2 together with
L3 answer issue(a) negatively.

(L4) The decompiled program does not contain the code
corresponding to recursivefact due to space limitations,
as the decompiled code contains basically the whole inter-
preter. The problem with recursion is: assume we want to
decompile methodm1 whose code is< pc0 : bc0, . . . , pcj :
call(m1), . . . , pcn : return >. There is an initial decom-
pilation forAk = execute(st(fr(m1, pcj, os, lv), []), Sf)
in which the call stack is empty. During
its decompilation, a call of the formAl =
execute(st(fr(m1, pcj, os

′, lv′), [fr(m1, pcj, os, lv)]), Sf)
with the call stack containing the previous frame appears
when we get to the recursive call. At this point, the
derivation must be stopped asAkET Al. In order to
ensure termination, the global control generalizes the
above calls into execute(st(fr(m1, pcj, ,),), Sf),
where denotes a fresh variable and thus the call-stack
has become unknown. As a consequence, after evalu-
ating the return statement, the continuation obtained
from the call-stack is unknown and we produce the call
execute(st(fr(, , ,),), Sf) to be decompiled. Here,
the fact that the method and the program counter are
unknown prevents us from any chance of removing the
interpretation layer, i.e., the decompiled code will poten-
tially contain the whole interpreter. This indeed happens
during the decompilation offact. Partial solutions to
the recursion problem exist and will be discussed later.
Limitations L1 and L4 answer issue(b) negatively.

main(lcm,[B,0],A) :-
B>0, C is B*0, A is C//B.

main(lcm,[0,0],0).
main(lcm,[B,0],A) :-

B<0, D is B*0,
C is -B, A is D//C.

main(lcm,[B,C],A) :-
C\=0, D is B rem C,
execute_1(C,D,B,C,A).

execute_1(A,0,B,C,D) :-
A>0, E is B*C, D is E//A.

execute_1(0,0,_,_,0).
execute_1(A,0,B,C,D) :-

A<0, E is-A,
F is B*C, D is F//E.

execute_1(A,B,C,D,I) :-
B\=0, K is A rem B,
execute_1(B,K,C,D,I).

main(gcd,[A,0],A) :-A>=0.
main(gcd,[B,0],A) :-

B<0, A is-B.
main(gcd,[B,C],A) :-

C\=0, D is B rem C,
execute_2(C,D,A) .

execute_2(A,0,A) :-
A>=0.

execute_2(A,0,C) :-
A<0, C is-A.

execute_2(A,B,G) :-
B\=0,
I is A rem B,
execute_2(B,I,G).

main(abs,[A],A) :- A>=0.
main(abs,[B],A) :-

B<0, A is-B.

Figure 4.Decompiled (non-modular) code for working example

4 A Modular Decompilation Scheme

By modulardecompilation, we refer to a decompilation
technique whose decompilation unit is the method, i.e., we
decompile a method at a time. We show that this approach
overcomes the four limitations of non-modular decompila-
tion described in Sect. 3.2 and answers issues(a) and (b)
positively. In essence, we need to: (i) give a compositional
treatment to method invocations, we show that this can be
achieved by considering abig-stepinterpreter; (ii) provide a
mechanism to residualize calls in the decompiled program,
we automatically generate program annotations for this pur-
pose; (iii) study the conditions which ensure thatseparate
decompilation of methods is sound.

4.1 Big-step Interpreter to Enable Modularity

Traditionally, two different approaches have been con-
sidered to define language semantics,big-step(or natural)
semantics andsmall-stepsemantics (see, e.g., [15]). Essen-
tially, in big-step semantics, transitions relate the initial and
final states for each statement, while in small-step seman-
tics transitions define thenextstep of the execution for each
statement. In the context of bytecode interpreters, it turns
out that most of the statements execute in a single step,
hence making both approaches equivalent for such state-
ments. This is the case for ourLbc-bytecode interpreter for
all statements except forinvoke. The transition forinvokein
small-step defines the next step of the computation, i.e., the
current frame is pushed on the call-stack and a new environ-
ment is initialized for the execution of the invoked method.
Note that, after performing this step, we do not distinguish
anymore between the code of the caller method and that of
the callee. This avoids modularity of decompilation.

In the context of interpretive (de-)compilation of imper-
ative languages, small-step interpreters are commonly used
(see e.g. [24, 13, 4]). We argue that the use of a big-step
interpreter is a necessity to enable modular decompilation
which scales to realistic languages. In Fig. 5, we depict the

5

execute(S,S) :-
S = st(M,PC,[_Top|_],_),
bytecode(M,PC,return,_).

execute(S1,Sf) :-
S1 = st(M,PC,_,_),
bytecode(M,PC,Inst,_),
step(Inst,S1,S2),
execute(S2,Sf).

step(invoke(M2),S1,S2) :-
S1 = st(M,PC,OS,LV),
next(M,PC,PC2),
split_OS(M2,OS,Args,OSRs),
main(M2,Args,RV),
S2 = st(M,PC2,[RV|OSRs],LV).

Figure 5. Fragment of big-stepLbc interpreterIntbs
Lbc

relevant part of the big-step interpreter forLbc-bytecode,
namedIntbs

Lbc
. We can see that theinvokestatement, after

extracting the method parameters from the operand stack,
calls recursively predicatemain/3 in order to execute the
callee. Upon return from the method execution, the return
value is pushed on the operand stack of the new state and
execution proceeds normally. Also, we do not need to carry
the call-stack explicitly within the state, but only the infor-
mation for the current environment. I.e., states are of the
form st(M,PC,OStack,LocalV). This is because the
call-stack is already available by means of the calls for pred-
icatemain/3.

The compositional treatment of methods inIntbs
Lbc

is not
only essential to enable modular decompilation (overcome
L1, L2 and L3) but also to solve the recursion problem in
a simple and elegant way. Indeed, the decompilation based
on the big-step interpreterIntbs

Lbc
does not present L4. E.g.,

the decompilation of a recursive methodm1 starts from the
callmain(m1, ,) and then reaches a callmain(m1, args,)
whereargs represents the particular arguments in the recur-
sive call. This call is flagged as dangerous by local control
and the derivation is stopped. The important points are that,
unlike before, no recomputation is needed as the second call
is necessarily an instance of the first one and, besides, there
is no information loss associated to the generalization of
the call-stack, as there is no stack. The recursion problem
was first detected in [10] and a solution based on computing
regular approximations during PE was proposed. Although
feasible in theory, such technique might be too inefficient
in practice and problematic to scale it up to realistic ap-
plications due to the overhead introduced by the underlying
analysis. Another solution is proposed in [13], where a sim-
pler control-flow analysis is performed before PE in order
to collect all possible instructions which might follow the
return. Such information may then be used to recover in-
formation lost by the generalization. This solution turns out
to be also impractical for our purposes when considering
realistic programs that make intensive use of library code
(e.g. Java bytecode) as many continuations can follow. Our
solution does not require the use of static analysis and, as
our experiments show, does not pose scalability problems.

4.2 Guiding Online PE with Annotations

We now present the annotations we use to provide ad-
ditional control information to PE. They are instrumental
for obtaining the quality decompilation we aim at. We

use the annotation schema: “[Precond] ⇒ Ann Pred”
wherePrecond is an optional precondition defined as a
logic formula, Ann is the kind of annotation (Ann ∈
{memo, rescall}) andPred is a predicate descriptor, i.e.,
a predicate function and distinct free variables. Such an-
notations are used by local control when a call forPred is
found as follows:

• memo: The current call is not further unfolded. There-
fore, the call is later transferred to the global control to
carry out its specialization separately.

• rescall: The current call is not further unfolded. Un-
like calls markedmemo, the current call is not trans-
ferred to the global control.

In the following, we denote byunfoldAET
the unfolding op-

erator of Sect. 2 enhanced to use the above annotations. We
adopt the same names for the annotations as in offline PE
[19]. However, in offline PE they are theonly means to
control termination1 and rescall annotations are in princi-
ple only used for builtins.

4.3 Modular Decompilation

In order to achieve modular decompilation, it is instru-
mental to allow performingseparatedecompilation. In the
interpretive approach this requires being able to perform
separate PE, i.e., to be able to specialize parts of the pro-
gram independently and then join the specializations to-
gether to form the residual program. For instance, con-
sider a self-contained logic programP partitioned in a set
{P1, . . . , Pn} of mutually disjoint subprograms which pre-
serve predicate boundaries, i.e., for any predicatepred in
P we have that all rules forpred are in the same parti-
tion Pj , for somej ∈ {1, . . . , n}. Consider also the sets
of termsS1, . . . , Sn such that all calls inSi correspond to
predicates defined inPi, i = 1, . . . , n. We can now de-
fineS = S1 ∪ · · · ∪ Sn and the usual notions of closedness
and independence are applicable. Aseparatepartial evalu-
ation forP andS is obtained as the union of the individual
specializations w.r.t. each corresponding set of calls, i.e.,⋃

Pi∈P PE(Pi, ∅, Si). One additional difficulty for sepa-
rate PE is related to the use of renaming for guaranteeing
independence, since renaming requires a global table which
is not available when generating code for the individual sub-
programs. A simple strategy which we will use in our mod-
ular decompilation is to allow polyvariant specializationfor
calls to predicates locally defined in the subprogramPi be-
ing partially evaluated but to resort to monovariant special-
ization for predicates used across subprogram boundaries.
Then, the renaming can use a local renaming table, which
must guarantee that there will be no name clash with re-
named calls from other subprograms.

1Hybrid approaches like [18] use online techniques to control termina-
tion in offline PE.

6

We present now a modular decompilation scheme which,
by combining the big-step interpreter with the use ofrescall
annotations, enables separate decompilation and ensures
soundness(i.e., it is correct and complete w.r.t. internal
methods).

Definition [MOD-DECOMPLbc
] Given a Lbc-bytecode pro-

gramPbc, a modular LP-decompilation ofPbc can be ob-
tained as:

MOD-DECOMPLbc
(Pbc) =

⋃

∀m∈defs(Pbc)

PE(Intbs
Lbc

∪code(m),Amod, Sm)

where the set of annotationsAmod = {(m ∈ calls(Pbc)) ⇒
rescall main(m, ,)} and the initial sets of callsSm =
{main(m, ,)} for eachm ∈ defs(Pbc).

Let us briefly explain the above definition. Now the
function PE is executed once per method defined inPbc,
starting each time from a set of calls,Sm, which con-
tains a call of the formmain(m, ,) for methodm. The
set Amod contains arescall annotation which affects all
methods invoked (but not necessarily internal) insidePbc.
When a method invocation is to be decompiled, the call
step(invoke(m’), ,) occurs during unfolding. We
can see that, by using the big-step interpreter in Fig. 5,
a subsequent callmain(m’, ,) will be generated. As
there is arescall annotation which affects all methods in-
voked in the program, such call is not unfolded but rather
remains residual. Ifm′ is internal, a corresponding decom-
pilation from the callmain(m’, ,) will be, or has al-
ready been, performed since function PE is executed for
every method inPbc. Thus, completeness is ensured for
internal predicates.

Example 1 By applying function MOD-DECOMPLbc
to

the Lbc-bytecode program in Fig. 3 we execute PE
once for each of the four methods in the pro-
gram. In each execution we specialize the interpreter
w.r.t. the calls main(fact, ,), main(gcd, ,),
main(lcm, ,), andmain(abs, ,). We obtain the
following LP-decompilation:

main(lcm,[B,C],A) :-
main(gcd,[B,C],D),
D\=0, E is B*C,
A is E//D.

main(lcm,[A,B],0) :-
main(gcd,[A,B],0).

main(gcd,[B,0],A) :-
main(abs,[B],A).

main(gcd,[B,C],A) :-
C\=0, D is B rem C,
exec_1(C,D,A).

exec_1(A,0,C) :-
main(abs,[A],C).

exec_1(A,B,F) :- B\=0,
H is A rem B, exec_1(B,H,F).

main(abs,[A],A) :- A>=0.
main(abs,[B],A) :- B<0, A is-B.

main(fact,[B],A) :-
B\=0, C is B-1,
main(fact,[C],D), A is B*D.

main(fact,[0],1).

The structure of the original program w.r.t. method calls is
preserved, as the residual predicate forlcm contains an in-
vocation to the definition ofgcd, which in turn invokes
abs, as it happens in the original bytecode. Moreover,

we now obtain an effective decompilation for the recursive
methodfact where the interpretive layer is completely re-
moved without the need of any analysis. Thus, L1 and L4
have been successfully solved.2

The following theorem ensures the soundness of modular
decompilation for the big-step bytecode interpreter. Com-
pleteness can be ensured by excluding calls to external
methods not defined in the bytecode. It is independent of
the way the interpreter is defined, as the closedness condi-
tion for the internal methods is enforced by our definitions
of Amod andSm. Correctness holds in the case of our in-
terpreter, because the only calls which are transferred to the
global control are instances ofmain/3 andexecute/2
and their first argument is the method’s name, which makes
them mutually exclusive. A post-processing of renaming
is thus optional, but it can be necessary to ensure that the
independence condition is met for other interpreters.

Theorem 1 (soundness)Consider a Lbc-bytecode pro-
gram Pbc and a concrete inputI. Let P ′

bc be the result of
MOD-DECOMPLbc

(Pbc) and I ′ the LP representation ofI.
Then,A′ is an answer forP ′

bc∪{I
′} iff A is the result of exe-

cutingPbc for the inputI, whereA′ is the LP representation
of A.
The proof sketch might be found in Appendix A.

We now characterize the notion ofmodular-optimalityin
decompilation which ensures that (1) only the code associ-
ated to internal methods is decompiled, thus, we can have
external calls (e.g., to libraries) which are not decompiled
and overcome L3; (2) and each method is decompiled only
once and thus we overcome L2.

Proposition 1 (modular-optimality) Given a Lbc-
bytecode programPbc, function MOD-DECOMPLbc

only
decompiles the code corresponding to internal methods
defined inPbc, and the code of each method is decompiled
once.
The proof sketch might be found in Appendix B.

Note that modular decompilation gives a monovariant
treatment to methods in the sense that it does not allow
creating specialized versions of method definitions. This is
against the usual spirit in PE, where polyvariance is a main
goal to achieve further specialization. However, in the con-
text of decompilation, we have shown that a monovariant
treatment is necessary to enable scalability and to preserve
program structure. It naturally raises the question whether
a polyvariant treatment could achieve, even if at the cost
of efficiency and loss of structure, a better quality decom-
pilation. Note that enabling polyvariant specialization in
the modular setting can be trivially done by not introduc-
ing rescall annotations for certain selected methods which
should be treated in a polyvariant manner. Our experience
indicates that there is often a small quality gain at the price
of a highly inefficient decompilation.

7

5 Decompilation of Low-Level Languages

Applying the interpretive approach on a low-level lan-
guage introduces new challenges. The main issue is
whether it is possible to obtain, by means of interpretive de-
compilation, programs whosequality is equivalent to that
obtained by dedicated decompilers, issue(c) in Sect. 1.
We will show now that, using the most effective unfold-
ing strategies of PE, code for the same program point can
be emitted (i.e. it can be decompiled) several times, which
degrades both efficiency and quality of decompilation. In
order to obtain results which are comparable to that of ded-
icated decompilers, it makes sense to use similar heuristics.
Since decompilers first build acontrol flow graph(CFG)
for the method, which guides the decompilation process, we
now study how a similar notion can be used for controlling
PE of the interpreter.

Let us explainblock-leveldecompilation by means of an
example. Consider the methodmbl to the left of Fig. 6,
where we only show the relevant bytecode instructions,
and its CFG in the center. As customary, the CFG [1]
consists of basic blocks which contain a sequence of non-
branching bytecode instructions and which are connected
by edges which describe the possible flows originated from
the branching instructions (like conditional jumps, excep-
tions, virtual method invocation, etc). In our small language
Lbc, conditional jumps (i.e.,if⋄ and if0⋄) are the only
branching instructions. Adivergence point(D point) is a
program point (bytecode index) from which more than one
branch originates; likewise, aconvergence point(C point)
is a program point where two or more branches merge. In
the CFG ofmbl, the only divergence (resp. convergence)
point ispci (resp.pck).

By using the decompilation scheme presented so far, we
obtain the SLD-tree shown to the right of Fig. 6, in which
all calls are completely unfolded as there is no termination
risk (norrescallannotation). The decompiled code is shown
under the tree. We use{resX} to refer to the residual code
emitted forBlockX andcondi to refer to the condition as-
sociated to the branching instruction atpci (condi denotes
its negation). The quality of the decompiled code is not op-
timal due to:

D. Decompiled code{resA} for BlockA is duplicated in
both rules. During PE, this code is evaluated once but,
due to the way resultants are defined (seecodegen in
Sect. 2), each rule contains the decompiled code as-
sociated to the whole branch of the tree. This code
duplication brings in two problems: it increases con-
siderably the size of decompiled programs and also
makes their execution slower. For instance, when
condi holds, the execution goes unnecessarily through
{resA} in the first rule, fails to provecondi and, then,
attempts the second rule.

C. Decompiled code ofBlockD is again emitted more
than once. Each rule for the decompiled code contains
a (possibly different) version,{resD} and{res

′

D}, of
the code ofBlockD. Unlike above, at PE time, the
code ofBlockD is actually evaluated in the context of
{condi, {resB}} and then re-evaluated in the context
of {condi, {resC}}. Convergence points thus might
degrade both efficiency (and endanger scalability) and
quality of decompilation (due to larger residual code).

The amount of repeated residual code grows exponentially
with the number of C and D points and the amount of re-
evaluated code grows exponentially with the number of C
points. Thus, we now aim for ablock-leveldecompilation
that helps overcome problems D and C above. Intuitively,
a block-level decompilation must produce a residual rule
for each block in the CFG. This can be achieved by build-
ing SLD-trees which correspond to each single block, rather
than expanding them further.

The memo annotations presented in Sect. 4.2 facili-
tate the design of the block-level interpretive decompilation
scheme. In particular, we can easily force the unfolding pro-
cess to stop at D points by including amemoannotation for
execute/2 calls whosePC corresponds to a D point. In
the example, unfolding stops atpci as desired. Regarding
C points, an additional requirement is to partially evaluate
the code on blocks starting at these points at most once.
The problem is similar to the polyvariant vs monovariant
treatment in the decompilation of methods in Sect. 4.3, by
viewing entries to blocks as method calls. Not surprisingly,
the solution can be achieved similarly in our setting by: (1)
stopping the derivation atexecute/2 calls whosePC cor-
responds to C points and (2) passing the call to the global
control, and ensuring that it is evaluated in a sufficiently
generalized context which covers all incoming contexts.
The former point is ensured by the use ofmemoannotations
and the latter by including in the initial set of terms a gener-
alized call of the formexecute(st(mbl, pck, ,),) for all
C points, which forces such generalization. The next defi-
nition presents theblock-leveldecompilation scheme where
div points(m) andconv points(m) denote, resp., the set
of D points and C points of a methodm.

Definition [BLOCK-MOD-DECOMPLbc
] Given a Lbc-bytecode

programPbc, a block-level, modular LP-decompilation of
Pbc can be obtained as:

BLOCK-MOD-
DECOMPLbc

(Pbc) =
⋃

∀m∈defs(Pbc)

PE(Intbs
Lbc

∪ code(m),Am, Sm)

Ablocks = {pc ∈ div points(m) ∪ conv points(m) ⇒
memo execute(st(m, pc, ,),)}

Sm = {main(m, ,)} ∪
{execute(st(m, pc, ,),) | pc ∈ conv points(m)}

Am = Amod ∪ Ablocks, for eachm ∈ defs(Pbc).

8

Method mbl
pc0 : bc0
...

pci : if ⋄ (pcj)
pci+1 : bci+1

...

pcj−1 : goto(pck)
pcj : bcj
...

pck−1 : bck−1

pck : bck
pcn : return

pcj−1:goto(pck)
. . .

pci+1:bci+1 pcj:bcj

pck−1:bck−1

. . .

pc0:bc0

. . .

pci:if⋄(pcj)

pck:bck

. . .

pcn:return

condi

Block A

Block B

Block D

Block Ccondi

exec(st(mbl, 0, os0, lv0),)

exec(st(mbl, pci, osi, lvi),)

exec(st(mbl, pci+1, . . .)

exec(st(mbl, pcn, osn, lvn),)

true true

exec(st(mbl, pcj, osj, lvj),)

exec(st(mbl, pck, osk, lvk),)exec(st(mbl, pck, osk, lvk),)

exec(st(mbl, pcn, osn, lvn),)

{resD}

{resC}

{res
′

D
}

{resB}

{resA}

main(mbl, ,)

condi condi

main(mbl,Args,Out) :- {resA}, condi, {resB}, {resD}.

main(mbl,Args,Out) :- {resA}, condi, {resC}, {res
′

D}.

Figure 6. Lbc-bytecode, CFG, unfolding tree and decompiled code of mbl method

An important point is that, unlike annotations used in offline
PE [17] which are generated by only taking the interpreter
into account, our annotations for block-level decompilation
are generated by taking into account the particular program
to be decompiled. Importantly, both the annotations and the
initial set of calls can be computed automatically by per-
forming two passes on the bytecode (see, e.g., [2, 26]). The
result of performing block-level decompilation onmbl is:

main(mbl,Args,Out) :- {resA}, execute1(. . .).
execute1(. . .) :- condi, {resB}, execute2(. . .).
execute1(. . .) :- condi, {resC}, execute2(. . .).
execute2(. . .) :- {resD}.

Now, the residual code associated to each block appears
once in the code. This ensures that block-level decompila-
tion preserves the CFG shape as dedicated decompilers do.
Thus, the quality of our decompiled code is as good as that
obtained by state-of-the-art decompilers [2, 23] but with the
advantages of interpretive decompilation (see Sect. 1). We
formalize the quality of block-level decompilation.

Proposition 2 (block-optimality) Given a bytecode
program Pbc, the block-level decompilation function
BLOCK-MOD-DECOMPLbc

ensures that: (I) residual code
for each bytecode instruction inPbc is emitted once in the
decompiled program, and (II) each bytecode instruction in
Pbc is evaluated at most once during PE.

The proof sketch might be found in Appendix C.

6 Experimental Evaluation

We report on our implementation of a decompiler for
full (sequential) Java Bytecode into Prolog. For the exper-
imental evaluation we have used the set of benchmarks in
the JOlden suite [6]. Most programs make an extensive
use of library methods. Hence, non-modular decompila-
tion cannot be assessed as we run into memory problems
when trying to decompile the code of library calls. The
experiments have been performed on an Intel Core 2 Duo
1.86GHz with 2GB of RAM, running Linux. Figure 7 de-
picts four charts measuring different aspects of the decom-
pilation. We assess the differences between themodular

and themodular+block-level(justblock-levelfor short) ap-
proaches; as well as how the size of the programs affects the
decompilation. We measure two aspects of the decompila-
tion: the decompilation time (in milliseconds) per instruc-
tion and the decompiled program size (in bytes) per instruc-
tion. The decompilation time indicates the efficiency of the
process and the size of decompiled programs is directly re-
lated to the decompilation quality. Each point[X,Y] in the
charts corresponds to the decompilation of a single method
in theJOlden suite, whereX represents the number of in-
structions of the method andY the measured data (time or
decompiled program size). The tables in the left-hand side
show the data obtained (times in the top chart and sizes in
the bottom one) for both the modular and the block-level
decompilation. The variations in the block-level decompi-
lation cannot be appreciated when combined with modular.
Thus, we include in the tables on the right-hand side the fig-
ures for the block-level decompilation in isolation such that
we adjust the scale on the Y-axis to the domain of the data.

From the charts, we conclude: (1) Times per instruc-
tion are notably larger for the smallest methods, as can be
seen by looking at the initial curve in the charts. This is
because the overhead introduced for starting a new decom-
pilation is more noticeable when the time for decompilation
itself is small, while it becomes negligible for larger meth-
ods. The same happens for the size of the decompiled pro-
grams. (2) Block-level decompilation achieves important
speedups in general (for all methods with more than 40 in-
structions). Besides, it obtains significantly smaller decom-
piled programs. The speedups per package range from3.36
in power to 31.4 in bisort for the decompilation times; and
from 2.5 times smaller inpower to 9 times smaller inbisort
for the decompiled program sizes. Note that there is a clear
correspondence between both measures, since C points in-
troduce both inefficiency and size increase in decompila-
tion, as explained in Sect. 5. Moreover, modular decompi-
lation runs out of memory for some of the largest methods.
This is again related to code duplication (C and D points)
and (re-)evaluation (C points), which grow exponentially.
(3) The most important conclusion is that, while in modu-

9

Figure 7. Evaluatingmodulardecompilation vs.modular+block-leveldeompilation with theJOlden Suite

lar decompilation both the times and the sizes per instruc-
tion greatly increase with the size of the benchmarks, this
does not happen in the block-level scheme. In block-level
decompilation, these figures are totally stable (mostly con-
stant) for all methods with more than 40 instructions. This
demonstrates that both the decompilation times and the de-
compiled program sizes arelinear with the size of the input
bytecode program, thus demonstrating the scalability of the
block-level decompilation. One might wonder why there
are still small variations in the ratio. In our experience, the
following points also matter: 1) the complexity of the con-
trol flow of the methods, 2) the relative complexity of the
bytecode instructions used, e.g., instructions which operate
in the heap tend to produce more residual code, 3) the struc-
ture w.r.t. methods of the program, e.g., classes with meth-
ods of medium size tend to result in better decompilations
than those with few large methods or many small ones.

7 Conclusions and Related Work

We argue thatdeclarative languagesand the technique of
partial evaluationhave nowadays a large application field
within the development of analysis, verification, and model
checking tools for modern programming languages. On one
hand, declarative languages provide a convenient intermedi-
ate representation which allows (1) representing all iterative
constructs (loops) as recursion, independently of whether
they originate from iterative loops (conditional and uncon-
ditional jumps) or recursive calls, and (2) all variables inthe
local scope of the methods (formal parameters, local vari-
ables, fields, and stack values in low-level languages) can
be represented uniformly as explicit arguments of a declar-
ative program. On the other hand, the technique of par-
tial evaluation enables the automatic (de-)compilation ofa
(complicated) modern program to a simple declarative rep-
resentation by just writing an interpreter for the modern lan-

guage in the corresponding declarative language and using
an existing partial evaluator. The resulting intermediaterep-
resentation greatly simplifies the development of the above
tools for modern languages and, more interestingly, existing
advanced tools developed for declarative programs (already
proven correct and effective) can be directly applied on it.

Previous work in interpretative (de-)compilation has
mainly focused on proving that the approach is feasible for
small interpreters and medium-sized programs. The focus
has been on demonstrating itseffectiveness, i.e., that the so-
called interpretation layer can be removed from the com-
piled programs. To achieve effectiveness, offline [17], on-
line [4, 13, 24] and hybrid [18] PE techniques have been
assessed and novel control strategies have been proposed
and proved effective [12, 3]. Our work starts off from the
premise that interpretive decompilation is feasible and ef-
fective as proved by previous work and studies further is-
sues which have not been explored before. A main objec-
tive of our work is to investigate, and provide the neces-
sary techniques, to make interpretive decompilation scalein
practice. A further goal is to ensure, and provide the tech-
niques, that decompiled programs preserve the structure of
the original programs and that its quality is comparable to
that obtained by dedicated decompilers. We believe that the
techniques proposed in this paper, together with their exper-
imental evaluation, provide for the first time actual evidence
that the interpretive theory proposed by Futamura in the 70s
is indeed an appealing and feasible alternative to the devel-
opment of ad-hoc decompilers from modern languages to
intermediate representations.

10

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman.Compilers - Princi-
ples, Techniques and Tools. Addison-Wesley, 1986.

[2] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanar-
dini. Cost analysis of java bytecode. In R. D. Nicola, edi-
tor, 16th European Symposium on Programming, ESOP’07,
volume 4421 ofLecture Notes in Computer Science, pages
157–172. Springer, March 2007.

[3] E. Albert, J. Gallagher, M. Ǵomez-Zamalloa, and G. Puebla.
Type-based Homeomorphic Embedding and its Applica-
tions to Online Partial Evaluation. In17th International
Symposium on Logic-based Program Synthesis and Trans-
formation (LOPSTR’07), number 4915 in LNCS, pages 23–
42. Springer-Verlag, 2008.

[4] E. Albert, M. Gómez-Zamalloa, L. Hubert, and G. Puebla.
Verification of Java Bytecode using Analysis and Transfor-
mation of Logic Programs. InNinth International Sympo-
sium on Practical Aspects of Declarative Languages, num-
ber 4354 in LNCS, pages 124–139. Springer-Verlag, Jan-
uary 2007.

[5] E. Albert, G. Puebla, and J. Gallagher. Non-Leftmost Un-
folding in Partial Evaluation of Logic Programs with Impure
Predicates. In15th International Symposium on Logic-based
Program Synthesis and Transformation (LOPSTR’05), num-
ber 3901 in LNCS, pages 115–132. Springer-Verlag, April
2006.

[6] J. S. Collection.http://www-ali.cs.umass.edu/
DaCapo/benchmarks.html.

[7] R. DeLine and K. Leino. BoogiePL: A typed procedural
language for checking object-oriented programs. Technical
Report MSR-TR-2005-70, Microsoft Research, 2005.

[8] Y. Futamura. Partial evaluation of computation process -
an approach to a compiler-compiler.Systems, Computers,
Controls, 2(5):45–50, 1971.

[9] J. Gallagher. Tutorial on specialisation of logic programs. In
Proc. of PEPM’93, pages 88–98. ACM Press, 1993.

[10] J. Gallagher and J. Peralta. Using regular approximations for
generalisation during partial evaluation. InProc. of the SIG-
PLAN Workshop on Partial Evaluation and Semantics-based
Program Manipulation, pages 44–51. ACM Press, 2000.

[11] J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke.
Automated Termination Proofs with AProVE. InProc. of
15th International Conference on Rewriting Techniques and
Applications (RTA’04), volume LNCS 3091, pages 210–
220. Springer-Verlag, 2004.

[12] M. Gómez-Zamalloa, E. Albert, and G. Puebla. Improv-
ing the Decompilation of Java Bytecode to Prolog by Partial
Evaluation. InETAPS Ws on Bytecode Semantics, Verifi-
cation, Analysis and Transformation (BYTECODE’07), vol-
ume 190 ofENTCS, pages 85–101, 2007.

[13] K. S. Henriksen and J. P. Gallagher. Abstract interpreta-
tion of pic programs through logic programming. InSCAM
’06: Proceedings of the Sixth IEEE International Workshop
on Source Code Analysis and Manipulation, pages 184–196.
IEEE Computer Society, 2006.

[14] N. Jones, C. Gomard, and P. Sestoft.Partial Evaluation and
Automatic Program Generation. Prentice Hall, New York,
1993.

[15] J. Launchbury. A Natural Semantics for Lazy Evaluation. In
POPL, pages 144–154, 1993.

[16] M. Leuschel. Homeomorphic embedding for online termi-
nation of symbolic methods. InThe Essence of Computa-
tion, volume 2566 ofLNCS, pages 379–403. Springer, 2002.

[17] M. Leuschel, S. Craig, M. Bruynooghe, and W. Vanhoof.
Specialising interpreters using offline partial deduction. In
Program Development in Computational Logic, volume
3049 ofLecture Notes in Computer Science, pages 340–375.
Springer, 2004.

[18] M. Leuschel, S. Craig, and D. Elphick. Supervising offline
partial evaluation of logic programs using online techniques.
In LOPSTR, volume 4407 ofLecture Notes in Computer Sci-
ence, pages 43–59. Springer, 2006.

[19] M. Leuschel, J. Jørgensen, W. Vanhoof, and
M. Bruynooghe. Offline specialisation in prolog us-
ing a hand-written compiler generator.TPLP, 4(1–2):139 –
191, 2004.

[20] J. Lloyd.Foundations of Logic Programming. Springer, 2nd
Ext. Ed., 1987.

[21] J. W. Lloyd and J. C. Shepherdson. Partial evaluation in
logic programming. The Journal of Logic Programming,
11:217–242, 1991.

[22] G. Marpons, M. Carro, J. Mariño, A. Herranz, L.-̊A. Fred-
lund, and J. J. M. Navarro. Towards Checking Coding Rule
Conformance Using Logic Programming. Poster session at
SAS 2007, August 2007.

[23] M. Méndez-Lojo, J. Navas, and M. Hermenegildo. A
Flexible (C)LP-Based Approach to the Analysis of Object-
Oriented Programs. In17th International Symposium on
Logic-based Program Synthesis and Transformation (LOP-
STR’07), August 2007.

[24] J. Peralta, J. Gallagher, and H. Sağlam. Analysis of impera-
tive programs through analysis of constraint logic programs.
In Proc. of SAS’98, volume 1503 ofLNCS, pages 246–261,
1998.

[25] G. Puebla, E. Albert, and M. Hermenegildo. Efficient Local
Unfolding with Ancestor Stacks for Full Prolog. InProc. of
LOPSTR’04, pages 149–165. Springer LNCS 3573, 2005.

[26] R. Vallee-Rai, L. Hendren, V. Sundaresan, P. Lam,
E. Gagnon, and P. Co. Soot - a Java optimization frame-
work. In Proc. of CASCON 1999, pages 125–135, 1999.

11

(Appendix included for reviewer convenience.)

A Proof of Theorem 1

Proof [sketch] Regarding completeness, we first have to
exclude calls to external predicates for which we do not ob-
tain an answer inP ′

bc. Thus, we need to ensure closedness
for the calls which haverescall annotations and are in-
ternal. For the remaining internal ones, closedness is al-
ready ensured by traditional PE [21]. We can reason by
contradiction. Consider a method invocation tom′ which
has arescall annotationtrue ⇒ rescall main(m′, ,)
but it is not covered byT pe. This leads to a contradiction
because, function PE is executed∀m ∈ defs(Pbc), includ-
ing m′. Thus, there is an initial callmain(m′, ,) in Sm′

and hence it is covered by the final setT pe. Regarding cor-
rectness, the full code of the interpreter must be studied.
In the case ofIntbs

Lbc
, it is implied by the facts that: 1) the

only recursive definitions aremain/3 andexecute/2
and the remaining predicates are always evaluable (in the
sense of [25]), 2) thus every call manipulated by the global
control is an instance ofmain/3 or execute/2 and 3)
all such instances include the method name in some of their
(sub-)arguments, which makes them mutually exclusive and
hence independent.2

B Proof of Proposition 1

Proof Clearly, only internal methods ofPbc are decom-
piled because all calls are annotated asrescall and hence
they are not transferred to the global control. Then, we must
prove that each method is decompiled once. The proof fol-
lows by contradiction. Assume that a methodm is decom-
piled n > 1 times. This means that during the PE pro-
cess, there have beenn calls of the formmain(m, ,) that
have been unfolded. This leads to a contradiction as there
is a rescall annotation which affects every method which
is called in the programmain(m, ,). This prevents from
unfoldingmain(m, ,) and the result follows.2

C Proof of Proposition 2

Proof [sketch] The proof follows easily by contradic-
tion. In order to prove (I), consider that two resultants
contain residual code for the same bytecode instruction.
This can be due to two reasons. (a) There is in the
SLD-tree a D point which leads to two derivations. This
is not possible because D points are annotated asmemo
and hence the derivation must have been stopped. (b)
There are two separate trees which contain derivations
for instructions of the same block. Then, this block
must be a C block. Hence, it is not possible because C

points are annotated asmemo and hence the derivation
must have stopped before. We focus now on D blocks to
prove (II). Consider that there have been two evaluations
of an instructionpcx within a D block B starting at
pc1 ∈ conv points(M). Then, there must have been
two different instances execute(st(M, pc1, A, B), C))
and, later, execute(st(M, pc1, D, E), F)). This is
not possible because there exists the initial call
execute(st(M,pc1, ,),)) in Sm which does not al-
low the evaluation of execute(st(M, pc1, D, E), F)).
2

12

	Introduction
	Basics of Partial Deduction
	Non-Modular Interpretive Decompilation
	Non-modular, Online, Interpretive Decomp.
	Limitations of Non-Modular Decompilation

	A Modular Decompilation Scheme
	Big-step Interpreter to Enable Modularity
	Guiding Online PE with Annotations
	Modular Decompilation

	Decompilation of Low-Level Languages
	Experimental Evaluation
	Conclusions and Related Work
	Proof of Theorem 1
	Proof of Proposition 1
	Proof of Proposition 2

