
jPET: an Automatic Test-Case Generator for Java
Elvira Albert∗, Israel Cabañas†, Antonio Flores-Montoya†, Miguel Gómez-Zamalloa∗, Sergio Gutiérrez†

Complutense University of Madrid, Spain
∗{elvira,mzamalloa}@fdi.ucm.es, †{antonioenriqueflores,sergio.gutierrez.mota,israelcabanasruiz}@estumail.ucm.es

Abstract—We present jPET, a whitebox test-case generator
(TCG) which can be used during software development of Java
applications within the Eclipse environment. jPET builds on top
of PET, a TCG which automatically obtains test-cases from the
bytecode associated to a Java program. jPET performs reverse
engineering of the test-cases obtained at the bytecode level by
PET in order to yield this information to the user at the source
code level. This allows understanding the information gathered
at the lower level and using it to test source Java programs.

I. INTRODUCTION

Testing is considered nowadays a crucial discipline of
software engineering. It has been proved to be one of the most
expensive and time consuming ingredients in the software
development cycle. This is mainly because of its enormous
difficulty. Large sets of tests are needed to check the behavior
of an application and, even so, bugs may remain undetected.
This difficulty becomes more and more relevant as the soft-
ware complexity grows and the security requirements increase.
Therefore, there is a big need of developing tools that automate
the task of generating unit tests that enable early and frequent
testing while developing software.

A standard approach to generating test-cases statically is to
perform a symbolic execution of the program [7], [3], where
the contents of variables are expressions rather than concrete
values. PET [5], [1] is test-case generator based on symbolic
execution which receives as input a Java bytecode program
and a selection of a coverage criterion. The coverage criteria
are heuristics which try to estimate how well the program is
exercised by a test suite. Examples of coverage criteria are
statement coverage, which requires that each instruction of
the code is exercised, path coverage which requires that every
possible trace through a given part of the code is executed, and,
loop-k which ensures a path coverage limiting the number of
loop iterations to a threshold k. PET symbolically executes
the bytecode and returns a set of test-cases associated to the
branches of the execution tree built according to the coverage
criteria. The test-cases are constraints over the input variables
and the contents of the global memory (or heap) which contain
the conditions to execute the different paths (or branches)
of the tree. The constraints on the heap impose conditions
on the shape and the contents of the heap-allocated data
structures of the program. Concrete input values which satisfy
the constraints are later obtained from the test-cases by using
a constraint solver in order to actually produce unit tests.
PET can be used from a basic command line or from a web
interface, but none of them provide the adequate functionality
to test Java applications during software development.

This paper presents jPET, an extension of PET which
performs reverse engineering of the test-cases by taking the
information gathered at the bytecode level and showing it in
a comprehensible way at the Java source code level. For this
purpose, jPET is integrated within the Eclipse programming
environment and extends PET’s functionality with the aim
of helping developers test Java programs during software
development. The main extensions, and contributions of this
work, are summarized as follows:

• jPET incorporates a test-case viewer to visualize the
information computed in the test-cases (includign the
objects and arrays involved).

• It can display the test-case trace, i.e., the sequence of
instructions that the test-case exercises.

• jPET can also parse method preconditions written in
JML [6]. This can be very useful for avoiding the gener-
ation of uninteresting test-cases, as well as for focusing
on (or finding) specific ones.

Also, these capabilities allow using jPET as a tool
for performing program comprehension of both Java
and Java bytecode programs at the method level. This
can be done by observing (using the viewer and the
traces explained above) the input-output behaviors of a
method with a set of concrete executions. jPET is avail-
able for download as free software at the PET web
site http://costa.ls.fi.upm.es/pet/download. Also,
there is a demonstration video of the tool available at
http://costa.ls.fi.upm.es/pet/demo_video.

II. FEATURES OF JPET AND IMPLEMENTATION DETAILS

The basic usage of jPET is as follows: once a Java source (or
bytecode) file is opened, the user can select in the outline view
of Eclipse the methods for which he/she wants to generate
test-cases. Once selected, clicking on the jPET icon opens the
preferences window of jPET which allows setting preferences
such as the coverage criterion, whether to get concrete test-
cases or just path constraints, the concrete numeric domain,
etc. Currently, jPET provides two coverage criteria, block-k
(an adaption of loop-k for bytecode [1]) and depth-k (which
limits the number of executed instructions to a threshold).
The obtained test-cases are then shown in a tree-like structure
organized in packages, classes and methods in the jPET view.

A. The Test-Case Viewer

The output of PET was a textual (term-like) representa-
tion of the list of test-cases including the input and output
heaps. Such representation quickly becomes unreadable, even



for rather simple heap shapes. The jPET’s test-case viewer
solves this issue by allowing the programmer to navigate
through the input and output heaps graphically. The viewer
is accessed by double-clicking on the selected test-case in
the jPET view. The window basically has two main areas:
One of them shows a table representation of the (input or
output) heap and another table with the information of the
currently selected object (including all its fields). The other
area depicts a tree-like representation of the selected object
and all transitively reachable objects from it. Each node in
the tree can be expanded and contracted to show and hide its
children. Furthermore, every node or edge can be moved to
help the programmer interpret the results.

Implementation Details. The test-case viewer basically
consists of three modules: (1) The output of PET has been
extended so that an XML file containing all the informa-
tion of the obtained test-cases is generated. (2) The Graph
Manager, based on JGraph [2]manages the graphical rep-
resentations based on the heap data structure. Each graphical
representation is basically a graph that encapsulates the heap,
or part of it, and contains information about how it should
be displayed by the interface. (3) On top we have a Swing
based interface that allows the programmer to interact with
the Graph Manager by creating, displaying and exploring
their preferred representations of the heap.

B. Displaying Test-Case Traces

jPET allows inspecting the trace of instructions that a given
test-case exercises. This is done by right-clicking on a test-
case and selecting “Show trace”. The trace information can
be displayed in two different ways: (1) jPET can highlight
all lines (and hence instructions) that a test-case exercises.
This is done by using the Eclipse highlighting features and
markers which, resp., highlight the executed lines and report
how many times, and in which order, these lines have been
executed. This gives a global view of the test-case trace. We
have taken advantage of the Eclipse environment that provides
an API to color and mark code lines by using extension points
such as “annotationTypes” and “markers”. Therefore, we need
to identify which Java lines are executed and send them
to Eclipse. Since PET reasons over bytecode programs, the
implementation of this feature has required to match bytecode
instructions with lines in the source code. Also, we distinguish
between normal execution and exception lines, showing them
in different colors (green/red). (2) The second modality allows
following the trace in the source code step by step by means
of a debugger implemented using the debugging options of
Eclipse. This functionality is started by right-clicking on a test-
case and selecting “Show trace debug”. The usual debugging
actions can then be used to follow the trace.

C. Method Preconditions

One of the well-known problems of symbolic execution-
based methods is the large amount of paths that have to
be considered. This, on one hand, poses scalability problems
mainly due to the memory requirements to build and maintain

them. On the other hand, this complicates human reasoning on
the obtained test-cases and, hence, their use within software
testing during program development. One way to alleviate this
situation is the use of method preconditions which allows
the developer to specify conditions on the input arguments
(and the corresponding reachable objects and arrays) which
can prune the symbolic execution tree and therefore avoid the
generation of certain useless test-cases, as well as focusing on
(or finding) specific ones.

jPET allows writing preconditions using (a subset of) JML,
the Java Modeling Language [6], which has become the
standard specification language within software verification of
Java. Preconditions are parsed by jPET and transformed into
the internal notation of PET (in CLP [5]). Most preconditions
can be expressed natively as constraints in the underlying
constraint domain, in which case the paths that violate them
can be pruned as soon possible (hence do not obtaining the
associated test-cases).

III. CONCLUSIONS AND RELATED WORK

There exist many test-case generation tools, most of which
are devoted to generate unit tests that can be used later for
regression testing. However, only a few of them can be fully
integrated within the software development process as jPET
does. Among those, the most related ones are: PEX [8], a
white-box unit-test generator for the .NET platform which
includes graphical support through an add-in for Visual Studio;
and KeY [4], which among its many features allows generat-
ing unit-tests for Java programs as well as visualizing their
associated paths during symbolic execution. We argue that the
high level functionality provided by jPET, namely the heap
visualizer and the trace viewer, plays a fundamental role for
the practical use of testing tools during software development.
Furthermore, the fact that the jPET symbolic execution engine
works at the bytecode level, allows using it for Java bytecode
programs for which the source is not available. This could be
very useful from the point of view of reverse engineering and,
in particular, allows program comprehension of Java bytecode
programs by means of observing the behavior of a set of
concrete and meaningful executions.

REFERENCES

[1] E. Albert, M. Gómez-Zamalloa, and G. Puebla. PET: A Partial
Evaluation-based Test Case Generation Tool for Java Bytecode. In Proc.
of. PEPM’10. ACM Press, 2010.

[2] David Benson and Gaudenz Alder. JGraphX (JGraph 6) User Manual.
http://www.jgraph.com/doc/mxgraph/index javavis.html.

[3] L. A. Clarke. A system to generate test data and symbolically execute
programs. IEEE Trans. Software Eng., 2(3):215–222, 1976.

[4] C. Engel and R. Hähnle. Generating unit tests from formal proofs. In
Proceedings of TAP, volume 4454 of LNCS. Springer, 2007.

[5] M. Gómez-Zamalloa, E. Albert, and G. Puebla. Test Case Generation for
Object-Oriented Imperative Languages in CLP. TPLP, ICLP’10 Special
Issue, 2010.

[6] The Java Modelling Language homepage. http://www.cs.iastate.edu/
∼leavens/JML/.

[7] J. C. King. Symbolic execution and program testing. Commun. ACM,
19(7):385–394, 1976.

[8] Nikolai Tillmann and Jonathan de Halleux. Pex-white box test generation
for .NET. In TAP, pages 134–153, 2008.

http://www.cs.iastate.edu/~leavens/JML/
http://www.cs.iastate.edu/~leavens/JML/

	Introduction
	Features of jPET and Implementation Details
	The Test-Case Viewer
	Displaying Test-Case Traces
	Method Preconditions

	Conclusions and Related Work
	References

