Modular Decompilation of Low-Level Code by Partial Evaluation

Miguel Gbmez-Zamalloa Elvira Albert German Puebla
DSIC, Complutense University of Madrid DSIC, Complutense University of Madrid CLIP, Technical University of Madrid

Abstract

in [13]. Rule-based representations used in declarative pr

Decompiling low-level code to a high-level intermedi- gramming in general—and in Prolog in particular—provide
ate representation facilitates the development of anadyze a convenient formalism to define such intermediate repre-
model checkers, etc. which reason about properties of thesentations. E.g., as it can be seenlin [2,/23, 26, 13], the
low-level code (e.g., bytecode, .NET). Interpretive decom operand stack used in a low-level language can be repre-
pilation consists in partially evaluating an interpretesrf sented by means of explicit logic variables and that its un-
the low-level language (written in the high-level langupge structured control flow can be transformed into recursion.
w.r.t. the code to be decompiled. There have been proofs-ofAs further examples of the use of declarative programming,
concept that interpretive decompilation is feasible, beté Java programs are transformed prior to be analyzed to term
remain important open issues when it comes to decompilerewriting systems in [11] and C++ programs to logic pro-
a real language: does the approach scale up? is the qual- grams in/[22].
ity of decompiled programs comparable to that obtained by
ad-hoc decompilers? do decompiled programs preserve theho
structure of the original programs? This paper addresses
these issues by presenting, to the best of our knowledge, th
first modular scheme to enable interpretive decompilation
of low-level code to a high-level representation, namegy, w
decompile bytecode into Prolog. We introduce two notions . ; . S
of optimality. The first one requires that each method/block part of its I_<nown mput,data. _Interpretlve compilation was
is decompiled just once. The second one requires that ead‘o_rop_osed In Futamura’s se_mlna_l wofK [8], whereby com-
program point is traversed at most once during decompila- p||_at|on of a prog.ramP written na Sourcg program-
tion. We demonstrate the impact of our modular approach ming IangqageLﬁ_mtodagotherépjﬁcp programming Ian—f
and optimality issues on a series of realistic benchmarks. guage'Lo 'S achieved Dy speciallzing an mtlerpreter' or
Decompilation times and decompiled program sizes are lin- Ls written in Lo w.r.t. P. The advantages of interpretive

: . . . de-)compilation w.r.t. dedicated (de-)compilers arelwel
ear with the size of the input bytecode program. This de—(. .)
mostrates empirically the scalability of modular decompi- known and discussed in the PE literature (see, €.g., [4]).

lation of low-level code by partial evaluation. Very briefly, thgy includeflexibility, it is easier _to modify
the interpreter in order to tune the decompilation (e.g-, ob

1 Introduction serve new properties of interes€asier to trustit is more
difficult to prove that ad-hoc decompilers preserve the pro-
gram semanticgasier to maintainnew changes in the lan-
guage semantics can be easily reflected in the interpreter.

All above cited approaches (except [13]) develmb
cdecompilers to carry out the particular decompilations.
An appealing alternative to the development of dedicated
%ecompilers is the so-calladterpretivedecompilation by
partial evaluation(PE) [14]. PE is an automatic program
transformation technique which specializes a progrant. w.r.

Decompilation of low-level code (e.g., bytecode) to an
intermediate representation has become a usual practic
nowadays within the development of analyzers, verifiers,
model checkers, etc. For instance, in the contexinof There have been several proofs-of-concept of interpre-
bile code, as the source code is not available, decompilationtative (de-)compilation (e.g/, [4, 13, 17]), but there réma
facilitates the reuse of existing analysis and model check-interesting open issues when it comes to assess its power
ing tools. In general, high-level intermediate representa and/or limitations to decompile a real langua(gg):does the
tions allow abstracting away the particular language fea- approach scale? (b) do (de-)compiled programs preserve
tures and developing the tools on simpler representationsthe structure of the original ones? (c) is the “quality” of
As a representative example, Java bytecode is decompiledlecompiled programs comparable to that obtained by ded-
to a rule-based representation lin [2], to clause-based proicated decompilers? This paper answers these questions
grams in[23], to a three-address code view of bytecodes inpositively by proposing a modular decompilation scheme
Soot [26] and to the typed procedural language BoogiePL inwhich can be steered to control the structure of decompiled
[7]. Also, PIC programs are transformed to logic programs code and ensure quality decompilations which preserve the

original program’s structure. Our main contributions are unfold (Line[3), which takes the current set of terrfis
summarized as follows: the program and the annotations and construgtaréal
1. We present the problems pbn-modulardecompila- SLD tree for each call irb;. Trees are partial in the sense
tion and identify the components needed to enable athat, in order to guarantee termination of the unfolding pro
modular scheme. This includes how to write an inter- Cess, it must be possible to choaset to further unfold a
preter and how to control amline partial evaluator in ~ goal, and rather allow leaves in the tree with a non-empty,
order to preserve the structure of the original program possibly non-failing, goal (these goals appear in the figure
w.r.t. method invocations. within a frame). Let us consider the PE of programv
2. We present a modular decompilation scheme which is (first two rules at the top left of Fig.]1) w.r.t. the in_itialtse
correct and complete for the proposed big-step inter- © = {rev([1,2[Xs],[],Zs)} and A = 0. We show in the
preter. Themodular-optimalityof the scheme allows ~ figure the three partial SLD-trees computedubyold dur-
addressing issu@) by avoiding decompiling the same "9 the PI_E process. The particulaifold operator deter-
method more than once, arfd) by ensuring that the mmes.whlch call to select from each goal anq when to stop
structure of the original program can be preserved. ~ unfolding. For the SLD-trees shown in the figure, the un-
. . . I folding rule stops the derivation when the selected eait
3. We introduce an interpretive decompilation scheme for . R .
low-level languages which answers issig by pro- bedsﬂﬁ] a previous call, i.e., it is syntactl|callly larger than
ducing decompiled programs whogeality is similar a previous call and thus threatens termination. In the top

: . o))
to that of dedicated decompilers. This requiréak- right tree, the.call in the frameev(Xs', [X', 2, 1], Zs) em

S : . . beds the previous catlev(Xs, [2, 1], Zs), hence the deriva-
level decompilation scheme which avoids code dupli-

cation and code re-evaluation. ion is stopped.

4. We report on a prototype implementation which incor-
porates the above techniques and demonstrate it on a
set of realistic Java bytecode programs.

The partial evaluator may have to build several SLD-
firees to ensure that all calls left in the leaves (named
leavegT?¢) in L4) are “covered” by the root of some

tree. This is known as thelosednessondition of PE

For the sake of concreteness, our decompilation schemem] E.g.. after having built the first SLD-tree for the
is formalized in the context of logic programming but the call .rev(.[l.,2|Xs} [,2s), the callrev(xs', [x', 2, 1], Zs) is

oo sy otamroron o g e nestipa Ot OV byte(1 2. 23) Decats i 1 it
b y guag instance of it. In theglobal contro| those calls in the

low-level languages). leaves which are not covered are added to the new set of
2 Basics of Partial Deduction terms to be partially evaluated, by the operadbstract
(L4). At the next iteration, an SLD-tree is built for such
call, shown at the bottom left tree. Thus, basically, the al-
gorithm iteratively (L2-6) constructs partial SLD trees-un
til all their leaves are covered by the root nodes. An es-
sential point of the operatatbstract is that it has to per-
form “generalizations” on the calls that have to be par-
tially evaluated in order to avoid computing partial SLD
trees for an infinite number of calls. E.g., the framed calls
rev(Xs, [X',X",2,1],Zs) andrev(Xs, [X, 2, 1], Zs) are gen-
eralized, resulting irrev(Xs, [, B, C|D], Zs). Usually, the

We assume familiarity with basic notions of logic pro-
gramming [20]. Executing a prograif for a call A con-
sists in building arSLD treefor PU{ A} and then extracting
thecomputed answeifsom every non-failing branch of the
tree. PE in logic programming (see e.g. [9]) builds upon the
SLD trees mentioned above. We now introduce a generic
function PE, which is parametric w.r.t. thenfolding rule
unfold, and theabstraction operatqrabstract and captures
the essence of most algorithms for PE of logic programs:

1: function PE (P, A, S,) generalized call is added to the st ; and the instences
2 repeat (_|.e., rev(Xs,[x,2,1_],Zs)_) removed. At the next itera-
3 TP .= unfold(S;, P, A):; tion, an SLD tr_ee is built for the g_ene_rahzed term (_bot-
2 Si+1 = abstract(S;, leavegT¢), A); tom right). W|thout_ such generalization, the algorithm
5 P= i1 would keep on adding callsev(Xs, [X,X',X",2,1],Zs),

6 until S; = S;_, % (modulo renaming) rev(Xs, [X, X, X", X" 2,1],Zs),... infinitely.

7 return codegen(7?¢, unfold); A partial evaluation ofP w.r.t. S is then systematically

extracted from the resulting set of call¥¢ in the final
Function PE differs from standard ones in the use of the phase,codegen in LI7. The notion ofresultantis used
set of annotations4, whose role is described below. PE to generate a program rule associated to each root-to-leaf
starts from a progran®, a (possibly empty) set of annota- derivation of the SLD-trees for the final set of term&c.
tions.4 and an initial set of call$,. At each iteration, the Given an SLD derivation oP U {A} with A € T?¢ end-
so-calledlocal controlis performed by the unfolding rule ing in B and 6 be the composition of the mgu’s in the

rev([],L,L). /I ORIG PROGRAM rev([1,2|Xs], [], Zs)
rev([X Xs],Ys,Zs):-rev(Xs,[X| Ys], Zs). %
rev([2|Xs], [1], Zs)
rev([1,2],[].[2,1]). /l SPEC PROGRAM Y
rev([1,2,A/B],[],0 :- rev.i(B[A21],0. rev(Xs, [2’1]’25)\g[-
rev1([],[ABCD,[ABCD). (o] 20 1,2 Xs— (%' |xs]}
rev.1([ABl,[C DEF,Q :- 2 T
rev.1(B [A CDEF,G. true [rev(xs',[X,21],7s) |
rev(Xs, [X/, 2, 1], Zs) rev(Xs, [A, B, C|D], Zs)
" ’ St ! S,
ooy R e Daeminnciny LR
true lrev(Xs’,[X”,X’,Z,l],Zs)‘ true ’rev(Xs‘,[X’,A,B,C|D],Zs)‘

Figure 1. Partial Evaluation (and unfolding SLD trees) for rev([1,2|Xs], [], Zs).

derivation steps, the rul@(A) : —B is called theresul- recent work in[[13, 3, 12,/4]. We do so by formulating non-
tant of the derivation. A PE is defined as the set of resul- modular decompilation in a generic way and identifying its
tants associated to the derivations of the constructedhpart limitations. The low-level language we consider, denoted a
SLD trees for allP U T?¢. The final setl'’?c contains the L., is a simple imperative bytecode language in the spirit
callsrev([1,2|Xs],[], Zs) andrev(Xs, [A, B, C|D], Zs) from of Java bytecode but, to simplify the presentation, without
which the PE, at the top left, is generated. The first two re- object-oriented features (our implementation suppors fu
sultants are obtained from each derivation (branch) of the Java bytecode). It uses an operand stack to perform com-
top right tree, the last two ones from the bottom right tree. putations. It has an unstructured control flow with explicit
The notions ofcompletenesand correctnesof PE [9] conditional and unconditionaot o instructions and ma-
ensure that the specialized program produces no less resmipulates only integer numbers. A bytecode progrBm
no more answers than the original program. A sufficient is organized in a set of methods which are the basic (de-
condition to ensure completeness is that the specialized pr)compilation units ofZ;.. The code of a methoe:, denoted

gram isclosedby the resulting set of termigre. Intuitively, codgm), consists of a sequence of bytecode instructions
the closedness condition ensures that all calls which mayBC,,, =< pcy:bcy, ..., pcp,, tbey,, > With peg, . .., pep,,
arise during the computation &f U S are instances ¢f?¢ being consecutive natural numbers. Thg instruction set

and hence there is a matching resultant for them (solutionsis:

are not lost). The abstraction operator is encharged of en-Bcinst::= push(x) |1 oad(v) |store(v) | add |sub|mul |div |rem|

suring that the closedness condition is met by means of a |"€911f e (pe) [1100(pc) [gotolpe) |returncall(m)

proper generalization of calls. Correctness is achievestwh Wwhereo is a comparison operatoed, le, gt, etc.),v a lo-

the resulting sef¢ is independent, i.e., there are no two cal variableyx an integerpc an instruction index anghn a

calls in7¢ which unify. Independence can be recovered by method name. Instructionrush, | oad andst or e trans-

a post-processing of renaming, which often does argumentfer values or constants from the local variables to the stack

filtering [9]. In addition, renaming has benefits for perfor- (and viceversa)add, sub, mul , di v, remandneg per-

mance because it reduces the number of rules per predicatdorm the usual arithmetic operations, beingmthe divi-

Thus, though the calls ifi?® for our example are indepen- sion remainder andeg the arithmetic negationi f and

dent, we rename the second call for predieateto rev_1. i f 0 are conditional branching instructions (with the spe-
Finally, the role of the annotationd (often manually cial case of comparisons wifl); got o is an unconditional

provided) inoffline PE is to give information to the con- branching;r et ur n marks the end of methods acél |

trol operators to decide when to stop derivations in the lo- invokes a method. A methad is uniquely determined by

cal control and how to perform generalizations in the global its name. We writealls(m) to denote the set of all method

control to ensure termination. bnlinePE, all control deci- ~ names invoked within the code of. We usedef§ P.)
sions are taken during the specialization phase, withaut th to denote the set dhternal method names defined if,..
use of annotations. We trivially turn functidRE into on- ~ The remaining methods aexternal We say thatP,. is

line by just ignoring the annotations. In our method, though self-containedf Vm € Py, calls(m) C def§P,.), i.e., Py,

they are not needed to ensure termination, we use annodoes not include calls to external methods.

tatlons'to improve the quallty'of Qecompllgt|on . H.encg, 3.1 Non-modular, Online, Interpretive Decomp.

according to the above classification, we will adopt in this

work a (hybrid) online PE algorithm enhanced with some We rely on the so-called “interpretive approach” to com-

offline annotations (automatically computed). pilation by PE described in Se¢t! 1, also known as first

3 Non-Modular Interpretive Decompilation Eutamura projection_[8]. In particular, the decompila-

P P tion of a £,.-bytecode progran®,. to LP (for short LP-

This section describes the state of the art in interpretive decompilation) might be obtained by specializing (with an

decompilation of low-level languages to Prolog, including LP partial evaluator) &,.-interpreter written in LP w.r.t.

mai n(Met hod, | nArgs, Top) : -

bui | d_sO(Met hod, | nAr gs, SO), execute(S0, Sf),

St = st(fr(_,_,[Topl_],).,))-
execute(S,S) :-
S = st(fr(MPC[_Top|_],).[]),

byt ecode(M PC, return, _).

execute(S1, Sf) :-
S1 = st(fr(MPC _,_),_), bytecode(MPC, Inst,_),
step(lnst, S1, S2), execute(S2, Sf).

step(goto(PC), S1, S2) : -
S1 =st(fr(M_, S, LV),Fr9),
S2 = st(fr(MPC S LV), FrS).
step(push(X), S1, S2) : -
S1 = st(fr(MPC S L), FrS), next(MPC, PC2),
S2 = st(fr(MPC2,[X S],L),FrS).

step(cal l (M), S1, S2) : -
S1 = st(fr(MPC CS,LV),FrS), split_0OS(M, Cs, Args, 0S3),
bui | d_sO(M, Args, st (fr(M, PC2, 0CS2,LV2),)),
S2 = st(fr(M, PC2,082,LV2),[fr(MPC, CS3,LV)|Frs]).
step(return, S1,S2) :-
S1 =st(fr(_, _,[RV[_],),[fr(MPC CS LV)|Frs]),
next (M PC, PC2), S2 = st(fr(MPC2,[RV|CS], LV),FrS).

Figure 2. Fragment of (small-step},. interpreter

P,.. In Fig.[2 we show a fragment of a (small-stef). in-
terpreter implemented in Prolog, namied, . We assume
that the code for every method in the bytecode progiam
is represented as a set of fabtgt ecode/ 3 such that, for
every pairpe; : be; in the code for methoan, we have a
factbyt ecode(m, pc;, be;) . The state carried around by
the interpreter is of the formt (Fr, Fr St ack) whereFr
represents the current frame (environment) Bn&t ack
the stack of frames (call stack) implemented as a list.
Frames are of the forrhr (M PC, OSt ack, Local V),
where M represents the current methdaC the program
counter,OSt ack the operand stack aridocal V the list
of local variables. Predicaterai n/ 3, given the method
to be interpretedvet hod and its input method arguments
I nAr gs, first builds the initial state by means of predi-
catebui | d_s0/ 3 and then calls predicatexecut e/ 2.

In turn, execut e/ 2 calls predicatest ep/ 3, which pro-

int ged(int x,int y){ int len(int x,int y){

int res; int gcd = gcd(x,y);

while (y '= 0){ if (gcd == 0) return O;
res = x%; x =y; el se return x*y/gcd;}
y =res;}

return abs(x);} int fact(int x){
if (x == 0)
return 1;
el se

return xxfact(x-1);}

int abs(int x){
if (x <0) return -x;
else return x; }

Met hod gcd/ 2 Met hod | cnt 2
0:1 oad(1) 0: 1 oad(0)
11 f0eq(11) 11oad(1) | lhggdzg)c” 1
2 ggggg; Method abs/1 | 2 gf"o'r(e?g;‘) 101 f One(4)
4:rem 0: 1 oad(0) 4:1oad(2) 2:push(1)
5:store(2) 1j : ngegs) 5:ifOne 8 3: lret gr n
6: 1 oad(1) gj 0ad(0) 6: push(0) gj | oad(g)
& ISt 0;?(;)) 4: pgtgurn v lretgz n) 6: pgzhg 13
8: 1 oad(2 . 8: 1 oad(0 X
9:store(1) gj | oad(0) 9:1o0ad(1) ;j sulbl "
10: goto O sreturn 10: nul gj ﬁﬁl (fact)
11: | oad(0) 11:1 oad(2) .
12: cal | (abs) 12: div 10:return
13:return 13:return

Figure 3. Source code and,,.-bytecode for working example

decompilations are obtained. This requires the use of the
following advanced control techniques. Type-based home-
omorphic embedding<{r) [3] has been used both at the
local and global control to decide when to stop derivations
and when to generalize calls so that effectiveness of the
decompilation can be obtained in the presence of integers
without compromising termination. The unfolding operator
must also be able to accurately handle built-in predicates
and to safely perform non-leftmost unfolding steps as in
[5]. Operatombstract must incorporate a polyvariance con-
trol mechanism [12] which avoids performing useless spe-
cializations that can introduce superfluous decompile@ cod
and thus degrade the decompilation effectiveness. Our star
ing point is thus a state-of-the-art partial evaluator dase
on an unfolding operatarnfold<, and abstraction opera-

ducesS2, the state after executing the bytecode, and thentor abstract«,. which incorporate such advanced techniques

calls predicateexecut e/ 2 recursively withS2 until we
reach ar et ur n instruction with the empty stack. For
brevity, we only show the definition aft ep/ 3 for a se-
lected set of instructions and omit the coddaf | d_s0/ 3
andl ocal Var _updat e/ 4. The latter simply updates the
value of a local variable. By using this interpreter, in a
purely online setting, we definereon-modulardecompila-
tion scheme in terms of the generic functiBiv as follows.

Definition [DECOMP;,.] Given a self-contained
Ly-bytecode program P, the (non-modular) LP-
decompilation off,. can be obtained as:

DECOMPg, (Py.) = PE(Intz,, U Py, 0,.5)
whereS is the set of call§main(m, _, -) |m € defg Py.)}.

Recent work in interpretive, online decompilation has fo-

cused on ensuring that the layer of interpretation is com-

pletely removed from decompiled programs, ieffective

and is able to remove the layer of interpretation.
3.2 Limitations of Non-Modular Decompilation

This section illustrates by means of the bytecode exam-
ple in Fig./ 3 that non-modular decompilation does not en-
sure a satisfactory handling of issu@g and (b). In the
examples, we often depict the Java source code for clar-
ity, but the partial evaluator works directly on the byteeod
The program consists of a set of methods that carry out
arithmetic operations. Methagcd computes the greatest-
common divisor,abs the absolute valud, cmthe least-
common multiple and act the factorial recursively. The
LP-decompilation obtained by applying Def. 8.1 is shown
in Fig./4. The partial evaluator performs a post-processing
of renaming and argument filtering/[9] for all calls except
for calls to themain predicate, (as they represent calls to
methods whose name we want to preserve). We identify the
following limitations of non-modular decompilation.

(L1) Method invocations frorhcmtoged (index 2) and ”“f L S R T L ggggg;{g\; o e
from gcd to abs (index 12) do not appear in the decom- min(lcm([0,0],0). B<O, Ais-B.
piled code. Instead, such calls have béslined within B A NG EI N e
their calling contexts and, as a consequence, the structure Cis -B, Ais D//C execute_2(C D A) .
of the original code has been lost. For instance, the lasttwo ™ HLSM L% I - execute_2(A 0, A) :-
rules in the decompilation fdrcm execute_1, correspond execute_1(C D, B C A). A>=0.
to thewhi | e loop of gcd. This happens because calls 10 gxecute 1(A 0.5.C.0) - execuL A A 0.9
methods are dealt with insmall-stefashion within the in- A>0, Eis B+C Dis E//A |execute 2(A B G :-
terpreter, i.e., the code of invoked methods is unfolded as i gxecu e 1(a 0.5.C 0) - D A remE,
it was inlined inside the “caller” method. A0, Eis-A execute 2(B 1, G.

Fis B«C, Dis F//E.

(L2) As a consequence, decompilation might become “°g'ts—A 2L D) e Seodl T Ria
very inefficient. E.qg., ifn calls to the same method appear execute_1(B, K CD). B<O, Ais-B.
within a code, such method will be decompiledtimes. Figure 4.Decompiled (non-modular) code for working example

Even worse, if there is a method invocation inside a loop,
its code will be evaluated twice in the best case, as we
have to perform the corresponding generalizations in the
global control before reaching a fixpoint, as in the exam-
ple of Sect. 2. This is worse in the case of nested loops.

4 A Modular Decompilation Scheme

By modulardecompilation, we refer to a decompilation
technique whose decompilation unit is the method, i.e., we
decompile a method at a time. We show that this approach
overcomes the four limitations of non-modular decompila-

| tion described in Sect. 3.2 and answers isgiagsnd (b)

(L3) The non-modular approach does not work incre-
mentally, in the sense that it does not suppeparatede-
compilation of methods but rather has to (re)decompile al o g -
method calls. Thus, decompiling a real language becomeé’os't'vely' In essence, we need to: (i) give a compositional

unfeasible, as one needs to consider system libraries avhos{'éatment to method invocations, we show that this can be
code might be not available. Limitation L2 together with achieved by consideringlig-stepinterpreter; (ii) provide a
L3 answer issuéa) negatively mechanism to residualize calls in the decompiled program,

we automatically generate program annotations for this pur
(L4) The decompiled program does not contain the code pose; (iii) study the conditions which ensure tseparate
corresponding to recursiieact due to space limitations, ~decompilation of methods is sound.
as the decompiled code contains basically the whole inter-

preter. The problem with recursion is: assume we want to4'1 Big-step Interpreter to Enable Modularity

del(;om{mle methoqz.hl vtvhose co_(lzlre] IS- e : b.co.’t_' -l.épcj : Traditionally, two different approaches have been con-
call(ml), ..., pen = return >. There is an initial decom- 400 6 define language semanthig;step(or natural)
pilation for A;, = execute(st(fx(m1, pcy, 08, 1v), []), S¢) semantics andmall-stepsemantics (see, e.g., [15]). Essen-
in which the call stack is empty. During

tially, in big-step semantics, transitions relate thei@hiand

final states for each statement, while in small-step seman-
tics transitions define theextstep of the execution for each
statement. In the context of bytecode interpreters, itsurn
out that most of the statements execute in a single step,
hence making both approaches equivalent for such state-
ments. This is the case for ody,.-bytecode interpreter for

its decompilation, a call of the formA4, =
execute(st(fr(mi, pcj,os’,1v’), [fr(ml, pcj, 0s,1v)]), S¢)
with the call stack containing the previous frame appears
when we get to the recursive call. At this point, the
derivation must be stopped a$;<rA;. In order to
ensure termination, the global control generalizes the

above calls into execute(st(fr(ml, pcy,-.),-).8¢). gy statements except famvoke The transition foinvokein
where . denotes a fresh variable and thus the call-stack small-step defines the next step of the computation, i.e., th
ha}s become unknown. As a consequence, after .evalu'current frame is pushed on the call-stack and a new environ-
ating the return stgtement, the continuation obtained ment is initialized for the execution of the invoked method.
from the call-stack is unknown and we progiuce the call Note that, after performing this step, we do not distinguish
execute(st(fr(, -,), -),5¢) to be decompiled. Here, anymore between the code of the caller method and that of
the fact that the method and the program counter are

. the callee. This avoids modularity of decompilation.
unknown prevents us from any chance of removing the . : o .
) In the context of interpretive (de-)compilation of imper-
interpretation layer, i.e., the decompiled code will peten

. : . - ative languages, small-step interpreters are commonly use
tially contain the whole interpreter. This indeed happens (see e.g. [24, 13, 4]). We argue that the use of a big-ste

during the decompilation of act . Partial solutions to . 9. 1e%, . 9 g-step
the recursion problem exist and will be discussed later Interpreter IS a necessity to enable modular decomp.||at|on
Limitations L1 and L4 answer issub) negatively " which scales to realistic languages. In Fig. 5, we depict the

execute(S,S) :

S = st(MPC [_Top| 1.).|step(invoke(M), S1, S2) : - use the annotat_ion schemaﬁPéﬂecond] = Ann .Pred“
byt ecogi(l\s/lch, return,).| SI1 t:(i/ltl(D'(\ZA E&)OS, L), where Precond is an optional precondition defined as a
t s L nex) s
exg(]:-u:egt(MP)C’ Ny split_OS(MR, B, Args, CBRS), logic formula, Ann is the k_md of a_nnotatlon/(nn €
b¥t eclodeg MSEC’SIZnSt) ggl n(NIE, ﬁ\/lrgézRV)R,v — {memo, rescall}) andPred is a predicate descriptor, i.e.,
=s , , . . : .. .
ey ([RAGSRST, LY) a predicate function and distinct free variables. Such an-

notations are used by local control when a call fored is
found as follows:

relevant Fl’)art of the big-step interpreter {65 .-bytecode, e mema The current call is not further unfolded. There-
namedint;, . We can see that thievokestatement, after fore, the call is later transferred to the global control to

extracting the method parameters from the operand stack, carry out its specialization separately.
calls recursively predicateai n/ 3 in order to execute the
callee. Upon return from the method execution, the return
value is pushed on the operand stack of the new state and
execution proceeds normally. Also, we do not need to carry
the call-stack explicitly within the state, but only thedn{ In the following, we denote bynfold““ the unfolding op-
mation for the current environment. l.e., states are of the erator of Sect. 2 enhanced to use the above annotations. We
form st (M PC, CSt ack, Local V). This is because the adopt the same names for the annotations as in offline PE
call-stack is already available by means of the calls fodpre [19]. However, in offline PE they are thenly means to
icatemain/3. control termlnatldﬁi andrescall annotations are in princi-
The compositional treatment of methodsinmbS is not ple only used for builtins.
only essential to enable modular decomp|lat|on ‘(overcome
L1, L2 and L3) but also to solve the recursion problem in
a simple and elegant way. Indeed, the decompilation based In order to achieve modular decompilation, it is instru-
on the big-step interpretémtlfbu does not present L4. E.g., mental to allow performingeparatedecompilation. In the
the decompilation of a recursive methed starts from the interpretive approach this requires being able to perform
callmain(mi, _,) and thenreaches acallin(mil, args,) separate PE, i.e., to be able to specialize parts of the pro-
whereargs represents the particular arguments in the recur- gram independently and then join the specializations to-
sive call. This call is flagged as dangerous by local control gether to form the residual program. For instance, con-
and the derivation is stopped. The important points are that sider a self-contained logic prograi partitioned in a set
unlike before, no recomputation is needed as the second cal{ P, .. ., P,,} of mutually disjoint subprograms which pre-
is necessarily an instance of the first one and, besides, therserve predicate boundaries, i.e., for any predigaés in
is no information loss associated to the generalization of P we have that all rules fopred are in the same parti-

Figure 5. Fragment of big-stef,.. interpreternty?,

e rescall The current call is not further unfolded. Un-
like calls markednemoa, the current call is not trans-
ferred to the global control.

4.3 Modular Decompilation

the call-stack, as there is no stack. The recursion problemtion P;, for some;j € {1,...,n}. Consider also the sets
was first detected in [10] and a solution based on computingof termsS, . .., S,, such that all calls ir5; correspond to
regular approximations during PE was proposed. Although predicates defined i#;, i = 1,...,n. We can now de-

feasible in theory, such technique might be too inefficient fineS = S; U --- U S,, and the usual notions of closedness
in practice and problematic to scale it up to realistic ap- and independence are applicableséparatepartial evalu-
plications due to the overhead introduced by the underlying ation for P and S is obtained as the union of the individual
analysis. Another solution is proposed|in [13], where a sim- specializations w.r.t. each corresponding set of caks, i.
pler control-flow analysis is performed before PE in order Up,ep PE(P;, 0,S;). One additional difficulty for sepa-
to collect all possible instructions which might follow the rate PE is related to the use of renaming for guaranteeing
return. Such information may then be used to recover in- independence, since renaming requires a global table which
formation lost by the generalization. This solution turm$ 0 is not available when generating code for the individuatsub
to be also impractical for our purposes when considering programs. A simple strategy which we will use in our mod-
realistic programs that make intensive use of library code ular decompilation is to allow polyvariant specialization
(e.g. Java bytecode) as many continuations can follow. Ourcalls to predicates locally defined in the subprogi@Enhe-
solution does not require the use of static analysis and, agng partially evaluated but to resort to monovariant sgecia
our experiments show, does not pose scalability problems. ization for predicates used across subprogram boundaries.
- . . . Then, the renaming can use a local renaming table, which
4.2 Guiding Online PE with Annotations must guarantee that there will be no name clash with re-

We now present the annotations we use to provide ad-n@med calls from other subprograms.

ditional pqntrol inform?-tion to PE. They are inStrumemal 'Hybrid approaches like [18] use online techniques to comtronina-
for obtaining the quality decompilation we aim at. We tion in offline PE.

We present now a modular decompilation scheme which,we now obtain an effective decompilation for the recursive
by combining the big-step interpreter with the useasfcall methodf act where the interpretive layer is completely re-
annotations, enables separate decompilation and ensuresioved without the need of any analysis. Thus, L1 and L4
soundnesgi.e., it is correct and complete w.r.t. internal have been successfully solved.

methods).)
) The following theorem ensures the soundness of modular

Definition [mop-becomp,, | Given a L.-bytecode pro- decompilation for the big-step bytecode interpreter. Com-

gram P,., a modular LP-decompilation af,. can be ob- Pleteness can be ensured by excluding calls to external
tained as: methods not defined in the bytecode. It is independent of

the way the interpreter is defined, as the closedness condi-

_ bs
MOD-DECOMPL,, (Phe) = U PE(intz, Ucoddm), Amod, Sm) tion for the internal methods is enforced by our definitions

vmedef{ Pc) of A,..,q ands,,. Correctness holds in the case of our in-
where the set of annotation,,.. = {(m € calls(P.)) = terpreter, because the only calls which are transferreukto t
rescall main(m, _,_)} and the initial sets of call§,, = global control are instances ofi n/ 3 andexecut e/ 2
{main(m, _,)} for eachm € defg P,.). and their first argument is the method’s name, which makes

them mutually exclusive. A post-processing of renaming
Let us briefly explain the above definition. Now the s thus optional, but it can be necessary to ensure that the
function PE is executed once per method defined’n independence condition is met for other interpreters.
starting each time from a set of calls,,, which con-
tains a call of the formmain(m, _,) for methodm. The Theorem 1 (soundness)Consider a L,.-bytecode pro-
set A,,,4 contains arescall annotation which affects all gram P, and a concrete inpuf. Let P/, be the result of
methods invoked (but not necessarily internal) insiie MOD-DECOMP., (P;.) and I’ the LP representation of.
When a method invocation is to be decompiled, the call Then,A” is an answer fo;, U{I'} iff Ais the result of exe-
step(invoke(m), _,) occurs during unfolding. We cuting P, for the input/, whereA’ is the LP representation
can see that, by using the big-step interpreter in Fig. 5, 0f A.
a subsequent cattai n(m , _,) will be generated. As The proof sketch might be found in Appendix A.
there is arescall annotation which affects all methods in- We now characterize the notionwfodular-optimalityin
voked in the program, such call is not unfolded but rather decompilation which ensures that (1) only the code associ-
remains residual. &’ is internal, a corresponding decom- ated to internal methods is decompiled, thus, we can have
pilation from the callmai n(m , _, .) will be, or has al- external calls (e.qg., to libraries) which are not decontpile
ready been, performed since function PE is executed forand overcome L3; (2) and each method is decompiled only
every method inP,.. Thus, completeness is ensured for once and thus we overcome L2.

internal predicates. . L .
Proposition 1 (modular-optimality) Given a Ly

Example 1 By applying function MoD-DECOMP;, to Dytecode programp,., function MOD-DECOMF,, only

the L,.-bytecode program in Fig. 3 we execute PE decompiles the code corresponding to internal methods
once for each of the four methods in the pro- defined inpb(;, and the code of each method is decomp”ed

gram. In each execution we specialize the interpreter ONce.

w.rt. the calls mai n(fact, .,), main(gcd, _,), The proof sketch might be found in Appendix B.
mai n(lcm _,), andmai n(abs, _,). We obtain the Note that modular decompilation gives a monovariant
following LP-decompilation: treatment to methods in the sense that it does not allow
_ . _ creating specialized versions of method definitions. This i
R e T Y Tt gy against the usual spirit in PE, where polyvariance is a main
D=0, Eis B+C exec_1(A B F) :- B\=0, goal to achieve further specialization. However, in the-con
e (| ima[/A%] o) - His AremB exec 1(BHF). text of decompilation, we have shown that a monovariant
main(ged, [A B],0). | main(abs, [Al,A) :- A>=0. treatment is necessary to enable scalability and to preserv
i n(ged, (B0 A) - | n(abs,[B], A :- B, Als-B program structure. It naturally raises the question wiethe
_mai n(abs, [B], A). mai n(fact, [B],A) :- a polyvariant treatment could achieve, even if at the cost
TREIEIA el minist 1o, Ais B of efficiency and loss of structure, a better quality decom-
exec_1(C, D, A). mai n(fact, [0],1). pilation. Note that enabling polyvariant specialization i

.- . the modular setting can be trivially done by not introduc-
The structure of the original program w.r.t. method calls is ing rescall annotations for certain selected methods which
preserved, as the residual predicatelfomcontains an in- 9

vocation to the definition ofjcd, which in turn invokes should be treated in a polyvariant manner. Our experience

abs, as it happens in the original bytecode. Moreover indicates that there is often a small quality gain at theepric
' ' " of a highly inefficient decompilation.

5 Decompilation of Low-Level Languages C. Decompiled code oBlockD is again emitted more
than once. Each rule for the decompiled code contains

Applying the interpretive approach on a low-level lan- a (possibly different) versionresp} and{res,}, of
guage introduces new challenges. The main issue is the code ofBlockD. Unlike above, at PE time, the
whether it is possible to obtain, by means of interpretive de code ofBlockD is actually evaluated in the context of
compilation, programs whosguality is equivalent to that {cond;, {resz}} and then re-evaluated in the context
obtained by dedicated decompilers, isqagin Sect[1. of {cond;, {resc}}. Convergence points thus might
We will show now that, using the most effective unfold- degrade both efﬁciency (and endanger Sca|abi|ity) and

ing strategies of PE, code for the same program point can quality of decompilation (due to larger residual code).
be emitted (i.e. it can be decompiled) several times, which

degrades both efficiency and quality of decompilation. In
order to obtain results which are comparable to that of ded-
icated decompilers, it makes sense to use similar hewgistic
Since decompilers first build eontrol flow graph(CFG)

for the method, which guides the decompilation process, we
now study how a similar notion can be used for controlling
PE of the interpreter.

Let us explairblock-leveldecompilation by means of an
example. Consider the methed,; to the left of Fig.[6,
where we only show the relevant bytecode instructions,
and its CFG in the center. As customary, the CFG [1]
consists of basic blocks which contain a sequence of non-
branching bytecode instructions and which are connected
by edges which describe the possible flows originated from
the branching instructions (like conditional jumps, excep
tions, virtual method invocation, etc). In our small langea
Ly, conditional jumps (i.e.if¢ and if0¢) are the only
branching instructions. Alivergence poin{D point) is a
program point (bytecode index) from which more than one
branch originates; likewise, @onvergence pointC point)
is a program point where two or more branches merge. In
the CFG ofmy,;, the only divergence (resp. convergence)
point ispc; (resp.pcg).

By using the decompilation scheme presented so far, we
obtain the SLD-tree shown to the right of Fid. 6, in which

Qlllfalls are C(l)lmpletely unfoTlieddas ther$ 'g nodte_rmlr;]atlon and the latter by including in the initial set of terms a gener
risk (norrescallannotation). The decompiled code is shown o <l of the formexecute (st (m, pex, ,),) for all

under the tree. We usires; } to refer to the residual code C points, which forces such generalization. The next defi-

emitted forBlockX andcond; to refer to the condition as- pjsion presents thilock-leveldecompilation scheme where
sociated to the branching instructionpat, (cond; denotes div_points(m) and conv_points(m) denote, resp., the set
its negation). The quality of the decompiled code is not op- of D points and C points of a methoud

timal due to: '

The amount of repeated residual code grows exponentially
with the number of C and D points and the amount of re-
evaluated code grows exponentially with the number of C
points. Thus, we now aim for block-leveldecompilation
that helps overcome problems D and C above. Intuitively,
a block-level decompilation must produce a residual rule
for each block in the CFG. This can be achieved by build-
ing SLD-trees which correspond to each single block, rather
than expanding them further.

The memo annotations presented in Selct. 14.2 facili-
tate the design of the block-level interpretive decomutat
scheme. In particular, we can easily force the unfolding pro
cess to stop at D points by includingreemoannotation for
execute/2 calls whosePC' corresponds to a D point. In
the example, unfolding stops at; as desired. Regarding
C points, an additional requirement is to partially evaduat
the code on blocks starting at these points at most once.
The problem is similar to the polyvariant vs monovariant
treatment in the decompilation of methods in Sect. 4.3, by
viewing entries to blocks as method calls. Not surprisingly
the solution can be achieved similarly in our setting by: (1)
stopping the derivation atxecute/2 calls whosePC' cor-
responds to C points and (2) passing the call to the global
control, and ensuring that it is evaluated in a sufficiently
generalized context which covers all incoming contexts.
The former pointis ensured by the usenxeémoannotations

D. Decompiled codgres,} for BlockA is duplicated in ~ Definition [sLock-mop-pecomr.,] Given a Ly.-bytecode
both rules. During PE, this code is evaluated once but, programFP,., a block-level, modular LP-decompilation of
due to the way resultants are defined (sedegen in Py can be obtained as:

Sect/ 2), each rule contains the decompiled code as-

sociated to the whole branch of the tree. This code BDLSCC(';JQSD' (Pye) = | J PE(ntf, U coddm), Ay, Spm)
duplication brings in two problems: it increases con- e Vmedefy Py.)

siderably the size of decompiled programs and also 4, .~ — (,c € div_points(m) U conv_points(im) =
makes their execution slower. For instance, when memo execute(st(m, pc, _,),)}

cond; holds, the execution goes unnecessarily through Sm = {main(m, .,)} U _

{res,} in the first rule, fails to proveond; and, then, A - fzizuseii(f’;p‘}or .;)aic’?nlpé iecg};’b*c")‘?'”ts(m)}

attempts the second rule.

Block A main(mo, -, -)
Met hod mpy pco: beo
Pco : beco .. exec(st(mp1, 0,050, 1v0), -)
e . {resp}
peitifo(pey) exeC(St(mbl,Piiyosi,1Vi),7)
pci @ if o (pej) Block B Block C cond; cond;
PCi41 i bCiy1 e e exec(st(mp1, pei 15) exec(st(mp1, pcj, 0sj, 1vj), -)
PCit1: bc1+1 pe;: bc] l{resB} l{resc}
pCj—1: gOtO(ka) b;:.j—l: got o(pc I.JJ.C.;C,12 bes_ exec(st(mp1, pck, osk, 1vk), -) exec(st(mp1 , pck, osk,lvkl),,)
pcj : bcj |{resp} I{resp}
I exec(st(mp1, pen, 0sn, 1va),) exec(st(ms1 , pen, 0sa, 1va), -)
PCk—1 : bCk—1 BlockD (" pey: bey trlue tiue
pcxk : bex L
pCn : return pc,:return mai n(my, Args, Qut) :- {res,},cond;, {resp}, {res?}.
mai n(my, Args, Qut) :- {res,},cond;, {resc}, {res,}.

Figure 6. L,.-bytecode, CFG, unfolding tree and decompiled code of m;; method

An important point is that, unlike annotations used in offlin and themodular+block-level(just block-levelfor short) ap-

PE [17] which are generated by only taking the interpreter proaches; as well as how the size of the programs affects the
into account, our annotations for block-level decompilati decompilation. We measure two aspects of the decompila-
are generated by taking into account the particular programtion: the decompilation time (in milliseconds) per instruc

to be decompiled. Importantly, both the annotations and thetion and the decompiled program size (in bytes) per instruc-
initial set of calls can be computed automatically by per- tion. The decompilation time indicates the efficiency of the
forming two passes on the bytecode (see, e.g., [2, 26]). Theprocess and the size of decompiled programs is directly re-

result of performing block-level decompilation aty,; is: lated to the decompilation quality. Each pojat, Y] in the
mai n(ma, Args, Out) :- {res,},execute;(...). charts corresponds to the decompilation of a single method
execute;(...) :- cond;,{ress},executes(...). in the JOIden suite, whereX represents the number of in-
execute;(...) :- conds,{resc},executes(...). structions of the method arid the measured data (time or
executes(...) 1- {resp}. decompiled program size). The tables in the left-hand side

Now, the residual code associated to each block appearéhow the data obtained (times in the top chart and sizes in
once in the code. This ensures that block-level decompila-the bottom one) for both the modular and the block-level
tion preserves the CFG shape as dedicated decompilers dglécompilation. The variations in the block-level decompi-
Thus, the quality of our decompiled code is as good as that'@tion cannot be appreciated when combined with modular.
obtained by state-of-the-art decompilers [2, 23] but wiita t Thus, we include in the tables on the right-hand side the fig-

advantages of interpretive decompilation (see Sect. 1). Wel"®S for the block-level decompilation in isolation sucatth
formalize the quality of block-level decompilation. we adjust the scale on the Y-axis to the domain of the data.

Proposition 2 (block-optimality) Given a bytecode From the charts, we conclude: (1) Times per instruc-
program P,., the block-level decompilation function tion are notably larger for the smallest methods, as can be
BLOCK-MOD-DECOMP., ensures that: (1) residual code S€en by looking at the initial curve in the charts. This is
for each bytecode instruction if,. is emitted once in the because the overhead introduced for starting a new decom-
decompiled program, and (Il) each bytecode instruction in Pilation is more noticeable when the time for decompilation
P,. is evaluated at most once during PE. itself is small, while it becomes negligible for larger meth
ods. The same happens for the size of the decompiled pro-
grams. (2) Block-level decompilation achieves important
6 Experimental Evaluation speedups in general (for all methods with more than 40 in-
structions). Besides, it obtains significantly smalleraiaee

We report on our implementation of a decompiler for piled programs. The speedups per package range3raen
full (sequential) Java Bytecode into Prolog. For the exper- in power to 31.4 in bisort for the decompilation times; and
imental evaluation we have used the set of benchmarks infrom 2.5 times smaller irpower to 9 times smaller irbisort
the JOIden suite [6]. Most programs make an extensive for the decompiled program sizes. Note that there is a clear
use of library methods. Hence, non-modular decompila- correspondence between both measures, since C points in-
tion cannot be assessed as we run into memory problemdroduce both inefficiency and size increase in decompila-
when trying to decompile the code of library calls. The tion, as explained in Sect. 5. Moreover, modular decompi-
experiments have been performed on an Intel Core 2 Duolation runs out of memory for some of the largest methods.
1.86GHz with 2GB of RAM, running Linux. Figufe 7 de- This is again related to code duplication (C and D points)
picts four charts measuring different aspects of the decom-and (re-)evaluation (C points), which grow exponentially.
pilation. We assess the differences betweennttoglular (3) The most important conclusion is that, while in modu-

The proof sketch might be found in Appendix C.

® modular A block-modular A block- modular

800
®
— 700 - L —_
o) o)
£ 600 - £
%) %)
4 500 * L
1= ® 1=
g 400 £
= =
= 300 @ =
= =
Q200 i
£ - oo ® £
F 100 o - = 2
o 220 e : sy s asa -
o 50 100 150 200 250 300 0 50 100 150 200 250 300
Num insts Num insts
‘ L] modular A block-modular A block-modular
8000 1600
7000 - 1400

Size /Num insts (bytes)
Size /Num insts (bytes)
g
=]

g ¥ A A
®'e » A
AA A o A % A ﬁ‘ &
o 50 100 150 200 250 300 o 50 100 150 200 250 300
Num insts Num insts

Figure 7. Evaluatingmodulardecompilation vsmodular+block-levetleompilation with theJOlden Suite

lar decompilation both the times and the sizes per instruc-guage in the corresponding declarative language and using
tion greatly increase with the size of the benchmarks, this an existing partial evaluator. The resulting intermediafe
does not happen in the block-level scheme. In block-level resentation greatly simplifies the development of the above
decompilation, these figures are totally stable (mostly-con tools for modern languages and, more interestingly, egsti
stant) for all methods with more than 40 instructions. This advanced tools developed for declarative programs (alread
demonstrates that both the decompilation times and the deproven correct and effective) can be directly applied on it.
compiled program sizes alieear with the size of the input Previous work ininterpretative (de-)compilation has
bytecode program, thus demonstrating the scalability®f th mainly focused on proving that the approach is feasible for
block-level decompilation. One might wonder why there small interpreters and medium-sized programs. The focus
are still small variations in the ratio. In our experiendeet has been on demonstrating @fectiveness.e., that the so-
following points also matter: 1) the complexity of the con- called interpretation layer can be removed from the com-
trol flow of the methods, 2) the relative complexity of the piled programs. To achieve effectiveness, offline [17], on-
bytecode instructions used, e.g., instructions whichatger line [4, 13,/ 24] and hybrid [18] PE techniques have been
in the heap tend to produce more residual code, 3) the strucassessed and novel control strategies have been proposed
ture w.r.t. methods of the program, e.g., classes with meth-and proved effective [12, 3]. Our work starts off from the
ods of medium size tend to result in better decompilations premise that interpretive decompilation is feasible and ef
than those with few large methods or many small ones. fective as proved by previous work and studies further is-
sues which have not been explored before. A main objec-
tive of our work is to investigate, and provide the neces-

We argue thatleclarative languagesnd the technique of ~ Sary techniques, to make interpretive decompilation Soale
partial evaluationhave nowadays a large application field Practice. A further goal is to ensure, and provide the tech-
within the development of analysis, verification, and model Niques, that decompiled programs preserve the structure of
checking tools for modern programming languages. On onethe original programs and that its quality is comparable to
hand, declarative languages provide a convenient intérmed that obtained by dedicated decompilers. We believe that the
ate representation which allows (1) representing allfteza techniques proposed in this paper, together with theirrexpe
constructs (loops) as recursion, independently of whetherimental evaluation, provide for the first time actual evicen
they originate from iterative loops (conditional and uncon thatthe interpretive theory proposed by Futamura in the 70s
ditional jumps) or recursive calls, and (2) all variablehia is indeed an appealing and feasible alternative to the devel
local scope of the methods (formal parameters, local vari-Opment of ad-hoc decompilers from modern languages to
ables, fields, and stack values in low-level languages) canintermediate representations.
be represented uniformly as explicit arguments of a declar-
ative program. On the other hand, the technique of par-
tial evaluation enables the automatic (de-)compilatiol of
(complicated) modern program to a simple declarative rep-
resentation by just writing an interpreter for the modem la

7 Conclusions and Related Work

10

References

(1]
(2]

(3]

(4]

(5]

(6]
(7]

[8] Y. Futamura. Partial evaluation of computation process - [24]

9]
(10]

(11]

(12]

(13]

(14]

A. V. Aho, R. Sethi, and J. D. UllmanCompilers - Princi-
ples, Techniques and Tooladdison-Wesley, 1986.

E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanar-
dini. Cost analysis of java bytecode. In R. D. Nicola, edi-
tor, 16th European Symposium on Programming, ESOP’07
volume 4421 ofLecture Notes in Computer Sciengages
157-172. Springer, March 2007.

E. Albert, J. Gallagher, M. Bmez-Zamalloa, and G. Puebla.

Type-based Homeomorphic Embedding and its Applica- [18]

tions to Online Partial Evaluation. If@7th International
Symposium on Logic-based Program Synthesis and Trans-
formation (LOPSTR’07)number 4915 in LNCS, pages 23—
42. Springer-Verlag, 2008.

E. Albert, M. Gbmez-Zamalloa, L. Hubert, and G. Puebla.
Verification of Java Bytecode using Analysis and Transfor-
mation of Logic Programs. INinth International Sympo-
sium on Practical Aspects of Declarative Languagasm-

ber 4354 in LNCS, pages 124-139. Springer-Verlag, Jan- 2

uary 2007.

E. Albert, G. Puebla, and J. Gallagher. Non-Leftmost Un-
folding in Partial Evaluation of Logic Programs with Impure
Predicates. 115th International Symposium on Logic-based
Program Synthesis and Transformation (LOPSTR'@8n-
ber 3901 in LNCS, pages 115-132. Springer-Verlag, April
2006.

J. S. Collectionht t p: / / wwal i . cs. umass. edu/
DaCapo/ benchmar ks. ht mi .

R. DeLine and K. Leino. BoogiePL: A typed procedural
language for checking object-oriented programs. Technical
Report MSR-TR-2005-70, Microsoft Research, 2005.

an approach to a compiler-compileBystems, Computers,
Controls 2(5):45-50, 1971.

J. Gallagher. Tutorial on specialisation of logic programs. In
Proc. of PEPM'93 pages 88-98. ACM Press, 1993.

J. Gallagher and J. Peralta. Using regular approximations for
generalisation during partial evaluation.Rroc. of the SIG-

PLAN Workshop on Partial Evaluation and Semantics-based [26]

Program Manipulationpages 44-51. ACM Press, 2000.

J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke.
Automated Termination Proofs with AProVE. RProc. of
15th International Conference on Rewriting Techniques and
Applications (RTA'04) volume LNCS 3091, pages 210-
220. Springer-Verlag, 2004.

M. Gobmez-Zamalloa, E. Albert, and G. Puebla. Improv-
ing the Decompilation of Java Bytecode to Prolog by Partial
Evaluation. INETAPS Ws on Bytecode Semantics, Verifi-
cation, Analysis and Transformation (BY TECODE'0/)I-
ume 190 ofENTCS pages 85-101, 2007.

K. S. Henriksen and J. P. Gallagher. Abstract interpreta-
tion of pic programs through logic programming. SICAM
'06: Proceedings of the Sixth IEEE International Workshop
on Source Code Analysis and Manipulatipages 184—196.
IEEE Computer Society, 2006.

N. Jones, C. Gomard, and P. Sest&fartial Evaluation and
Automatic Program GenerationPrentice Hall, New York,
1993.

11

[15] J. Launchbury. A Natural Semantics for Lazy Evaluation. In

POPL, pages 144-154, 1993.

M. Leuschel. Homeomorphic embedding for online termi-
nation of symbolic methods. Ifihe Essence of Computa-
tion, volume 2566 o NCS pages 379-403. Springer, 2002.

1 M. Leuschel, S. Craig, M. Bruynooghe, and W. Vanhoof.

Specialising interpreters using offline partial deduction. In
Program Development in Computational Logigolume
3049 ofLecture Notes in Computer Scienpages 340-375.
Springer, 2004.

M. Leuschel, S. Craig, and D. Elphick. Supervising offline
partial evaluation of logic programs using online techniques.
In LOPSTRvolume 4407 of.ecture Notes in Computer Sci-
ence pages 43-59. Springer, 2006.

M. Leuschel, J. Jgrgensen, W. Vanhoof, and
M. Bruynooghe. Offline specialisation in prolog us-
ing a hand-written compiler generatarPLP, 4(1-2):139 —
191, 2004.

J. Lloyd. Foundations of Logic Programminpringer, 2nd
Ext. Ed., 1987.

J. W. Lloyd and J. C. Shepherdson. Partial evaluation in
logic programming. The Journal of Logic Programming
11:217-242, 1991.

G. Marpons, M. Carro, J. Mdio, A. Herranz, LA. Fred-
lund, and J. J. M. Navarro. Towards Checking Coding Rule
Conformance Using Logic Programming. Poster session at
SAS 2007, August 2007.

M. Méndez-Lojo, J. Navas, and M. Hermenegildo. A
Flexible (C)LP-Based Approach to the Analysis of Object-
Oriented Programs. IAd7th International Symposium on
Logic-based Program Synthesis and Transformation (LOP-
STR’07) August 2007.

J. Peralta, J. Gallagher, and Hg&am. Analysis of impera-
tive programs through analysis of constraint logic programs.
In Proc. of SAS'98volume 1503 oL NCS pages 246-261,
1998.

G. Puebla, E. Albert, and M. Hermenegildo. Efficient Local
Unfolding with Ancestor Stacks for Full Prolog. Rroc. of
LOPSTR'04pages 149-165. Springer LNCS 3573, 2005.
R. Vallee-Rai, L. Hendren, V. Sundaresan, P. Lam,
E. Gagnon, and P. Co. Soot - a Java optimization frame-
work. InProc. of CASCON 199%ages 125-135, 1999.

’(Appendix included for reviewer convenien#e.) points are annotated asemo and hence the derivation
must have stopped before. We focus now on D blocks to
A Proof of Theorem'1 prove (II). Consider that there have been two evaluations
of an instructionpc, within a D block B starting at
pc; € conv_points(M). Then, there must have been
two different instances execute(st(M,pcy,A,B),C))
and, later, execute(st(M,pcy,D,E),F)). This is
not possible because there exists the initial call
execute(st(M,pcy, -, -),-)) In S, which does not al-
low the evaluation of execute(st(M,pcy,D,E),F)).

Proof [sketch] Regarding completeness, we first have to
exclude calls to external predicates for which we do not ob-
tain an answer iP;.. Thus, we need to ensure closedness
for the calls which have escal | annotations and are in-
ternal. For the remaining internal ones, closedness is al-
ready ensured by traditional PE [21]. We can reason by
contradiction. Consider a method invocationd which
has arescall annotationtrue = rescall main(m/, _,)
but it is not covered by'?¢. This leads to a contradiction
because, function PE is executéch € defgP,.), includ-
ing m’. Thus, there is an initial cattain(m’, _, _) in S,
and hence it is covered by the final §6t. Regarding cor-
rectness, the full code of the interpreter must be studied.
In the case ofntlfbc, it is implied by the facts that: 1) the
only recursive definitions argai n/ 3 andexecut e/ 2
and the remaining predicates are always evaluable (in the
sense of [25]), 2) thus every call manipulated by the global
control is an instance afai n/ 3 or execut e/ 2 and 3)
all such instances include the method name in some of their
(sub-)arguments, which makes them mutually exclusive and
hence independent

B Proof of Proposition[1

Proof Clearly, only internal methods d?,. are decom-
piled because all calls are annotatedrescall and hence
they are not transferred to the global control. Then, we must
prove that each method is decompiled once. The proof fol-
lows by contradiction. Assume that a methads decom-
piled n > 1 times. This means that during the PE pro-
cess, there have beertalls of the formmain(m, _, _) that
have been unfolded. This leads to a contradiction as there
is arescall annotation which affects every method which
is called in the programrmain(m, -, -). This prevents from
unfoldingmain(m, _, -) and the result follows]

C Proof of Proposition 2

Proof [sketch] The proof follows easily by contradic-
tion. In order to prove (l), consider that two resultants
contain residual code for the same bytecode instruction.
This can be due to two reasons. (a) There is in the
SLD-tree a D point which leads to two derivations. This
is not possible because D points are annotatetha@so
and hence the derivation must have been stopped. (b)
There are two separate trees which contain derivations
for instructions of the same block. Then, this block
must be a C block. Hence, it is not possible because C

12

	Introduction
	Basics of Partial Deduction
	Non-Modular Interpretive Decompilation
	Non-modular, Online, Interpretive Decomp.
	Limitations of Non-Modular Decompilation

	A Modular Decompilation Scheme
	Big-step Interpreter to Enable Modularity
	Guiding Online PE with Annotations
	Modular Decompilation

	Decompilation of Low-Level Languages
	Experimental Evaluation
	Conclusions and Related Work
	Proof of Theorem 1
	Proof of Proposition 1
	Proof of Proposition 2

