A Documentation Generator
for (C)LP Systems

Manuel Hermenegildo

herme@fi.upm.es
Department of Computer Science, Technical U. of Madrid (UPM)

Abstract. We describe 1pdoc, a tool which generates documentation
manuals automatically from one or more logic program source files, writ-
ten in Ciao, ISO-Prolog, and other (C)LP languages. It is particularly
useful for documenting library modules, for which it automatically gen-
erates a rich description of the module interface. However, it can also be
used quite successfully to document full applications. A fundamental ad-
vantage of using lpdoc is that it helps maintaining a true correspondence
between the program and its documentation, and also identifying pre-
cisely to what version of the program a given printed manual corresponds.
The quality of the documentation generated can be greatly enhanced by
including within the program text assertions (declarations with types,
modes, etc. ...) for the predicates in the program, and machine-readable
comments. One of the main novelties of 1pdoc is that these assertions and
comments are written using the Ciao system assertion language, which is
also the language of communication between the compiler and the user
and between the components of the compiler. This allows a significant
synergy among specification, debugging, documentation, optimization,
etc. A simple compatibility library allows conventional (C)LP systems
to ignore these assertions and comments and treat normally programs
documented in this way. The documentation can be generated interac-
tively from emacs or from the command line, in many formats including
texinfo, dvi, ps, pdf, info, ascii, html/css, Unix nroff/man, Windows
help, etc., and can include bibliographic citations and images. 1pdoc can
also generate “man” pages (Unix man page format), nicely formatted
plain ASCII “readme” files, installation scripts useful when the manuals
are included in software distributions, brief descriptions in html/css or
info formats suitable for inclusion in on-line indices of manuals, and
even complete WWW and info sites containing on-line catalogs of doc-
uments and software distributions. The lpdoc manual, all other Ciao
system manuals, and parts of this paper are generated by lpdoc.

1 Introduction

lpdoc is an automatic program documentation generator for (C)LP systems. Its
main functionality is to generate a reference manual automatically from one or
more source files of (constraint) logic programming systems. It has been devel-
oped as part of the Ciao Prolog [1] program development environment, but it

}> Manuals, Readmes,... _te})(<info

into

| !

Fig. 1. Overall operation

can also be used to document source files of almost any other (ISO-)Prolog-like
[6] (C)LP system. 1lpdoc is particularly useful for documenting library modules,
for which it automatically generates a rich description of the module interface.
However, it can also be used quite successfully to document full applications.

The operation of 1pdoc is illustrated in Figure 1. 1pdoc combines the infor-
mation from a number of user and system files (as specified in a user-provided
configuration file -SETTINGS in Figure 1)! and produces manuals in a number
of formats (texinfo, dvi, ps, pdf, info, html/css, ascii, Windows help, etc.)
which can include bibliographic citations and images (if the target supports
them). In addition to full manuals, 1pdoc can also generate nicely formatted
plain ASCII “readme” files, man pages (Unix manual page format), as well as
brief descriptions in html or emacs info formats suitable for inclusion in an on-
line master index of applications. Using these index entries, 1pdoc can create
and maintain fully automatically WWW and info sites containing pointers to
the on-line versions of the documents it produces. Similarly, it can be used to
generate software distribution sites. 1pdoc also generates installation scripts for
the manuals it produces, which simplify the process of creating a distribution of
the corresponding software package. Finally, it is also possible to start a number
of viewers directly from lpdoc in order to quickly browse the manuals produced.
The documentation can be generated interactively from emacs or from the com-
mand line in a documentation directory containing configuration files.

The quality of the documentation generated can be greatly enhanced by
including within the program text assertions (declarations with types, modes,
and other properties) for the predicates in the program, and machine-readable
comments (in the “literate programming” style [11,4]). The assertions and com-
ments included in the source file need to be written using the Ciao assertion
language [12,10,13]. This is one of the main novelties of lpdoc. The fact that
this assertion language also serves as the communication vehicle between the
compiler and the user and between the components of the compiler allows a
significant synergy among specification, debugging, analysis, optimization, and,
thanks to 1pdoc, program documentation. As we will see, 1pdoc understands na-
tively this language and can thus provide accurate information and relate both
the the formal and the textual aspects of properties with the assertions in which
they occur.

! It also possible to use files written in GNU texinfo format as part of the 1pdoc input
(useful when gradually converting a manual from this popular format to lpdoc).

In order to make the discussion self-contained, an example of source code and
the output produced by 1pdoc is included at the end of the paper. However, since
it is difficult to show significant output from the system in the space available, the
reader is invited to look at actual manuals generated by 1pdoc for reference while
reading the paper. In particular, the 1pdoc manual [9] and all other Ciao system
manuals are generated by 1pdoc. The Ciao manuals and other 1pdoc-generated
manuals can be found on-line at http://www.clip.dia.fi.upm.es/Software,
http://www.clip.dia.fi.upm.es/Software/Ciao, and
http://www.clip.dia.fi.upm.es/Software/Beta (registration as a Beta
tester is needed for access to the latter). In fact, all these WWW sites are
automatically generated and maintained by lpdoc as well.

2 Generating a manual

We now describe, from the user’s point of view, the process of generating a
manual (semi-)automatically from a set of source files, installing them in a public
area, and accessing them on line.

Documentation can be generated fully automatically from within emacs (e.g.,
from the Ciao emacs-based program development environment) or calling 1pdoc
from the command line. The process starts (automatically in the former case
or by hand in the latter) by creating a directory (e.g., doc) in which the docu-
mentation will be built. This directory is usually placed in the top directory of
the distribution of the application or library to be documented and will contain
the (automatically generated) manuals as well as scripts for installation of such
manuals during the installation of the software package. Typically, almost all
files in this directory will be automatically generated by 1pdoc, which also takes
care of cleaning up this directory of intermediate files before distribution of the
software, leaving only the manuals in the selected formats. The configuration
file of Figure 1, normally named SETTINGS, also resides in this directory. This
file is written in Prolog syntax, possibly using Ciao syntactic enhancements (in
particular, the functional notation is often useful in this context).

A manual can be generated either from a single source file or from a set
of source files. In the latter case, one of these files should be chosen to be the
main file, and the others will be the component files. The main file is the one
that will provide the title, author, date, summary, etc. to the entire document.
In principle, any set of source files can be documented, even if they contain no
assertions or comments. However, the presence of these will greatly improve the
documentation (see Section 3).

The name of main file is specified in the SETTINGS file by defining a fact of
a predicate main. Facts of a (possibly empty) predicate components define the
component files which will generate the different chapters of the manual. Facts of
a predicate filepaths are used to define all the directories where the previously
mentioned files can be found. Similarly, facts of the predicate systempaths are
used to list all the system directories where system files used by the files be-
ing documented can be found. This is needed because on startup lpdoc has no

default search paths for files defined, not even those defined by default in the
Prolog system under which it was compiled (typically Ciao). This has the im-
portant consequence that it allows documenting Prolog systems other than that
under which 1pdoc was compiled. The effect of putting a path in systempaths
instead of in filepaths is that the modules and files in those paths are docu-
mented as system modules (this is useful when documenting an application to
distinguish its parts from those which are in the system libraries).

These are the only settings which are strictly needed in order to generate
a manual. However, many aspects of the generated manuals can be controlled
through additional configuration parameters. For example, it is possible to con-
trol what is included in the different files and how: whether to include bug
information or not, comments associated to version changes and/or to patches,
author info, detailed explanation of predicate argument modes, starting page
number, etc. It is also possible to define the set of formats (dvi, ps, pdf, ascii,
html, info, manl, ...) in which the documentation should be generated by de-
fault (however, a manual in any of the supported formats can be generated on
demand by typing “lpdoc format”). In particular, selecting htmlindex and/or
infoindex requests the generation of (parts of) a master index to be placed in
an installation directory and which provide pointers to the documents generated.

A predicate indices determines a list of indices to be included at the end
of the document. These can include indices for defined predicates, modules,
properties, types, concepts, files, etc. The contents of these indices are afterwards
used for several purposes in on-line documents. In particular, 1pdoc includes an
emacs library for automatically locating any part of the manual related to the
symbol (predicate, flag, property, type, etc.) under the cursor (“help for symbol
under cursor”) and also performing automatic completion of partially typed
names of predicates, types, etc. This is very useful when typing the name of a
library predicate: it is possible to complete the name and also locate in one step
the corresponding page in the on-line manual generated by lpdoc.

It is possible to define a predicate bibfile containing paths of .bib files, i.e.,
files containing bibliographic entries in BiBTeX format. If citations are used in
the text (using the @cite command) these will be the files in which the citations
will be searched for. All the references in all component files will appear together
in a References appendix at the end of the manual (the -norefs option prevents
generation of the 'References’ appendix). It is also possible to select different
levels of verbosity during processing, from pretty silent —more or less only a
couple of messages per file—, to quite verbose, reporting the files visited and the
predicates being documented on the fly. The latter is obviously quite useful for
debugging.

Once the manual has been generated in the desired formats, 1pdoc can also
install them in a different area, specified by a predicate docdir in the SETTINGS
file. As mentioned before, 1pdoc can generate directly brief descriptions in html
or emacs info formats suitable for inclusion in an on-line index of applications.
In particular, if the htmlindex and/or infoindex options are selected, then
lpdoc will create the installation directory, place the documentation in the de-

sired formats in this directory, and produce and place in the same directory
suitable index.html and/or dir files. These files will contain some basic info
on the manual (extracted from the summary and title, respectively) and include
pointers to the relevant documents which have been installed. The appearance
of the actual indices created (e.g., index.html) can be controlled via templates
and style sheets, specified in the configuration file. Several manuals, coming from
different doc directories, can be installed in the same docdir directory. In this
case, the descriptions of and pointers to the different manuals will be automat-
ically combined (appearing in alphabetic order) in the index.html and/or dir
indices, and a contents area will appear at the beginning of the html index page.
In the same way, facilities are provided for de-installation of manuals from the
docdir area.

3 Enhancing the documentation being generated

lpdoc will generate quite useful information from standard program files: e.g.,
exported predicates with their arity, characteristics of these predicates —dynamic,
multifile, ...—, other modules used, required libraries, and, if available, types
and other properties, etc. However, the quality of the documentation generated
can be greatly enhanced by including within the program text assertions, and
machine-readable comments.

Assertions are declarations which are included in the source and provide in-
formation regarding certain characteristics of the program. Typical assertions in-
clude type declarations, modes, general properties (such as does not fail), etc. For
our purposes, we can consider standard compiler directives (such as dynamic/1,
op/3, meta predicate/1...), also as assertions. When documenting a module,
lpdoc will use the assertions associated with the module interface to construct
a textual description of this interface. In principle, only the exported predicates
are documented, although any predicate can be included in the documentation
by explicitly requesting it (by using a particular comment/2 declaration —see
below). Judicious use of these assertions allows at the same time documenting
the program code, documenting the external use of the module, and greatly
improving the debugging process. The latter is possible because the assertions
provide the compiler with information on the intended meaning or behavior of
the program (i.e., the specification) which can be checked at compile-time (by
a preprocessor/static analyzer) and/or at run-time (via checks inserted by the
same preprocessor) —see [8] for details.

Machine-readable comments are also declarations included in the source pro-
gram but which contain additional information intended to be read by humans
(this is where the connection with the literate programming style of Knuth [11,
4] is closest). These declarations are ignored by the compiler in the same way as
classical comments. Thus, they can be used to document the program source in
place of (or in combination with) the normal comments typically inserted in the
code by programmers. However, because they are more structured and they are
machine-readable, they can also be used to improve the automatic generation of

printed or on-line documentation. Typical such comments include module title,
author(s), bugs, changelog, etc. Judicious use of these comments allows enhanc-
ing at the same time the documentation of the program text and the manuals
generated.

As mentioned before, 1pdoc requires these assertions and comments to be
written using the Ciao system assertion language [12,10,13].> Comments have
the general form:

:— comment (CommentType,CommentData) 3

where generally the first argument states the type of comment and the second
one the comment itself, written in a particular markup language which is very
similar to texinfo and LaTeX (see Section 7). Examples of comments are:

:— comment(title,"Complex numbers library").

:- comment (summary,"Provides an ADT for complex numbers.").

:- comment(ctimes(X,Y,Z),"@var{Z} is @var{Y} times @var{X}.").

An example of an assertion is:
:- pred gsort(X,Y) : list(X) => sorted(Y)

"Qvar{Y} is a sorted permutation of @var{X}.".
which states that in the calls to predicate gsort/2 the first argument should be a
list and, upon exit, the second argument should be sorted. There is also a textual
assertion comment, written using the same markup language as in comment/2.
The properties 1ist/1 and sorted/1 used in the assertion might be declared as
such with the following assertions (we are also including the actual definitions
for illustration purposes):
:- prop sorted(X) # "@var{X} is sorted.".
sorted([]).
sorted([_]).
sorted([X,Y|R]) :- X < Y, sorted([Y|R]).

:- regtype list(X) # "@var{X} is a list.".

list([1).

list([_IT]) :- list(T).

(list is actually a particular case of property: a regular type). Space limitations
unfortunately do not allow a description of the assertion language. See the ap-
pendices for more examples and [12,10, 13] for details.

4 Overall structure of the generated documents

If the manual is generated from a single main file (i.e., components is empty),
then the document generated will be a flat document containing no chapters. If
the manual is generated from a main file and one or more components, then the

2 A simple compatibility library can be used so that programs documented using as-
sertions and comments can be loaded by traditional (constraint) logic programming
systems which lack native support for them. Using this library, such assertions and
comments are simply ignored by the compiler.

3 For brevity, also :- doc(...,...) . can be used.

main file will be used to generate the cover and introduction, while each of the
component files will generate a separate chapter. The contents of each chapter
will reflect the contents of the corresponding component source file.

If a .pl file does not define the predicates main/0 or main/1, it is assumed
to be a library and information on the interface (e.g., the predicates exported by
the file, the name of the module and usage if it is a module, etc. —the API), is
produced by default. If, on the contrary, the file defines the predicates main/0 or
main/1, it is assumed to be an application and no description of the interface is
generated. Instead, usage information is produced. Any combination of libraries
and/or main files of applications can be used arbitrarily as components or main
files of an 1pdoc manual (see the 1pdoc manual [9] for interesting combinations).
A :-comment (filetype, filetype). declaration can be used to defeat these rules.

In any case, a cover is generated with the title, authors, summary, version,
etc. of the whole manual, which are those of the main file. Then comes the table of
contents, whose level of detail can also be controlled via options. This is followed
by the sections or chapters corresponding to the file or files being documented.
Finally, the manual ends with the selected indices, list of references, etc.

5 Structure of chapters

The structure of the individual chapters depends also on whether they are ap-
plications or libraries. In the case of libraries, the structure is as below. Note
that inclusion of many of the following items can be turned on or off and can
be configured in several ways through options. Examples of a source file and
the chapter generated for it (under a particular set of options) are listed in
appendices A and B, for illustration while reading the following items.

— Chapter title, from a title comment, such as the line:
:- comment (title,"The classical quick-sort").
in the example. If the file is the main file, the title text (a documentation
string) will also be used in the cover page and also as the description of the
manual in on-line indices. If no such comment exists, then a suitable one
is generated from the module or file name. Also, a subtitle comment is
allowed.

— Authors, which are obtained from author comments, such as:
:— comment (author,"Alan Robinson").
There can be more than one of these declarations per module (normally,
one per author). These are followed by copyright info (from copyright com-
ments) and version info (from changelog comments). If the file is part of a
bigger package, then both the file version (i.e., when last changed) and the
overall system versions are documented.

— Chapter introduction, taken from a summary comment or from a module
comment, if no summary is available (see also the example).

— A usage and interface section, which is typically generated without any need
for comment declarations, and includes:

e Module usage info, stating whether it is a module, a user file, a pack-
age [2], etc., and how it is to be loaded. These automatically generated
loading instructions can be replaced by more specific ones by means of
a usage comment.

e List of exported predicates. These are classified by kind: normal predi-
cates, multifile predicates, regular types, properties, declarations, etc.

e The list of other modules used. These are separated into User, System
and, optionally, Engine libraries* (this division is controlled by the paths
in SETTINGS). It is possible to optionally prevent the information on
System and/or Engine libraries used from being included in the manual.
Note that this information is useful because it allows the user of a library
to see which other libraries it will load, and thus the impact that it will
have on the size of the executable.

— A section with overall information on the library, taken from the module
comment, if available (and if this comment was not already used before).

— A section documenting new declarations [2] defined (Ciao-specific).

— A section documenting the predicates (including regular types and proper-
ties) exported by the library (e.g., gsort/2, list/1, and sorted/1 in the
example). In principle, all exported predicates are documented. However, it
is possible to prevent documentation on a predicate from appearing in the
manual by using a hide comment (useful, e.g., for low-level predicates which
are exported but are not meant to be used directly).

— A section documenting the multifile predicates defined by the library.

— Possibly a section documenting some internal predicates (or regular types or
properties) defined by the library. In principle internal (local) predicates are
not documented, but documentation of an internal predicate can be forced
by using a doinclude comment. This is the case for partition/4 in the
example. This is useful for example when generating “internals” manuals or
implementation chapters for inclusion in larger documents.

— Optionally, a section with known bugs, i.e., those present in bug comments
(see the example).

— Optionally, a section with a list of changes, those present in version com-
ments (see the example). It is possible to list only comments associated with
major version changes an leave out minor changes (“patches”). This allows
writing version comments which are internal, i.e., not meant to appear in
the manual. Code is provided for maintaining version numbers automatically
with emacs, or they can also be maintained with other tools such as standard
version control systems.

— Reexported predicates, i.e., predicates which are exported by a module m1
but defined in another module m2 which is used by m1, are normally not doc-
umented in the original module, but instead a simple reference is included to
the module in which they are defined. This is useful if the documentation for
the referred module is included in the same document. Otherwise, using a

4 In Ciao, engine libraries contain builtins that are always present in any executable,
independently of whether they are imported or not from the program.

comment/2 declaration with doinclude in the first argument and the predi-
cate descriptor in the second forces the documentation to be included in the
referring module. This is often useful when documenting a library made of
several components: typically there is a principal module, which is the one
which users will do a use module/1 of, and which exports or reexports all the
predicates which define the library’s user interface. It is then often best to
include in the manual this main file only, with the appropriate doincludes.

If the chapter is documenting an application, then no module interface informa-
tion is included in the documentation, but it still contains title, authors, version,
summary, usage information, body, bugs, changelog, etc.

6 Documentation on predicates, properties, etc.

We now describe how individual predicates, declarations, properties, etc. are
documented. This is done in essentially the same way, independently of whether
they appear in the export list or they are internal predicates. The documentation
is obviously more detailed if more information is available on the predicate in
the form of assertions and comments.

If the program does not contain any declarations for the predicate, a line is
output documenting that this is a predicate of the given name and arity and
a simple comment is included saying that there is no further documentation
available. Note that this means for example that the predicate will appear in the
index, and also that its name will be available for command completion within
emacs.

If the predicate is declared to be a property or regular type, then this fact is
included in the documentation. If there is no textual comment available for it,
then its actual definition is included in the documentation (see 1ist/1 in the
example). Otherwise, the comment is used (as with sorted/1 in the example).

If an overall comment (a comment/2 declaration) is available for a predicate,
it is used as a general explanation (see the general comment for gsort/2 in the
example). If any assertions are present, they are documented in mostly textual
form. In particular, if pred declarations are present, each of them is considered
a possible conceptual usage (i.e., a particular way in which the predicate is
intended to be used) and is documented as such (e.g., the two pred declarations
for gsort/2in the example). Also, if a comment appears in the pred declaration,
it is associated with the usage (as opposed to the general comment above).

The syntactic sugar which can be used with the assertions (e.g., property
macros [12,13]) can be either kept as is or expanded when documentation is
generated. In the example, having chosen the corresponding option, the modes
(which are “property macros” in the Ciao assertion language) used in partition/4
have been spelled out in the documentation. Note that the parametric type
list/2 used (e.g., in list(X,num)) is assumed to be imported by default.

A point of particular interest is that if a textual comment is available in the
definition of a property or regular type (such as for sorted in the example) then
this text is used when the property itself is used elsewhere in an assertion. An

example is the use of sorted in the two usages for gsort/2. This also occurs if
the property is imported from another module: the comment is read from that
module (actually, from the module’s .asr interface file) [14].5

7 Documentation strings

As shown in previous examples, the character strings which can be used in
machine readable comments (comment/2 declarations) and assertions can in-
clude certain formatting commands (“markup”). The syntax of all the for-
matting commands is: @command (followed by either a space or {}), or
@command{body} where command is the command name and body is the (pos-
sibly empty) command body. Also, a command may have several bodies, as in:
@command{body! }{body2}.

In order to make it possible to produce documentation in a wide variety
of formats, the command set is kept small. The names of the commands are
intended to be reminiscent of the commands used in the LaTeX text formatting
system, except that “@” is used instead of “\”. Note that “\” would need to
be escaped in ISO-Prolog strings, which would make the source less readable.b
Given that space restrictions do not allow a full description of the command set,
we provide a general description by categories.

There are a number of indexing commands which are used to mark cer-
tain words or sentences in the text as concepts, names of predicates, libraries,
files, etc. and which then get indexed and cross-referenced in hypertext formats.
There are also referencing commands which are used to introduce bibliographic
citations and references to sections, urls, email addresses, etc. A set of format-
ting commands are provided which allow typesetting certain words or sentences
in a special fonts/faces, build itemized lists, introduce sections, include verba-
tim examples, cartouches, etc. There are also special commands for generating
accented and special characters. A number of inclusion commands (@include,
@includedef,...) allow inserting code or strings of text as part of the documenta-
tion. The latter may reside in external files or in the file being documented. The
former must be part of the module being documented. There are also commands
for inserting and scaling images.

8 Other issues

Separating the documentation from the source file: Sometimes one would not like
to include long introductory comments in the module itself but would rather have
them in a different file. This can be done quite simply by using the @include
command mentioned above. For example, the following declaration:

:— comment (module,"@include{Intro.lpdoc}").

5 This occurs in the example with 1ist/2, which is in the lists library.
5 @ is familiar to texinfo users and, in any case, many ideas in LaTeX were taken
from scribe, where the escape character was indeed “@”!

10

(c_itf

.pl files

r
:
Auxiliary apps.

m Installation scripts

Back-ends

doc. gen. rules

WWW & info sites

Fig. 2. Internal architecture

will include the contents of the file Intro.1lpdoc as the module description.

Alternatively, sometimes one may want to generate the documentation from
a completely different file. Assuming that the original module is m1.p1, this can
be done by calling the module containing the documentation m1_doc.pl. This
ml_doc.pl file is the one that will be included the 1pdoc SETTINGS file, instead
of m1.pl. 1pdoc recognizes and treats such _doc files specially so that the name
without the _doc part is used in the different parts of the documentation, in the
same way as if the documentation were placed in file m1.

Generating auziliary files (e.g., READMEs): Using lpdoc it is often possible

to use a common source for documentation text which should appear in several

places. For example, assume a file INSTALL.1lpdoc contains text (with lpdoc

formatting commands) describing an application. This text can be included in

a section of the main file documentation as follows:

:— comment(module,"... @section{Installation instructions}
@include{INSTALL.1lpdoc} ...").

At the same time, this text can be used to generate a nicely formatted INSTALL
file in ASCII, which can perhaps be included in the top level of the application’s
source directory. To this end, an INSTALL.pl file is constructed as follows:

:- include(library([assertions])).

:— comment(title,"Installation instructions").

:— comment (module,"@include{INSTALL.1lpdoc}").

main. %% forces file to be documented as an aplication

Then, the ASCII INSTALL file will be generated by simply running lpdoc ascii
in a directory with a SETTINGS file where MAIN is set to INSTALL. pl (these steps
can be performed automatically in the interactive environment).

9 System architecture and implementation

Space limitations only allow us to sketch the architecture and implementation
of the system.” 1pdoc is implemented in (Ciao-)Prolog and compiled into a
standalone Ciao executable. Executable size is around 300K for the dynamic
version and 2.7Mbytes for the fully static version (including WAM engine). The

7 Details can be found in the comments within the source files of the system, which,
when printed out using lpdoc constitute the system’s internals manual.

11

executable is generated from around 11K lines of application-specific code (in-
cluding comments/documentation) and 12K lines from the Ciao system libraries,
plus some 1K additional lines of miscellaneous code (html/css, TeX and BiBTeX
styles, emacs lisp, etc.). The first version of the system was completed between
1996 and 1997 with successive improved versions appearing after that.

Since the source used by lpdoc is not just simple comments but the actual
code of the modules (e.g., the assertions, the module declarations, exports, im-
ports, dynamic declarations, syntax extensions, mode definitions, etc., and even
the source code) lpdoc requires a full reader. This is specially true for the full
Ciao system source language, which is designed to be very extensible [2]. Also,
the reader (and the overall system) must be adaptable to different operator def-
initions and sets of built-ins so that different flavors of Prolog and other (C)LP
languages can be supported. Finally, because the design objective was to be able
to document very large systems in an efficient way, processing of the source files,
including module interface information, declarations, comments, assertions, etc.
needs to be highly incremental.

At the level of source file processing, the objectives are achieved in a rela-
tively straightforward way thanks to the Ciao assertion processing library (see
Figure 2), itself an instance of the c_itf low-level generic modular processing
library [3]. For each documented file, and transitively for other files used by
the one being documented, the library reads all the information, normalizes the
assertions, and saves them in .asr and .itf cache files. This process is only
repeated on a needed basis when a source file is modified. The syntax extensions
and builtins “seen” during the processing of a file can be controlled by setting
the 1pdoc load paths (systempaths and filepaths —see Section 2) so that files
containing the appropriate syntax extension definitions and the documentation
for the builtins are “seen” by lpdoc (see [2] for details).

Once it has read the information for a file and its auxiliary files, 1pdoc uses
a number of documentation generation rules (also written in Prolog and part of
which are defined in a configuration file) to implement the documentation ac-
tions outlined in previous sections. Documentation is in general first generated
in an internal format (basically, the language of Section 7), and then converted
by a number of backends in Prolog and/or auxiliary (publicly available) appli-
cations (TeX, dvi2ps, etc.) into manuals in the different formats, index entries,
installation scripts, etc. It is quite easy to add new backends. The generation
of the documentation files is also partly incremental, in that a documentation
cache file (currently in GNU texinfo format)?® is kept for each Prolog file being
documented and which only changes as needed by any changes in the source
files. Thus, a form of “separate documentation” (in the same sense as “separate
compilation”) is achieved. Early versions used makefiles for dependency track-
ing in this process, while more recent versions do the job in Prolog using the
ciao make library, which has greatly increased portability. Unfortunately some
of the auxiliary tools currently used by lpdoc are difficult to make incremental,

8 See “The GNU Texinfo Documentation System” manual for more info on this format,
widely used in the GNU project and on Linux and other Unix systems.

12

although this is not a real problem in practice. For example, the Ciao reference
manual is generated from approx. 180 source Prolog files and a corresponding
number of cache texinfo files, producing 50K lines of texinfo code and 550
busy A4 pages. Regenerating the dvi file after changing a single file (e.g., the
lists library) takes only 10% of the time needed to generate the whole manual
from scratch.

One of the most complicated issues has been to generate consistent documen-
tation and support as many common features as possible across many different
formats. For example, supporting citations using BiBTeX files was tricky be-
cause few of the underlying formats were capable of this (the solution was to
bridge the missing capabilities in Prolog).

10 Related work

We are not aware of other automatic documentation systems that have all the
capabilities of 1pdoc. There are some systems which allow interspersing TeX
and Prolog in a source file in the style of Knuth’s original formulation of literate
programming.® While these systems are quite useful, we believe that 1pdoc goes
beyond them in that a significant part of the documentation is generated essen-
tially automatically by modules of the compiler, and that the assertion language
used is shared with other program development tools, which makes them quite
useful beyond just documentation. ICON and Perl have some (limited) facilities
for merging documentation and programs. Perhaps the closest tool to 1pdoc is
the javadoc documentation system for Java [7] (the development of 1pdoc and
javadoc started about the same time and independently). As lpdoc, javadoc
uses information which is typically read and/or derived by the compiler (types,
class structure, etc.), allows including textual comments with (HTML) markup,
and can be extended via doclets. javadoc seems to have concentrated on produc-
ing good HTML output, while 1pdoc aims to produce consistent documentation
across a large number of different formats. Because of the tight integration with
the language, javadoc cannot be used well for Prolog programs (in the same
way as 1lpdoc would certainly not be as effective as javadoc for Java programs).
Also, we feel that the markup language and, specially, the assertion language
and the way properties can be used in documentation, are richer in 1pdoc. Also,
lpdoc is not limited to documenting APIs, i.e., it can also include source code
in the generated documents, create indices, maintain web and info sites, etc.

11 Conclusions

Since the first “production” versions of the 1pdoc system became available [9],
we have applied it in a number of scenarios. We have used it to document all the
components of the Ciao Prolog development environment, libraries for SICStus

© See ftp://ftp.dante.de/tex-archive/macros/latex/contrib/other/gene/pl.tar.gz
for a good example.

13

and CHIP, standalone Prolog applications, and even applications not written
in Prolog. It has certainly proven very useful for documenting library modules.
However, we have also found it quite useful for generating “internals” and also
user manuals of applications and project reports. Because the system can not
only generate manuals in many formats, but also maintain documentation and
software distribution sites, we have found ourselves using it for documenting and
building such sites for a number of applications which, as mentioned above, were
not even written in Prolog.

We have found that, with a bit of practice, one can write assertions and
comments that at the same time document the program code, document the
external use of the library, and greatly improve the debugging and maintenance
cycles. One of the fundamental practical advantages observed when using 1pdoc
to document programs is that it is much easier to maintain a true correspon-
dence between the program and its documentation, and to identify precisely to
what version of the program a given printed manual corresponds. Furthermore,
another fundamental advantage comes from the fact that the assertions are de-
signed to be checkable in part, either statically or dynamically [10, 8], so that
the documentation also achieves a certain degree of certification. While in the
Ciao system writing assertions is optional (in contrast to, e.g., Mercury [15]), the
fact that they will generate a good part of the manual encourages programmers
to write them, and this in turn helps developing programs faster, because more
errors are detected early on.

lpdoc is publicly available.!® The system is currently undergoing further
development in several directions, such as, for example, reducing the need for
auxiliary applications (so that it is portable to more platforms) or improving
the emacs-based interactive environment. As mentioned previously, with a sim-
ple compatibility library it is relatively easy to make traditional (constraint)
logic programming systems (in which new declarations can be defined) accept
programs adorned with Ciao-style assertions and comments, so that they are ig-
nored during compilation but 1pdoc (and the Ciao preprocessor!) can be used on
them. As mentioned above, we have done this for SICStus and CHIP. It should
not be too difficult to modify the front end for other type/assertion languages,
such as those used in Mercury [15] and HAL [5] (this is under study at least in
the case of HAL), or even non LP-based languages (which would, however, need
a specific front-end).

Acknowledgements: The design of the 1pdoc system has benefitted from sug-
gestions made by CLIP group members and users of Ciao Prolog which are too
many to mention here (acknowledgements are given in the reference manual and
source files). This document has benefitted from detailed comments from Daniel
Cabeza, Per Cederberg, and the anonymous referees. The author would also like
to thank the PC for deciding to accept this paper, despite its perhaps somewhat
atypical nature. The development of 1pdoc has been funded in part by CICYT
project EDIPIA (TIC99-1151).

10 See http://www.clip.dia.fi.upm.es/Software .

14

References

1. F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. Lépez-Garcia, and G. Puebla.
The Ciao Prolog System. Reference Manual. TR CLIP3/97.1, School of Computer
Science, Technical University of Madrid (UPM), August 1997.

2. D. Cabeza and M. Hermenegildo. A New Module System for Prolog. In Interna-
tional Conference on Computational Logic, CL2000, LNCS. Springer-Verlag, July
2000. To appear.

3. D. Cabeza and M. Hermenegildo. The Ciao Modular, Standalone Compiler and Its
Generic Program Processing Library. In Special Issue on Parallelism and Imple-
mentation of (C)LP Systems. To appear, Electronic Notes in Theoretical Computer
Science. Elsevier - North Holland, 2000.

4. D. Cordes and M. Brown. The Literate Programming Paradigm. IFEE Computer
Magazine, June 1991.

5. B. Demoen, M. Garcia de la Banda, W. Harvey, K. Marriott, and P. Stuckey.
Herbrand Constraint Solving in HAL. In Int. Conf. on Logic Programming. MIT
Press, Cambridge, MA, U.S.A.; November 1999.

6. P. Deransart, A. Ed-Dbali, and L. Cervoni. Prolog: The Standard. Springer-Verlag,
1996.

7. Lisa Friendly. The Design of Distributed Hyperlink Program Documentation. In
Int’l. WS on Hypermedia Design, Workshops in Computing. Springer, June 1996.
Available from http://java.sun.com/docs/javadoc-paper.html.

8. M. Hermenegildo, F. Bueno, G. Puebla, and P. Lépez-Garcia. Program Analy-
sis, Debugging and Optimization Using the Ciao System Preprocessor. In 1999
International Conference on Logic Programming, pages 52—66, Cambridge, MA,
November 1999. MIT Press.

9. M. Hermenegildo and The CLIP Group. An Automatic Documentation Genera-
tor for (C)LP — Reference Manual. The Ciao System Documentation Series-TR
CLIP5/97.3, Facultad de Informdtica, UPM, August 1997.

10. M. Hermenegildo, G. Puebla, and F. Bueno. Using Global Analysis, Partial Spec-
ifications, and an Extensible Assertion Language for Program Validation and De-
bugging. In K. R. Apt, V. Marek, M. Truszczynski, and D. S. Warren, editors, The
Logic Programming Paradigm: a 25-Year Perspective, pages 161-192. Springer-
Verlag, July 1999.

11. D. Knuth. Literate programming. Computer Journal, 27:97-111, 1984.

12. G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Lan-
guage for Debugging of Constraint Logic Programs. In ILPS’97
WS on Tools and FEnvironments for (C)LP, October 1997.
ftp://clip.dia.fi.upm.es/pub/papers/assert/lang tr discipldeliv.ps.gz

13. G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Debugging
of Constraint Logic Programs. In P. Deransart, M. Hermenegildo, and J. Maluszyn-
ski, editors, Analysis and Visualization Tools for Constraint Programming, LNCS.
Springer-Verlag, 2000. To appear.

14. G. Puebla and M. Hermenegildo. Some Issues in Analysis and Specialization of
Modular Ciao-Prolog Programs. In Special Issue on Optimization and Implemen-
tation of Declarative Programming Languages, volume 30 of Electronic Notes in
Theoretical Computer Science. Elsevier - North Holland, March 2000.

15. Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury:
an efficient purely declarative logic programming language. JLP, 29(1-3), October
1996.

Note: most CLIP group publications are available from http://www.clip.dia.fi.upm.es

15

A An example: source

:— module (sort, [gsort/2,1ist/1,sorted/1], [assertions,regtypes,isomodes]).

:— use_module (library(lists), [append/3]).

:— comment(title, "The classical quick-sort").

:— comment (module,"This library provides a naive implementation of
quick-sort and some associated types and properties.").

:— comment (gqsort(X,Y),"@var{Y} is a sorted permutation of @var{X}.").
:— pred gsort(X,Y) : list(X) => sorted(Y)
"This is the normal use.".
:— pred gsort(X,Y) : (list(X), sorted(Y))
"Checking that @var{Y} is a sorted permutation of Qvar{X}.".
gsort([1,[1).
gsort ([XIL],R) :-
partition(L,X,L1,L2), qsort(L2,R2), gsort(L1,R1), append(R1,[X|R2],R).

:— pred partition(+list(num),+num,-list(num),-1ist(num)).
:— comment (doinclude,partition/4) .
partition([],_B,[1,[]).
partition([EIR],C, [E|Left1] ,Right):-

E < C, !, partition(R,C,Leftl,Right).
partition([E|R],C,Left, [E|Right1]):-

E >=C, !, partition(R,C,Left,Rightl).

:— prop sorted(X) # "@var{X} is sorted.".
sorted([]).
sorted([_]).
sorted([X,YIR]) :- X < Y, sorted([YIR]).

:— regtype list/1.
list([1).
list([_IT]) :- 1list(T).

:— comment (bug, "Code uses @pred{append/3}, which is inefficient.").
:— comment (version_maintenance,on).
:— comment (version(0*1+1,1999/10/11,03:19%00+°CEST’),
"Already made the first change... (Manuel Hermenegildo)").
:— comment (version(0%1+0,1999/10/11,03:18%29+°CEST’),
"File created. (Manuel Hermenegildo)").

B The classical quick-sort

Version: 0.1#1 (1999/10/11, 3:19:0 CEST)
This library provides a naive implementation of quick-sort and some associated
types and properties.

B.1 Usage and interface (sort)

— Library usage:
:- usemodule(library(sort)).

16

— Exports:
e Predicates:
gsort/2.
e Properties:
sorted/1.
o Regular Types:
list/1.
— Other modules used:
o System library modules:
lists.

B.2 Documentation on exports (sort)

gsort/2: PREDICATE

gsort(X,Y): Y is a sorted permutation of X.
Usage 1: gsort(X,Y)

— Description: This is the normal use.

— Should hold at call time: 1ist (X).

— Should hold upon exit: Y is sorted (sorted/1).

Usage 2: gsort(X,Y)
— Description: Checking that Y is a sorted permutation of X.
— Should hold at call time: 1ist(X) (1list/1), Y is sorted (sorted/1).

list/1: REGTYPE
A regular type, defined as follows:
list([1).
list([_1]T]) :-
list(T).
sorted/1: PROPERTY

Usage: sorted(X)
— Description: X is sorted.

B.3 Documentation on internals (sort)

partition/4: PREDICATE

Usage:
— Should hold at call time: Argl is a list of nums (1ist/2), Arg2 is a number (1ist/2),
Arg3 is a free variable (var/1), Argd is a free variable (var/1).
— Should hold upon ezit: Arg3 is is a list of nums (1ist/2), Arg4 is is a list of nums
(1ist/2).

B.4 Known bugs and planned improvements (sort)
— Code uses append/3, which is inefficient.
B.5 Version/Change Log (sort)
— Version 0.1#1 (1999/10/11, 3:19:0 CEST)
Already made the first change... (Manuel Hermenegildo)
— Version 0.1 (1999/10/11, 3:18:29 CEST)
File created. (Manuel Hermenegildo)

17

