A Documentation Generator
for (C)LP Systems

Manuel Hermenegildo

Department of Computer Science
Technical University of Madrid (UPM)
herme@fi.upm.es

Abstract

We describe 1pdoc, a tool which generates documentation manuals automat-
ically from one or more logic program source files, written in ISO-Prolog,
Ciao, and other (C)LP languages. It is particularly useful for document-
ing library modules, for which it automatically generates a rich description
of the module interface. However, it can also be used quite successfully to
document full applications. The documentation can be generated in many
formats including texinfo, dvi, ps, pdf, info, html/css, Unix nroff/man,
Windows help, etc., and can include bibliographic citations and images.
lpdoc can also generate “man” pages (Unix man page format), nicely for-
matted plain ascii “readme” files, installation scripts useful when the man-
uals are included in software distributions, brief descriptions in html/css
or info formats suitable for inclusion in on-line indices of manuals, and
even complete WWW and info sites containing on-line catalogs of docu-
ments and software distributions. A fundamental advantage of using 1pdoc
is that it helps maintaining a true correspondence between the program and
its documentation, and also identifying precisely to what version of the pro-
gram a given printed manual corresponds. The quality of the documentation
generated can be greatly enhanced by including within the program text as-
sertions (declarations with types, modes, etc. ...) for the predicates in the
program, and machine-readable comments. These assertions and comments
are written using the Ciao system assertion language. A simple compati-
bility library allows conventional (C)LP systems to ignore these assertions
and comments and treat normally programs documented in this way. The
1pdoc manual, all other Ciao system manuals, and most of this paper, are
generated by lpdoc.

1 Introduction

lpdoc is an automatic program documentation generator for (C)LP systems.
Its main functionality is to generate a reference manual automatically from
one or more source files of (constraint) logic programming systems. It has
been developed as part of the Ciao Prolog [14] program development en-
vironment, but it can also be used to document source files of almost any

postscript
‘ Index entries ‘ pdf
html

‘ WWW & info sites ‘ man, ...

>—{ User files info
‘ Compl.pl P Ipdoc
‘ Sys. files

‘ Installation scripts ‘ dvi
CompN.pl F
7/

\
Main.pl F SETTNGS}—E Manuals }% texinfo

Figure 1: Overall operation

other (ISO-)Prolog-like [5] (C)LP system. 1lpdoc is particularly useful for
documenting library modules, for which it automatically generates a rich
description of the module interface. However, it can also be used quite suc-
cessfully to document full applications.

The operation of 1pdoc is illustrated in Figure 1. 1pdoc combines the
information from a number of user and system files (as specified in a user-
provided configuration file -SETTINGS in Figure 1) and produces manuals
in a number of formats (dvi, ps, pdf, info, html/css, ascii, Windows help, etc.)
which can include bibliographic citations and images (if the target supports
them). In addition to full manuals, 1pdoc can also generate nicely formatted
plain ASCII “readme” files, man pages (Unix manual page format), as well
as brief descriptions in html or emacs info formats suitable for inclusion in
an on-line master index of applications. Using these index entries, 1pdoc
can create and maintain fully automatically WWW and info sites containing
pointers to the on-line versions of the documents it produces. Similarly, it
can be used to generate software distribution sites. 1lpdoc also generates
installation scripts for the manuals it produces, which simplify the process
of creating a distribution of the corresponding software package. Finally, it
is also possible to start a number of viewers directly from lpdoc in order to
quickly browse the manuals produced.

The quality of the documentation generated can be greatly enhanced
by including within the program text assertions (declarations with types,
modes, and other properties) for the predicates in the program, and machine-
readable comments (in the “literate programming” style [10, 3]). The asser-
tions and comments included in the source file need to be written using the
Ciao assertion language [11]. It also possible to use as part of the input
to lpdoc files written in the GNU texinfo format, which is useful when
gradually converting a manual from this popular format to 1pdoc.

In order to make the discussion self-contained, an example of source code
and the output produced by 1pdoc is included at the end of the paper. How-
ever, since it is difficult to show significant output from the system in the
space available, the reader is invited to look at actual manuals generated by
1pdoc for reference while reading the paper. In particular, the 1pdoc manual
[9] and all other Ciao system manuals (and most of this paper, for that mat-
ter) are generated by 1pdoc. The Ciao manuals and other 1pdoc-generated

manuals can be found on-line at http://www.clip.dia.fi.upm.es/Software,
http://www.clip.dia.fi.upm.es/Software/Ciao, and http://www.clip.-
dia.fi.upm.es/Software/Beta (registration as a Beta tester is needed for
access to the latter). In fact, all these WWW sites are automatically gener-
ated and maintained by 1lpdoc.

2 Generating a manual

We now describe, from the user’s point of view, the process of generating a
manual (semi-)automatically from a set of source files, installing them in a
public area, and accessing them on line.

The process starts by creating a directory (e.g., doc) in which the docu-
mentation will be built.! This directory is usually placed in the top directory
of the distribution of the application or library to be documented. Typically,
almost all files in this directory will be automatically generated by lpdoc,
which also takes care of cleaning up this directory of intermediate files before
distribution of the software, leaving only the manuals in the selected formats.
This directory will also contain the necessary information for installation of
the manuals during the installation of the software package. This directory
should contain the manually maintained configuration file of Figure 1, nor-
mally named SETTINGS, which is written in Prolog syntax, possibly using
Ciao syntactic enhancements (in particular, the functional notation is often
useful in this context).

A manual can be generated either from a single source file or from a set
of source files. In the latter case, one of these files should be chosen to be
the main file, and the others will be the component files. The main file is
the one that will provide the title, author, date, summary, etc. to the entire
document. In principle, any set of source files can be documented, even if
they contain no assertions or comments. However, the presence of these will
greatly improve the documentation (see Section 3).

The name of main file is specified in the SETTINGS file by defining a
fact of a predicate main. Facts of a (possibly empty) predicate components
define the component files which will generate the different chapters of the
manual. Facts of a predicate filepaths are used to define all the directo-
ries where the previously mentioned files can be found. Similarly, facts of
the predicate systempaths are used to list all the system directories where
system files used by the files being documented can be found. This is needed
because on startup 1lpdoc has no default search paths for files defined, not
even those defined by default in the Prolog system under which it was com-
piled (typically Ciao). This has the important consequence that it allows
documenting Prolog systems other than that under which 1pdoc was com-

! Actually, documentation for a single file can be generated fully automatically from the
Ciao emacs mode, which then also takes care of creating the documentation directory in
a temporary area.

piled. The effect of putting a path in systempaths instead of in filepaths
is that the modules and files in those paths are documented as system mod-
ules (this is useful when documenting an application to distinguish its parts
from those which are in the system libraries).

These are the only settings which are strictly needed in order to gen-
erate a manual. However, many aspects of the generated manuals can be
controlled through additional configuration parameters. For example, it is
possible to control what is included in the different files and how: whether
to include bug information or not, comments associated to version changes
and/or to patches, author info, detailed explanation of predicate argument
modes, starting page number, etc. It is also possible to define the set of
formats (dvi, ps, pdf, ascii, html, info, manl, ...) in which the docu-
mentation should be generated by default (however, a manual in any of the
supported formats can be generated on demand by typing “lpdoc format”).
In particular, selecting htmlindex and/or infoindex requests the genera-
tion of (parts of) a master index to be placed in an installation directory
and which provide pointers to the documents generated.

A predicate indices determines a list of indices to be included at the end
of the document. These can include indices for defined predicates, modules,
properties, types, concepts, files, etc. The contents of these indices are
afterwards used for several purposes in on-line documents. In particular,
lpdoc includes an emacs library for automatically locating any part of the
manual related to the symbol (predicate, flag, property, type, etc.) under
the cursor (“help for symbol under cursor”) and also performing automatic
completion of partially typed names of predicates, types, etc. This is very
useful when typing the name of a library predicate: it is possible to complete
the name and also locate in one step the corresponding page in the on-line
manual generated by lpdoc.

It is possible to define a predicate bibfile containing paths of .bib files,
i.e., files containing bibliographic entries in bibtex format. If citations are
used in the text (using the @cite command) these will be the files in which
the citations will be searched for. All the references in all component files
will appear together in a References appendix at the end of the manual (the
-norefs option prevents generation of the 'References’ appendix). It is also
possible to select different levels of verbosity during processing, from pretty
silent —more or less only a couple of messages per file-, to quite verbose,
documenting the files visited and the predicates being documented on the
fly. The latter is obviously quite useful for debugging.

Once the manual has been generated in the desired formats, 1pdoc can
also install them in a different area, specified by a predicate docdir in the
SETTINGS file. As mentioned before, 1pdoc can generate directly brief de-
scriptions in html or emacs info formats suitable for inclusion in an on-line
index of applications. In particular, if the htmlindex and/or infoindex
options are selected, then 1pdoc will create the installation directory, place
the documentation in the desired formats in this directory, and produce and

place in the same directory suitable index.html and/or dir files. These
files will contain some basic info on the manual (extracted from the sum-
mary and title, respectively) and include pointers to the relevant documents
which have been installed. The appearance of the actual indices created
(e.g., index.html) can be controlled via templates and style sheets, spec-
ified in the configuration file. Several manuals, coming from different doc
directories, can be installed in the same docdir directory. In this case, the
descriptions of and pointers to the different manuals will be automatically
combined (appearing in alphabetic order) in the index.html and/or dir
indices, and a contents area will appear at the beginning of the html index
page. In the same way, facilities are provided for de-installation of manuals
from the docdir area.

3 Enhancing the documentation being generated

1lpdoc will generate quite useful information from standard program files:
e.g., exported predicates with their arity, characteristics of these predicates
—dynamic, multifile, ...—, other modules used, required libraries, and, if avail-
able, types and other properties, etc. However, the quality of the documen-
tation generated can be greatly enhanced by including within the program
text assertions, and machine-readable comments.

Assertions are declarations which are included in the source and provide
information regarding certain characteristics of the program. Typical asser-
tions include type declarations, modes, general properties (such as does not
fail), etc. For our purposes, we can consider standard compiler directives
(such as dynamic/1, op/3, meta predicate/1...), also as assertions. When
documenting a module, 1pdoc will use the assertions associated with the
module interface to construct a textual description of this interface. In prin-
ciple, only the exported predicates are documented, although any predicate
can be included in the documentation by explicitly requesting it (by using a
particular comment/2 declaration —see below). Judicious use of these asser-
tions allows at the same time documenting the program code, documenting
the external use of the module, and greatly improving the debugging pro-
cess. The latter is possible because the assertions provide the compiler with
information on the intended meaning or behavior of the program (i.e., the
specification) which can be checked at compile-time (by a preprocessor/static
analyzer) and/or at run-time (via checks inserted by the same preprocessor)
—see [7] for details.

Machine-readable comments are also declarations included in the source
program but which contain additional information intended to be read by
humans (this is where the connection with the literate programming style of
Knuth [10, 3] is closest). These declarations are ignored by the compiler in
the same way as classical comments. Thus, they can be used to document
the program source in place of (or in combination with) the normal com-

ments typically inserted in the code by programmers. However, because they
are more structured and they are machine-readable, they can also be used
to improve the automatic generation of printed or on-line documentation.
Typical such comments include module title, author(s), bugs, changelog,
etc. Judicious use of these comments allows enhancing at the same time the
documentation of the program text and the manuals generated.

lpdoc requires these assertions and comments to be written using the
Ciao system assertion language [11].2 Comments have the general form:
:= comment (CommentType, CommentData) .
where generally the first argument states the type of comment and the second
one the comment itself, written in a particular markup language which is
very similar to texinfo and LaTeX (see Section 7). Examples of comments
are:
:— comment(title,"Complex numbers library").
:- comment (summary,"Provides and ADT for complex numbers.").
:— comment (ctimes(X,Y,Z),"@var{Z} is Q@var{Y} times Q@var{X}.").
An example of an assertion is:
:- pred gsort(X,Y) : 1list(X) => sorted(Y)

"@var{Y} is a sorted permutation of Qvar{X}.".
which states that in the calls to predicate gsort/2 the first argument should
be a list and, upon exit, the second argument should be sorted. There is
also a textual assertion comment, written using the same markup language
as in comment/2. The properties 1ist/1 and sorted/1 used in the assertion
might be declared as such with the following assertions (we are also including
the actual definitions for illustration purposes):

:— prop sorted(X) # "@var{X} is sorted.".
sorted([]).

sorted([_]).

sorted([X,YIR]) :- X < Y, sorted([YIR]).

:- regtype list(X) # "@var{X} is a list.".

list([1).

list ([_IT]) :- 1ist(T).

(list is actually a particular case of property: a regular type). Space limita-
tions do not allow a description of the assertion language. See the appendices
for more examples and [11, 8] for details.

4 Overall structure of the generated documents

If the manual is generated from a single main file (i.e., components is empty),
then the document generated will be a flat document containing no chapters.

2A simple compatibility library is available in order to make it possible to compile
programs documented using assertions and comments in traditional (constraint) logic pro-
gramming systems which lack native support for them. Using this library, such assertions
and comments are simply ignored by the compiler.

If the manual is generated from a main file and one or more components,
then the main file will be used to generate the cover and introduction, while
each of the component files will be used to generate a separate chapter.
The contents of each chapter will reflect the contents of the corresponding
component source file.

If a .pl file does not define the predicates main/0 or main/1, it is as-
sumed to be a library and information on the interface (e.g., the predicates
exported by the file, the name of the module and usage if it is a module,
etc. —the API), is produced by default. If, on the contrary, the file defines
the predicates main/0 or main/1, it is assumed to be an application and
no description of the interface is generated. Instead, usage information is
produced. Any combination of libraries and /or main files of applications can
be used arbitrarily as components or main files of a 1pdoc manual. Several
interesting combinations are documented in the 1pdoc manual [9].

In any case, a cover is generated with the title, authors, summary, ver-
sion, etc. of the whole manual, which are those of the main file. Then comes
the table of contents, whose level of detail can also be controlled via options.
This is followed by the sections or chapters corresponding to the file or files
being documented. Finally, the manual ends with the selected indices, list
of references, etc.

5 Structure of chapters

The structure of the individual chapters depends also on whether they are
applications or libraries. In the case of libraries, the structure is as below.
Note that inclusion of many of the following items can be turned on or off and
can be configured in several ways through options. An example of a source
file and the chapter generated for it (under a particular set of options) are
listed in appendices A and B, for illustration while reading the following
items.

e Chapter title, from a title comment, such as the line:
:— comment (title,"The classical quick-sort").
in the example. If the file is the main file, the title text (a docu-
mentation string) will also be used in the cover page and also as the
description of the manual in on-line indices. If no such comment exists,
then a suitable one is generated from the module or file name. Also, a
subtitle comment is allowed.

e Authors, which are obtained from author comments, such as:
:— comment (author,"Alan Robinson").
There can be more than one of these declarations per module (nor-
mally, one per author). These are followed by copyright info (from
copyright comments) and version info (from changelog comments).

If the file is part of a bigger package, then both the file version (i.e.,
when last changed) and the overall system versions are documented.

e Chapter introduction, taken from a summary comment or from a module
comment, if no summary is available (see also the example).

e A usage and interface section, which is typically generated without any
need for comment declarations, and includes:

— Module usage info, stating whether it is a module, a user file, a
package [1], etc., and how it is to be loaded. These automatically
generated loading instructions can be replaced by more specific
ones by means of a usage comment.

— List of exported predicates. These are classified by kind: normal
predicates, multifile predicates, regular types, properties, decla-
rations, etc.

— The list of other modules used. These are separated into User,
System and, optionally, Engine libraries® (this division is con-
trolled by the paths in SETTINGS). It is possible to optionally
prevent the information on System and/or Engine libraries used
from being included in the manual. Note that this information is
useful because it allows the user of a library to see which other
libraries it will load, and thus the impact that it will have on the
size of the executable.

A section with overall information on the library, taken from the
module comment, if available (and if this comment was not already
used before).

e A section documenting any new declarations defined by the library
(Ciao specific).

e A section documenting the predicates (including regular types and
properties) exported by the library (e.g., gsort/2, 1ist/1, and sorted/1
in the example). In principle, all exported predicates are documented.
However, it is possible to prevent documentation on a predicate from
appearing in the manual by using a hide comment.

e A section documenting the multifile predicates defined by the library.

e Possibly a section documenting some internal predicates (or regular
types or properties) defined by the library. In principle internal (lo-
cal) predicates are not documented, but documentation of an internal
predicate can be forced by using a doinclude comment. This is the
case for partition/4 in the example

3In Ciao, engine libraries contain builtins that are always present in any executable,
independently of whether they are imported or not from the program.

e Optionally, a section with known bugs, i.e., those present in bug com-
ments (see the example).

e Optionally, a section with a list of changes, those present in version
comments (see the example). It is possible to list only comments
associated with major version changes an leave out minor changes
(“patches”). This allows writing version comments which are inter-
nal, i.e., not meant to appear in the manual. Code is provided for
maintaining version numbers automatically with emacs, or they can
also be maintained with other tools such as standard version control
systems.

e Reexported predicates, i.e., predicates which are exported by a mod-
ule m1 but defined in another module m2 which is used by mi, are
normally not documented in the original module, but instead a simple
reference is included to the module in which they are defined. This
can be changed, so that the documentation is included in the referring
module, by using a comment/2 declaration with doinclude in the first
argument. This is often useful when documenting a library made of
several components: for a simple user’s manual, it is often sufficient
to list in the 1pdoc SETTINGS file the principal module, which is the
one which users will do a use_module/1 of, in the manual. This mod-
ule typically exports or reexports all the predicates which define the
library’s user interface.

If the chapter is documenting an application, then no module interface
information is included in the documentation, but it still contains title, au-
thors, version, summary, usage information, body, bugs, changelog, etc.

6 Documentation on individual predicates, prop-
erties, etc.

We now describe how individual predicates, declarations, properties, etc.
are documented. This is done in essentially the same way, independently of
whether they appear in the export list or they are internal predicates. The
documentation is obviously more detailed if more information is available on
the predicate in the form of assertions and comments.

If the program does not contain any declarations for the predicate, a line
is output documenting that this is a predicate of the given name and arity
and a simple comment is included saying that there is no further documen-
tation available. Note that this means for example that the predicate will
appear in the index, and also that its name will be available for command
completion.

If the predicate is declared to be a property or regular type, then this fact
is included in the documentation. If there is no textual comment available

for it, then its actual definition is included in the documentation (see 1ist/1
in the example). Otherwise, the comment is used (as with sorted/1 in the
example).

If an overall comment (a comment/2 declaration) is available for a predi-
cate, it is used as a general explanation (see the general comment for qsort/2
in the example). If any assertions are present, they are documented in mostly
textual form. In particular, if pred declarations are present, each of them is
considered a possible usage and is documented as such (e.g., the two pred
declarations for gsort/2 in the example). If a comment appears in the pred
declaration, it is associated with the usage.

The syntactic sugar which can be used with the assertions can be either
kept as is or expanded when documentation is generated. In the example,
having chosen the corresponding option, the modes (which are “property
macros” in the Ciao assertion language) used in partition/4 have been
spelled out in the documentation. Note that the parametric type 1list/2
used (e.g., in 1ist (X,num)) is assumed to be imported by default.

An interesting point is that if a textual comment is available in the defi-
nition of a property or regular type (such as for sorted in the example) then
this text is used when the property itself is used elsewhere in an assertion.
An example is the use of sorted in the two usages for gsort/2. This also
occurs if the property is imported from another module: the comment is read
from that module (actually, from the module’s .asr interface file) [12].4

7 Documentation strings

As shown in previous examples, the character strings which can be used
in machine readable comments (comment/2 declarations) and assertions can
include certain formatting commands (“markup”). The syntax of all the
formatting commands is: @command (followed by either a space or {}),
or @command{body} where command is the command name and body is the
(possibly empty) command body. Also, a command may have several bodies,
as in: @command{body1 }{body2}.

In order to make it possible to produce documentation in a wide variety
of formats, the command set is kept small. The names of the commands
are intended to be reminiscent of the commands used in the LaTeX text
formatting system, except that “@” is used instead of “\”. Note that “\”
would need to be escaped in ISO-Prolog strings, which would make the source
less readable.® Given that space restrictions do not allow a full description
of the command set, we provide a general description by categories.

There are a number of indexing commands which are used to mark certain
words or sentences in the text as concepts, names of predicates, libraries,

4This occurs in the example with 1ist/2, which is in the lists library.
5@ is familiar to texinfo users and, in any case, many ideas in LaTeX were taken from
scribe, where the escape character was indeed “@”!

files, etc. and which then get indexed and cross-referenced in hypertext
formats. There are also referencing commands which are used to introduce
bibliographic citations and references to sections, urls, email addresses, etc.
A set of formatting commands are provided which allow typesetting certain
words or sentences in a special fonts/faces, build itemized lists, introduce
sections, include verbatim examples, cartouches, etc. There are also special
commands for generating accented and special characters. A number of
inclusion commands allow inserting code or strings of text as part of the
documentation. The latter may reside in external files or in the file being
documented. The former must be part of the module being documented.
There are also commands for inserting and scaling images.

8 Other issues

8.1 Separating the documentation from the source file

Sometimes one would not like to include long introductory comments in the
module itself but would rather have them in a different file. This can be done
quite simply by using the @include command. For example, the following
declaration:
:— comment (module,"@include{Intro.lpdoc}").
will include the contents of the file Intro.1pdc as the module description.
Alternatively, sometimes one may want to generate the documentation
from a completely different file. Assuming that the original module ismi.pl,
this can be done by calling the module containing the documentation m1_doc.pl.
This m1_doc.pl file is the one that will be included the 1pdoc SETTINGS file,
instead of m1.pl. lpdoc recognizes and treats such _doc files specially so
that the name without the _doc part is used in the different parts of the
documentation, in the same way as if the documentation were placed in file
mi.

8.2 Generating auxiliary files (e.g., README:S)

Using lpdoc it is often possible to use a common source for documenta-
tion text which should appear in several places. For example, assume a file
INSTALL.1lpdoc contains text (with 1pdoc formatting commands) describ-
ing an application. This text can be included in a section of the main file
documentation as follows:
:— comment (module,"...

@section{Installation instructions}

@include{INSTALL.1pdoc}

LM
At the same time, this text can be used to generate a nicely formatted
INSTALL file in ascii, which can perhaps be included in the top level of the
source directory of the application. To this end, an INSTALL. p1 file as follows
can be constructed:

(c_itf

.pl files

‘ Manuals ‘
Back-ends r‘
\

doc. gen. rules Index entries ‘

CONFIG

Figure 2: Internal architecture

Auxiliary apps.

‘ Installation scripts ‘

‘ WWW & info sites ‘

:— use_package([assertions]).

:— comment(title,"Installation instructions").

:— comment (module,"@include{INSTALL.1pdoc}").

main. %% forces file to be documented as an aplication

Then, the ascii INSTALL file can be generated by simply running lpdoc
ascii in a directory with a SETTINGS file where MAIN is set to INSTALL.pl.

9 System architecture and implementation

Space limitations only allow us to sketch the architecture of the system.5
lpdoc is implemented in (Ciao-)Prolog and compiled into a standalone Ciao
executable. Since the source used by lpdoc is not just simple comments but
the actual code of the modules (e.g., the assertions, the module declarations,
exports, imports, dynamic declarations, syntax extensions, mode definitions,
etc., and even the source code) 1pdoc requires a full reader. This is specially
true for the full Ciao system source language, which is designed to be very
extensible [1]. Also, because the design objective was to be able to document
very large systems in an efficient way, processing of the source files, including
module interface information, declarations, comments, assertions, etc. has
been made highly incremental.

The objectives are achieved in a straightforward way by using the Ciao
assertion processing library (see Figure 2), itself an instance of the c_itf low-
level generic modular processing library [2], which, for each documented file,
and transitively for other files used by the one being documented, reads all
the information, normalizes the assertions, and saves them in .asr and .itf
cache files. This process is only repeated on a needed basis when a source file
is modified. The generation of documentation files is also partly incremental,
in that a documentation cache file (currently in GNU texinfo format)” is
kept for each Prolog file being documented and which only changes as needed
by any changes in the source files. Thus, a form of “separate documentation”
(in the same sense as “separate compilation”) is achieved.

5Details can be found in the comments within the source files of the system, which,
when printed out using lpdoc constitute the system’s internals manual.

"See “The GNU Texinfo Documentation System” manual for more info on this format,
widely used in the GNU project and on Linux and other Unix systems.

Given the information on the modules, 1pdoc uses a number of doc-
umentation generation rules (part of which are defined in a configuration
file) to implement the documentation actions outlined in previous sections.
Documentation is in general first generated in an internal format (basically,
the language of Section 7), and then converted by a number of backends (in
Prolog) and/or auxiliary (publicly available) applications (TeX, dvi2ps, etc.)
into manuals in the different formats, index entries, installation scripts, etc.
It is quite easy to add new backends. One of the most complicated issues has
been to generate consistent documentation and support as many common
features as possible across many different formats (for example, supporting
citations using BiBTeX files was tricky because few of the underlying formats
were capable of this).

10 Related work

We are not aware of other automatic documentation systems that have all
the capabilities of 1pdoc. There are some systems which allow interspersing
TeX and Prolog in a source file in the style of Knuth’s original formulation
of literate programming.® While these systems are quite useful, we believe
that 1pdoc goes beyond them in that a significant part of the documenta-
tion is generated essentially automatically by modules of the compiler, and
that the assertion language used is shared with other program development
tools, which makes them quite useful beyond just documentation. ICON and
Perl have some (limited) facilities for merging documentation and programs.
Perhaps the closest tool to 1pdoc is the javadoc documentation system for
Java [6]. As 1pdoc, javadoc uses information which is typically read and/or
derived by the compiler (types, class structure, etc.), allows including tex-
tual comments with (HTML a tag-based) markup, and can be extended via
doclets. Because of the tight integration with the language, javadoc cannot
be used well for Prolog programs (in the same way as 1pdoc would certainly
not be as effective as javadoc for Java programs). Also, we feel that the
markup language and, specially, the assertion language and the way proper-
ties can be used in documentation, as well as the number of output formats,
are richer in 1pdoc. Also, 1pdoc is not limited to documenting APITs, i.e., it
can also show source code.

11 Conclusions

Since the first “production” versions of the 1pdoc system became available
[9], we have applied it in a number of scenarios. We have used it to document
all the components of the Ciao Prolog development environment, libraries for

8
See
ftp://ftp.dante.de/tex-archive/macros/latex/contrib/other/gene/pl.tar.gz for a
good example.

SICStus and CHIP, standalone Prolog applications, and even applications
not written in Prolog. It has certainly proven very useful for documenting
library modules. However, we have also found it quite useful for generat-
ing “internals” and also user manuals of applications. Because the system
can not only generate manuals in many formats, but also maintain docu-
mentation and software distribution sites, we have found ourselves using it
for documenting and building distribution sites for a number of applications
which, as mentioned above, were not even written in Prolog.

We have found that with a bit of practice one can write assertions and
comments that at the same time document the program code, document the
external use of the library, and greatly improve the debugging and mainte-
nance cycles. One of the fundamental practical advantages observed when
using lpdoc to document programs is that it is much easier to maintain a
true correspondence between the program and its documentation, and to
identify precisely to what version of the program a given printed manual
corresponds. Furthermore, another fundamental advantage comes from the
fact that the assertions are designed to be checkable in part, either statically
or dynamically [8, 7], so that the documentation also achieves a certain de-
gree of certification. While in the Ciao system writing assertions is optional
(in contrast to, e.g., Mercury [13]), the fact that they will generate a good
part of the manual encourages programmers to write them, and this in turn
helps developing programs faster, because more errors are detected early on.

1pdoc is publicly available.’ The system is currently going further de-
velopment in several directions, such as, for example, reducing the need for
auxiliary applications (so that it is portable to more platforms) or improving
the emacs interface. With a simple compatibility library it is relatively easy
to make traditional (constraint) logic programming systems (in which new
declarations can be defined) accept programs adorned with Ciao-style asser-
tions and comments, so that they are ignored during compilation but 1pdoc
(and the Ciao preprocessor!) can be used on them. As mentioned above,
we have done this for SICStus and CHIP. It should not be too difficult to
modify the front end for other type/assertion languages, such as those used
in Mercury [13] and HAL [4] (this is under study at least in the case of HAL).

12 Acknowledgements

The authors would like to thank the members of the CLIP group and the
anonymous referees for their constructive comments. The development of
1pdoc has been funded in part by projects DiSCiP1 (ESPRIT LTR 22532
and CICYT TIC 97-1640-CE) and ELLA (CICYT TIC 96-1012-C02-01) and
ELLA (CICYT TIC 96-1012-C02-01). The design of the 1pdoc system has
benefitted from suggestions made by CLIP group members and users of
Ciao Prolog which are too many to mention (acknowledgements are given in

9See http://www.clip.dia.fi.upm.es/Software .

the reference manual and source files). This document has benefitted from
detailed comments from Daniel Cabeza, Per Cederberg, and the anonymous
referees.

References

[1]

[10]
[11]

[12]

D. Cabeza and M. Hermenegildo. A New Module System for Prolog. In
ICLP’99 WS on Parallelism and Implementation of (C)LP Systems. N.M.
State U., December 1999.

D. Cabeza and M. Hermenegildo. The Ciao Modular Compiler and Its Generic
Program Processing Library. In ICLP’99 WS on Parallelism and Implementa-
tion of (C)LP Systems. N.M. State U., December 1999.

D. Cordes and M. Brown. The Literate Programming Paradigm. IEEE Com-
puter Magazine, June 1991.

B. Demoen, M. Garcia de la Banda, W. Harvey, K. Marriott, and P. Stuckey.
Herbrand Constraint Solving in HAL. In Int. Conf. on Logic Programming.
MIT Press, Cambridge, MA, U.S.A., November 1999.

P. Deransart, A. Ed-Dbali, and L. Cervoni. Prolog: The Standard. Springer-
Verlag, 1996.

Lisa Friendly. The Design of Distributed Hyperlink Program Documentation.
In Int’l. WS on Hypermedia Design, Workshops in Computing. Springer, June
1996. Available from http://java.sun.com/docs/javadoc-paper.html.

M. Hermenegildo, F. Bueno, G. Puebla, and P. Lépez. Program Analysis,
Debugging and Optimization Using the Ciao System Preprocessor. In 1999
International Conference on Logic Programming, Cambridge, MA, November
1999. MIT Press.

M. Hermenegildo, G. Puebla, and F. Bueno. Using Global Analysis, Partial
Specifications, and an Extensible Assertion Language for Program Validation
and Debugging. In K. R. Apt, V. Marek, M. Truszczynski, and D. S. Warren,
editors, The Logic Programming Paradigm: a 25-Year Perspective, pages 161—
192. Springer-Verlag, July 1999.

M. Hermenegildo and The CLIP Group. An Automatic Documentation Gener-
ator for (C)LP — Reference Manual. The Ciao System Documentation Series—
TR CLIP5/97.3, Facultad de Informéatica, UPM, August 1997.

D. Knuth. Literate programming. Computer Journal, 27:97-111, 1984.

G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for De-
bugging of Constraint Logic Programs. In ILPS’97 WS on Tools and Environ-
ments for (C)LP, October 1997. ftp://clip.dia.fi.upm.es/pub/papers-
/assert_lang tr discipldeliv.ps.gz.

G. Puebla and M. Hermenegildo. Some Issues in Analysis and Specializa-
tion of Modular Ciao-Prolog Programs. In ICLP’99 WS on Optimization and
Implementation of Declarative Languages. N.M. State U., Las Cruces, NM,
November 1999.

[13] Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mer-
cury: an efficient purely declarative logic programming language. JLP, 29(1-3),
October 1996.

[14] The CLIP Group. CIAO System Reference Manual. The Ciao System Doc-
umentation Series-=TR CLIP3/97.1, Facultad de Informética, UPM, August
1997.

A An example: source

:- module(sort, [gsort/2,list/1,sorted/1], [assertions,regtypes,isomodes]) .
:- use_module(library(lists), [append/3]).

:— comment(title, "The classical quick-sort").
:— comment (module,"This library provides a naive implementation of
quick-sort and some associated types and properties.").

:— comment (gsort(X,Y),"@var{Y} is a sorted permutation of @var{X}.").
:- pred gsort(X,Y) : list(X) => sorted(Y)
"This is the normal use.".
:- pred gsort(X,Y) : (list(X), sorted(Y))
"Checking that Qvar{Y} is a sorted permutation of @var{X}.".
gsort([1,[1).
gsort ([X|L],R) :-
partition(L,X,L1,L2),
gsort(L2,R2),
gsort(L1,R1),
append (R1, [X[R2],R).

:- pred partition(+list(num),+num,-list(num),-list(num)).
:— comment (doinclude,partition/4) .

partition([]1,_B,[1,[]).

partition([E|R],C, [E|Left1] ,Right):-
E<C, !,
partition(R,C,Leftl,Right).

partition([E|R],C,Left, [E|Right1]):-
E>C, !,
partition(R,C,Left,Rightl).

:— prop sorted(X) # "@var{X} is sorted.".
sorted([]).
sorted([_]).
sorted([X,Y|R]) :- X < Y, sorted([YIR]).

:- regtype list/1.

1list([1).
1list([_IT]) :- 1ist(T).

:- comment (bug, "Code uses @pred{append/3}, which is inefficient.").

:— comment (version_maintenance,on).

:— comment (version(0*1+1,1999/10/11,03:19*%00+’CEST’), "Already made
the first change... (Manuel Hermenegildo)").

:- comment (version(0%*1+0,1999/10/11,03:18%29+°CEST’), "File created.
(Manuel Hermenegildo)").

B The classical quick-sort

Version: 0.1#1 (1999/10/11, 3:19:0 CEST)
This library provides a naive implementation of quick-sort and some associated
types and properties.

B.1 Usage and interface (sort)

e Library usage:

:— usemodule(library(sort)).

e Exports:

— Predicates:
gsort/2.

— Properties:
sorted/1.

— Regular Types:
list/1.

e Other modules used:

— System library modules:

lists.

— Internal (engine) modules:
arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
concurrency, data_facts, exceptions, io_aux,
io_basic, prolog flags, streams_basic, system_info, term_basic,
term_compare, term_typing.

B.2 Documentation on exports (sort)
gsort/2: PREDICATE

gsort(X,Y)
Y is a sorted permutation of X.

Usage 1: gsort(X,Y)
e Description: This is the normal use.

e Should hold at call time:
list(X) (1ist/1)

e Should hold upon exit:
Y is sorted. (sorted/1)

Usage 2: gsort(X,Y)
e Description: Checking that Y is a sorted permutation of X.

o Should hold at call time:

list(X) (1ist/1)

Y is sorted. (sorted/1)
list/1: REGTYPE
A regular type, defined as follows:
list([1).
list([_1|T]) :-

list(T).

sorted/1: PROPERTY

Usage: sorted(X)
e Description: X is sorted.

B.3 Documentation on internals (sort)

partition/4: PREDICATE
Usage:
o Should hold at call time:
Argi is a list of nums. (regtype/2)
Arg2 is a number. (regtype/2)
Arg3 is a free variable. (var/1)
Arg4 is a free variable. (var/1)

o Should hold upon exit:
Arg3 is is a list of nums. (regtype/2)
Arg4 is is a list of nums. (regtype/2)

B.4 Known bugs and planned improvements (sort)

e Code uses append/3, which is inefficient.

B.5 Version/Change Log (sort)

e Version 0.1#1 (1999/10/11, 3:19:0 CEST)
Already made the first change... (Manuel Hermenegildo)

e Version 0.1 (1999/10/11, 3:18:29 CEST)

File created. (Manuel Hermenegildo)

