
Towards Execution Time Estimation in
Abstract Machine-Based Languages ∗

E. Mera 1

1 Complutense University of Madrid
edison@fdi.ucm.es

P. Lopez-Garcia2,3

2 IMDEA-Software
3 CSIC

pedro.lopez.garcia@imdea.org

M. Carro4, M. Hermenegildo2,4,5

4 Technical U. of Madrid
5 U. of New Mexico

{mcarro, herme}@fi.upm.es

Abstract
Abstract machines provide a certain separation between platform-
dependent and platform-independent concerns in compilation.
Many of the differences between architectures are encapsulated in
the specific abstract machine implementation and the bytecode is
left largely architecture independent. Taking advantage of this fact,
we present a framework for estimating upper and lower bounds on
the execution times of logic programs running on a bytecode-based
abstract machine. Our approach includes a one-time, program-
independent profiling stage which calculates constants or functions
bounding the execution time of each abstract machine instruction.
Then, a compile-time cost estimation phase, using the instruction
timing information, infers expressions giving platform-dependent
upper and lower bounds on actual execution time as functions of
input data sizes for each program. Working at the abstract machine
level makes it possible to take into account low-level issues in
new architectures and platforms by just reexecuting the calibration
stage instead of having to tailor the analysis for each architec-
ture and platform. Applications of such predicted execution times
include debugging/verification of time properties, certification of
time properties in mobile code, granularity control in parallel/dis-
tributed computing, and resource-oriented specialization.

Categories and Subject Descriptors D.4.8 [Performance]: Mod-
eling and prediction;
F.3.2 [Semantics of Programming Languages]: Program analysis;
D.1.6 [Programming Techniques]: Logic programming

General Terms Languages, performance

Keywords Execution Time Estimation, Cost Analysis, Profiling,
Resource Awareness, Cost Models, Logic Programming.

∗ The authors have been partially supported by EU projects 215483 S-Cube,
IST-15905 MOBIUS, Spanish projects ITEA2/PROFIT FIT-340005-2007-
14 ES PASS, ITEA/PROFIT FIT-350400-2006-44 GGCC, MEC TIN2005-
09207-C03-01 MERIT/COMVERS, Comunidad de Madrid project S-
0505/TIC/0407 PROMESAS. Manuel Hermenegildo is also partially funded
by the Prince of Asturias Chair in Information Science and Technology.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPDP’08, July 15–17, 2008, Valencia, Spain.
Copyright c© 2008 ACM 978-1-60558-117-0/08/07. . . $5.00

1. Introduction
Cost analysis has been studied for several declarative languages (7;
16; 11; 13). In logic programming previous work has focused on
inferring upper (12; 11) or lower (13; 8) bounds on the cost of
programs, where such bounds are functions on the size (or values)
of input data. This approach captures well the fact that program
execution cost in general depends on input data sizes. On the other
hand the results of these analyses are given in terms of execution
steps. While this measure has the advantage of being platform
independent, it is not straightforward to translate such steps into
execution time.

Estimation of worst case execution times (WCET) has received
significant attention in the context of high-level imperative pro-
gramming languages (24). In (18; 6) a portable WCET analysis
for Java is proposed. However, the WCET approach only provides
absolute upper bounds on execution time (i.e., bounds that do not
depend on program input arguments) and often requires annotating
loops manually.

Our objective is to infer automatically more precise bounds on
execution times that are in general functions that depend on input
data sizes. In (19) a static analysis was proposed in order to in-
fer such platform-dependent time bounds in logic programs. This
approach is based on a high-level analysis of certain syntactic char-
acteristics of the program clause text (sizes of terms in heads, sizes
of terms in bodies, number of arguments, etc.). Although promising
experimental results were obtained, the predicted execution times
were not very precise. In this paper we propose a new analysis
which, in order to improve the accuracy of the time predictions,
on one hand takes into account lower level factors and on the other
makes the model richer by directly taking into account the inher-
ently variable cost of certain low-level operations.

Regarding the choice of this lower level, rather than trying for
example to model directly the characteristics of the physical pro-
cessor, as in WCET, and given that most popular logic program-
ming implementations are based on variations of the Warren ab-
stract machine (WAM) (23; 1), we chose to model cost at the
level of abstract machine instructions. Abstract machines have been
used as a basic implementation technique in several programming
paradigms (functional, logic, imperative, and object-oriented) (14)
with the advantage that they provide an intermediate layer that sep-
arates to a certain extent the many low-level details of real (hard-
ware) machines from the higher-level language, while at the same
time making compilation easier. This property can be used to facil-
itate the design of our framework.

Within this setting, we present a new framework for the static
estimation of execution times of programs. The basic ideas in our
approach follow:

1. Measure the execution time of each of the instructions in a
lower-level LB (bytecode) language (or approximate it with a
function if it depends on the value of an argument) in some
specific abstract machine implementation when executed on a
given processor / O.S.

2. Make the information regarding instruction execution time
available to the timing analyzer. This is, in our proposal, done
by means of cost assertions (written in a suitable assertion
language) which are stored in a module accessible to the com-
piler/analyzer.

3. Given a concrete program P written in the source languageLH ,
compile it into LB and record the relationship between P and
its compiled counterpart.

4. Automatically analyze program P , taking into account the in-
struction execution time (determined in item 1 above) to infer a
cost function CP . This function is an expression which returns
(bounds on) the actual execution time of P for different input
data sizes for the given platform.

Points (1) and (2) are performed in a one-time profiling phase,
independent from program P , while the rest are performed once
for each P in the static (compile-time) cost analysis phase. We
would like to point out that, in general, the basic ideas underlying
our work can be applied to any language LH as long as (i) cost
estimation can be derived for programs written in LH , (ii) the
translation of LH to some other (usually lower-level) language LB

is accessible, and (iii) the execution time of the instructions in LB

can be timed accurately enough. We will, however, focus herein on
logic languages, so that we assumeLH to be a Prolog-like language
and LB some variant of the WAM bytecode.

The proposed framework has been implemented as part of the
CiaoPP (17) system in such a way that any abstract machine prop-
erly instrumented can be analyzed. To the best of our knowledge,
this is the first attempt at providing a timing analysis producing
upper- and lower-bound time functions based on the cost of lower-
level machine instructions.

2. Mappings Between Program Segments and
Bytecodes

Let OpSet = {b1, b2, . . . , bn} be the set of instructions of the ab-
stract machine under consideration. We assume that each instruc-
tion is defined by a numeric identifier and its arity, i.e., bi ≡ fi/ni,
where fi is the identifier and ni the arity. Each program is compiled
into a sequence of expressions of the form f(a1, a2, . . . , an) where
f is the instruction name and the ai’s are its arguments. For con-
ciseness, we will use Ii to refer to such expressions. The sequences
of expressions into which a program is compiled are generally en-
coded using bytecodes. In the following we will often refer to se-
quences of abstract machine instructions or sequences of bytecodes
simply as “bytecodes.”

Let C be a clause H :- L1, . . . , Lm. Let E(C) be a function that
returns the sequence of bytecodes resulting from the compilation
of clause C:

E(C) =< I1, I2, . . . , Ip >

Let E(C, H) be a function that maps the clause head H to the
sequence of bytecodes in E(C) starting from the beginning up to
the first call/execute instruction or to the end of the sequence
E(C) if there are no more call/execute instructions (i.e., to the
end of the bytecode sequence resulting from the compilation of
clause C). LetE(C, Li) be the function that maps literal Li of clause
C to the sequence of bytecodes in E(C) which start at the call
bytecode instruction corresponding to this literal and up to the next
call/execute instruction or to the end of the sequence E(C) if

append([], X, X).
append/3/1: try me else append/3/2

allocate
get constant([],A0)

E(C1, H
1) get variable(V0,A1)

get value(V0,A2)
deallocate
proceed

append([X|Xs], Y, [X|Zs]) :-
append/3/2: trust me

allocate
get variable(V0,A0)
set variable(V1)
set variable(V2)
set variable(V3)
get list(V1,V3)
set variable(V4)
unify variable(V2,V4)
unify variable(V0,V3)

E(C2, H
2) set variable(V5,A1)

get variable(V6,A2)
set variable(V7)
set variable(V8)
get list(V1,V8)
set variable(V9)
unify variable(V7,V9)
unify variable(V6,V8)
put value(V2,A0)
put value(V5,A1)
put value(V7,A2)
deallocate

append(Xs, Y, Zs).

E(C2, L
2
1) execute append/3

Table 1. Sequences of bytecodes assigned to clause heads and
body literals of the clauses C1 and C2 of predicate append by the
functions E(C, H) and E(C, L).

there are no more call/execute instructions. If] represents the
concatenation of sequences of bytecodes, then:

E(C) = E(C, H)
]

(

m]
i=1

E(C, Li))

Note that functions E(C, H) and E(C, Li) do not necessarily
return the bytecodes that one would normally associate to the clause
head H and literal Li respectively. Instead, the definition of those
functions associates the instructions corresponding to argument
preparation for a given call with the (success of the) previous
call (or head). This is to cater for the fact that, in the context of
backtracking, the WAM argument preparation occurs only one time
per call to a literal, even if such call is retried more times before
failing definitively. As a result, the cost of argument preparation
for a given call/execute instruction needs to be associated with
the previous literal to that call/execute, in order not to count it
every time the call is retried.

Table 1 shows how predicate append/3 is compiled into byte-
codes, and identifies the result of calling the E(C, H) and E(C, Li)
functions for each clause head and body literal. H1 represents the
head of the first clause (C1), and H2 and L21 the head of the second
(recursive) clause (C2) and the first literal in such clause body (the
only body literal).

3. Modeling the Execution Time of Instructions
We define a function t(I) (the timing model), which takes a byte-
code instruction I and returns another function which estimates the
execution time for it depending on the input data sizes of the byte-
code. This is similar to the approach described in (5), where, how-
ever, t(I) was a constant.

In many cases we can assume that the time to execute a bytecode
is constant. However there are some instructions for which this does
not hold because their definitions involve loops. In many of these
cases the timing model consists of an initial constant time t0 plus
another additional constant time titer to cater for the cost of each
iteration, and a simple linear model can be used: t0 + n × titer .
Consider for example the unify void n instruction, which pushes
n new unbound cells on the heap (1), and whose execution time is a
linear function on n. In some other cases instructions have different
execution times depending on the (fixed) values a given argument
can take from some finite set. In such cases, execution time is an
arbitrary function on the argument. Specific constants are assigned
for each possible argument value by means of profiling (Section 5).

Since the cost of a given instruction is different when it succeeds
and when it fails, we will have two costs for each instruction that
can fail: one for the success case and another for the failure case. Fi-
nally, and besides lower-level factors such as cache behavior, there
are some additional variable factors (such as, e.g., the length of
dereferencing chains) which may affect execution times. These fac-
tors are in principle not impossible to cater for via a combination
of static and dynamic analysis, but, given the additional complica-
tion involved, we will ignore them herein and explore what kind of
precision of timing prediction can be achieved with this first level
of approximation.

Another factor that we are not taking into account at this mo-
ment is garbage collection (GC). GC makes programs run slower,
which, at profiling time, increases the (estimated) cost of every
instruction. Therefore, turning it off at profile time (which gives
a smaller estimation of instruction cost) is safe when finding out
lower bounds: if the program whose execution time is to be pre-
dicted is run with GC turned on, then it would run slower w.r.t. an
execution with GC turned off (as it was when profiling), and the
estimated bounds will still be lower bounds, albeit more conserva-
tive. An inverse reasoning applies to upper bounds, and the tech-
nique herein presented is equally valid. However, for the sake of
simplicity, we have taken all the measurements (both for profiling
and executions to be predicted) with GC disconnected.

4. Static Cost Analysis
We now present the compile-time component of our combined
framework: the static cost analysis. This analysis has been imple-
mented and integrated in CiaoPP (17).

4.1 Overview of the Approach
Since the work done by a call to a recursive procedure often de-
pends on the “size” of its input, knowing this size is a prerequisite
to statically estimate such work. Our basic approach is as follows:
given a call p, an expression Φp(n) is statically computed that (i)
is relatively simple to evaluate, and (ii) it approximates Timep(n),
where Timep(n) denotes the cost (in time units) of computing p
for an input of size n on a given platform. Various measures are
used for the “size” of an input, such as list-length, term-size, term-
depth, integer-value, etc. It is then evaluated at run-time, when the
size of the input is known, yielding (upper or lower) bounds on the
execution time required by the computation of the call on a given
platform. In the following we will refer to the compile-time com-
puted expressions Φp(n) as cost functions.

Certain program information (such as, for example, input/out-
put modes and size metrics for predicate arguments) is first au-
tomatically inferred by other analyzers which are part of CiaoPP
and then provided as input to the size and cost analysis. The tech-
niques involved in inferring this information are beyond the scope
of this paper —see, e.g., (17) and its references for some exam-
ples. Based on this information, our analysis first finds bounds on
the size of input arguments to the calls in the body of the predicate
being analyzed, relative to the sizes of the input arguments to this
predicate, using the inferred metrics. The size of an output argu-
ment in a predicate call depends in general on the size of the input
arguments in that call. For this reason, for each output argument
we infer an expression which yields its size as a function of the
input data sizes. To this end, and using the input-output argument
information, data dependency graphs (namely the argument depen-
dency graph and the literal dependency graph) are used to set up
difference equations whose solution yields size relationships be-
tween input and output arguments of predicate calls. The argument
dependency graph is a directed acyclic graph used to represent the
data dependency between argument positions in a clause body (and
between them and those in the clause head). The literal dependency
graph is constructed from the argument dependency graph (group-
ing nodes) and represents the data dependencies between literals.

The information regarding argument sizes is then used to set up
another set of difference equations whose solution provides bound
functions on predicate calls (execution time). Both the size and cost
difference equations must be solved by a difference equation solver.
Although the operation of such solvers is beyond the scope of the
paper, our implementation does provide a table-based solver which
covers a reasonable set of difference equations such as first-order
and higher-order linear difference equations in one variable with
constant and polynomial coefficients,1 divide and conquer differ-
ence equations, etc. In addition, the system allows the use of ex-
ternal solvers (such as, e.g., Purrs (4), Mathematica, Matlab, etc.)
and is currently being extended to interface with other interesting
solvers that have been recently developed (2). Note also that, since
we are computing upper/lower bounds, it suffices to compute up-
per/lower bounds on the solution of a set of difference equations,
rather than an exact solution. This allows obtaining an approximate
closed form when the exact solution is not possible.

4.2 Estimating the Execution Time of Clauses and Predicates
Our cost analysis approach is based on that developed in (12; 11)
(for estimation of upper bounds on resolution steps) and further
extended in (13) (for lower bounds). More recently, in (19) the
analysis was extended to work with vectors of cost components,
with each component considering a known aspect that affects the
total cost of the program. In these approaches the cost of a clause
can be bounded by the cost of head unification together with the
cost of each of its body literals. For simplicity, the discussion that
follows is focused on the estimation of upper bounds. We refer the
reader to (13) for details on lower-bounds cost analysis.

Consider a predicate defined by r clauses C1 , . . . , Cr . We take
into account that a given clause Ck will be tried only if clauses
C1 , . . . , Ck−1 fail to yield a solution. Consider clause Ck defined as
Hk :- Lk

1 , . . . , L
k
m . Because of backtracking, the number of times a

literal will be executed depends on the number of solutions of the
previous literals. Assume that n is a vector such that each element
corresponds to the size of an input argument to clause Ck and that
each ni, i = 1 . . .m, is a vector such that each element corresponds
to the size of an input argument to literal Lk

i . Assume also that
τ(Hk , n) is the execution time needed to resolve the head Hk of

1 Note that it is always possible to reduce a system of linear difference
equations to a single linear difference equation in one variable.

the clause Ck with the literal being solved, SolsLkj is the number of

solutions literal Lk
j can generate, and β(Lk

i , ni) the time needed to
prepare the call to literal Lk

i in the body of the clause Ck . Because
of space constraints, we refer the reader to (11; 13) for details about
the algorithms used to estimate the number of solutions that a literal
can generate, and the sizes of input arguments. Then, an upper
bound CostCk (n) on the cost of clause Ck (assuming all solutions
are required) can be expressed as:

CostCk (n) ≤ τ(Hk , n)+
mP

i=1

(
Q
j≺i

SolsLkj
(nj))(β(Lk

i , ni) + CostLki
(ni))

Here we use j ≺ i to denote that Lk
j precedes Lk

i in the literal
dependency graph for the clause Ck (described in Section 4.1). We
have that:

τ(Hk , n) = δk (n) +
X

I∈E(Ck ,Hk)

t(I)(n)

where δk (n) denotes the execution time necessary to determine
that clauses C1 , . . . , Ck−1 will not yield a solution and that Ck

must be tried: the function δk obviously takes into account the
type and cost of the indexing scheme being used in the underlying
implementation. Also:

β(Lk
i , ni) =

X
I∈E(C,Lki)

t(I)(ni), i = 1, · · · ,m

with E(C, Lk
i) and t(I) defined as in Sections 2 and 3 respectively.

A difference equation is set up for each recursive clause, whose
solution (using as boundary conditions the execution times of non-
recursive clauses) is a function that yields the execution time of a
clause. The execution time of a predicate is then computed from
the execution time of its defining clauses. Since the number of
solutions which will be required from a predicate is generally not
known in advance, a conservative upper bound on the execution
time of a predicate can be obtained by assuming that all solutions
are needed, and, thus, all clauses are executed and the execution
time of the predicate will be the sum of the execution times of
its defining clauses. When the clauses of a predicate are mutually
exclusive, a more precise estimation of the execution time of such
a deterministic predicate can be obtained as the maximum of the
execution times of the clauses it is composed of.

Note that our approach allows defining via assertions the execu-
tion time of external predicates, which can then be used for mod-
ular composition. This includes also predicates for which the code
is not available or which are even written in a programming lan-
guage that is not supported by the analyzer. In addition, assertions
also allow describing by hand the execution time of any predicate
for which the automatic analysis infers a value that is not accurate
enough, and this can be used to prevent inaccuracies in the auto-
matic inference from propagating. The description of the assertion
language used is out of the scope of this paper, and we refer the
reader to (21) for details.

5. Estimating Instruction Execution Times via
Profiling

In this section we will see how data regarding the expected execu-
tion time of each instruction in the abstract machine (Section 3) can
be accurately measured in a realistic environment.

5.1 Instruction Profiling
Profiling aims at calculating a function t(I) for each bytecode in-
struction I . An approach is to instrument the WAM implementa-
tion so that time measures are taken and recorded at appropriate

while (op != END) { /∗ WAM emulation loop ∗/
...
record profile info (op); /∗ op is the current bytecode ∗/

switch(op) {
...

}
...

op = get next op();
}

Figure 1. A simple WAM emulation loop instrumented.

points in the execution (18). In practice, a number of issues have
to be taken into account in order to obtain accurate enough mea-
surements. These include the selection of the places where the in-
strumentation code will be inserted, how to minimize the effects of
such instrumentation on the execution (not only execution time but
also, e.g., cache behavior), and how to work around the complex in-
struction scheduling performed by modern processors, which may
lead to large variance in the results, especially since we aim at mea-
suring very small fragments of code.

A first approximation is to add profiling-related calls in desig-
nated parts of the bytecode interpreter main loop. Figure 1 shows
a piece of code illustrating this. The record profile info(op)
operation records the start time for the bytecode op. The end time is
processed when the next opcode is fetched. The data for each byte-
code is maintained in memory during execution (and in raw form
in order to impact execution as little as possible) and later saved to
an external file.

A benchmark-based analysis is also proposed in (18), which
describes how the instrumented code can be reused effectively on
various platforms without modifying it, and how the execution time
of a specific set of bytecodes can be measured.

However, the methods mentioned above have drawbacks. For
example, the first one (instrumenting the main loop) depends on
the existence of very precise, non-intrusive, low-overhead timing
operations which, unfortunately, are not always available in all plat-
forms. Portable O.S. calls, besides having a typically high associ-
ated overhead, are in general not accurate enough for our purposes.
Even if a very fast timing operation is available (which is not the
case in platforms such as mobile and embedded devices), its intro-
duction may affect the behavior of the machine being analyzed if
the abstract machine loop is very optimized. For example, if the
new code changes register and variable allocation, program behav-
ior will be affected in unforeseen ways.

We will, however, use an instrumented loop like that of Figure 1
to count the number of bytecodes executed in a calibration step.

5.2 Measuring Time Accurately
In order to do portable time measurements in platforms where high
resolution timing is difficult or impossible to achieve, workarounds
have to be used. The approach that we have followed is based on
using synthetic benchmarks which on purpose repeatedly execute
the instructions under estimation for a large enough time, and
later divide the total execution time by the number of times the
instructions were executed. A complication in this process is that
it is in general not possible to run a single instruction repeatedly
within the abstract machine, since the resulting sequence would not
be legal and may “break” the abstract machine, run out of memory,
etc. In general, more complex sequences of instructions must be
constructed and repeated instead.

Therefore, the approach we have followed involves designing
a set of legal programs which cover all the bytecode instructions,

Programs Instructions Trace
c1 5 :- c1 5 0. 00 : execute 01 00 : execute 01
c1 5 0 :- c1 5 1. 01 : execute 02 01 : execute 02
c1 5 1 :- c1 5 2. 02 : execute 03 02 : execute 03
c1 5 2 :- c1 5 3. 03 : execute 04 03 : execute 04
c1 5 3 :- c1 5 4. 04 : execute 05 04 : execute 05
c1 5 4 :- c1 5 5. 05 : execute 06 05 : execute 06
c1 5 5. 06 : proceed 06 : proceed
c1 0 :- c1 0 0. 01 : execute 02 01 : execute 02
c1 0 0. 02 : proceed 02 : proceed

Table 2. Programs used in order to get the execution time of the
execute instruction.

relate the execution time of these programs with the individual
instruction execution times with a system of equations, and solving
such a system.

5.3 Getting Instruction Execution Time
We now discuss how to set up calibration programs in order to get
the cost of bytecodes. In this section, and in order to simplify the
discussion, we deal with those bytecodes whose execution time
is bound by a constant. In the following section we extend our
technique to manage instructions whose execution time is unbound.

Let Ci, i = 0, 1, . . . , n be a set of synthetic calibration pro-
grams, each of them returning the execution time of a block of code.
Each Ci, which we will refer to as calibrator, is generated in such a
way that it repeats such block a given number of times, say r. Let us
assume, for example, that we want to calibrate the WAM instruction
“execute” when it does not fail and that we want to repeat its exe-
cution 5 times (i.e., r = 5). Table 2 shows a set of programs which
can be used to calibrate this WAM instruction. Columns Instruc-
tions and Trace show the WAM code as generated by the compiler
and the sequence of instructions executed when running the pro-
gram starting from the first clause respectively. In general, in our
approach, rather than a concrete program, calibrators are program
generation templates which take r as an input and return, e.g., the
programs in Table 2 for that value of r. The actual calibration pro-
gram includes an entry point which calls the programs in Table 2
and returns the value of the execution time of the execute instruc-
tion, subtracting the time spent in the entry calls (e.g., c1 5 for
Table 2). In this case the calibration time is easy to compute as the
difference between the execution time of c1 5 and c1 0 divided
by r. The result of the calibration should ideally be invariant with
respect to r; in practice this is however not true due, among other
factors, to timing imprecision. Thus, r needs to be determined for
each case: it has to be a large enough value to ensure stability of
the time measured by the calibrator for the particular platform and
the method used to measure time, but not excessively large, as this
would make calibration impractical.

In some cases we cannot isolate the behavior of only one byte-
code. This is specially the case in the calibrators of instructions
which alter the program flow, such as call, proceed, trust me,
try me else, retry me else, allocate, deallocate. It is also
the case when measuring the cost of failure for any of the instruc-
tions which can fail (generally the get and unify instructions).
All these instructions need to be always executed together with
other bytecodes in order to make the calibration program legal. As
a result, and due to interactions between the costs of the different
instructions, the equations are not as easy to configure in all cases
as the simple case for the execute instruction above.

As a simple example, the calibrator that returns the cost of call
and the proceed instructions uses the programs in Table 3 (where
we have turned off the optimization of register / variable allocation
in the compiler for simplicity). In order to be able to separate the

Programs Instructions Trace
c2 5 :- 00 : allocate 00 : allocate

c 5, 01 : call 09 01 : call 09
c 5, 02 : call 09 09 : proceed
c 5, 03 : call 09 02 : call 09
c 5, 04 : call 09 09 : proceed
c 5, 05 : call 09 03 : call 09
c 5, 06 : call 09 09 : proceed
c 5. 07 : deallocate 04 : call 09

08 : execute 09 09 : proceed
05 : call 09

c 5. 09 : proceed 09 : proceed
06 : call 09
09 : proceed
07 : deallocate
08 : execute 09
09 : proceed

c2 0 :- 00 : allocate 00 : allocate
c 0, 01 : call 04 01 : call 04
c 0. 02 : deallocate 04 : proceed

03 : execute 04 02 : deallocate
03 : execute 04

c 0. 04 : proceed 04 : proceed

Table 3. Programs used to get the execution time of the call and
proceed instructions.

cost of call and proceed an idea might be to find a calibrator that
isolates the cost of proceed by itself and subtract from the value
given by the calibrator for call and proceed and obtain the cost
of call. However, that is in general not possible since in all legal
calibrators proceed and call must always appear combined with
other bytecodes. In general we need to set up a system of equations
in which the known values are the costs given by our calibrators
and the unknown values are the costs of the individual bytecodes.
Such equations can be configured automatically, by executing the
calibration programs in a special version of the WAM with the
bytecode dispatch loop instrumented as in Figure 1 so that the
profiler keeps an account of the executed bytecodes.

Let ci, 0 ≤ i ≤ n, be the time calibrator Ci has returned, and
let βj , 0 ≤ j ≤ m, m ≥ n, be the cost of a bytecode Bj , distin-
guishing between the case of a fail or a success in the execution of
such bytecode. In other words, Bj ∈ I × {fail , success}, where I
the set of all possible bytecodes and fail and success represent the
failure or success of the execution of a bytecode. We can then set
up the following system of equations:

c1 = a11β1 + a12β2 + · · ·+ a1mβm

c2 = a21β1 + a22β2 + · · ·+ a2mβm

. . .
cn = an1β1 + an2β2 + · · ·+ anmβm

(1)

which we can rewrite such using matrix notation:

C = AB (2)

where B = (βi) is the vector of execution times for the bytecodes.
In order to obtain B we ideally need to configure as many calibra-
tors as bytecodes. Finding a solution to this system of equations re-
quires, in principle, independence among the equations (i.e., there
is no other linear independent equation but those in (1)), and to have
as many equations as variables. However, that is not always possi-
ble due to dependencies between the number of times a bytecode is
executed. For example, in the WAM under analysis, the following
invariant holds:

PROPOSITION 1. For any program, the number of times re-
try me else is called plus the number of times trust me is called
is equal to the number of failures.

This holds since a failure always causes backtracking to the next
choice point, which always implies executing either a retry me else
or a trust me instruction. As the coefficients aij in the equation
above are precisely the number of times every bytecode is exe-
cuted, it turns out that, for a given execution, some coefficients are
dependent on some other coefficients, therefore breaking the initial
independence assumption: the system of equations is underdeter-
mined and it does not have a unique solution.

For this reason, since the coefficients aij where obtained by
summarizing legal programs (i.e., the calibrators), and they will be
affected by the linear dependency mentioned above, the undeter-
mined system (2) will not have a unique solution. However, note
that when several bytecodes in a block must be executed together
(because of constraints in the WAM compilation and execution
scheme) knowing the execution time of each of them in isolation
is not needed: knowing the total execution time of the whole block
is enough. This intuitive idea can be formalized and generalized
with the following result:

PROPOSITION 2. Given a set of n calibration programs Ci, that
define n linear independent equations with βi variables (corre-
sponding to the m bytecodes, with both success and failure cases
included), if we have that for all programs there exist m−n linear
independent relationships between the number of bytecodes that
are always fulfilled, then the estimated execution time is invariant
with respect to the choice of any arbitrary element of the solution
set of such linear system.

Proof : Let B be an arbitrary solution of C = AB. Let X be a
vector which represents the number of times each bytecode has
been executed for a given program. The estimated execution time is
E = XTB, i.e., the sum of the time for each bytecode multiplied
by the number of times it has been executed.

By linear algebra, and considering that each calibrator defines a
linear independent equation, we have that the range of A is n, and
the kernel (or nullspace) of A is given by the set of all λ such that
Aλ = 0, a vector space of dimension m− n (0 represents the null
vector of dimension n). In other words, we have that:

C = AB = AB + 0 = AB +Aλ = A(B + λ) (3)

Then,B+λ is a solution of (2), and it is also a representative of the
solution set of such equation system. What we should prove now
is that XT (B + λ) = XTB, that is, canceling common terms and
transposing the equations:

λTX = 0 (4)

On the other hand, we have a set ofm−n = k linear dependencies
between the number of bytecodes executed of the form:

0 = v11x1 + v12x2 + · · ·+ v1mxm

0 = v21x1 + v22x2 + · · ·+ v2mxm

. . .
0 = vk1x1 + vk2x2 + · · ·+ vkmxm

Or, rewriting them using matrices:

0 = V X (5)

The result of multiplying an arbitrary vector d by V is a vector
µT = (dV) and for the equation above, it follows that µTX = 0.

But note that the rows of A were obtained executing a program
that meets the linear dependencies too, that is, µTAT = 0. Trans-
posing, we have:

Aµ = 0 (6)

For this reason, we can see that as λ, µ is a member of the kernel
of A, and considering the uniqueness of the kernel of a matrix, and
that µ is an element of a space of dimension m−n, we can choose
µ such that λ = µ, that is, we can express λ as the product (dV)T ,
as result of basic theorems of linear algebra. Therefore, we have
that:

λTX = µTX = (dV)X = d(V X) = d(0) = 0 (7)

2

Then, the method we follow to select a representative solution
B is simply to complete the equation systems with m − n arbi-
trary equations in order to make them become determined. Such
equations should be selected in such a way that the βi values be
positive, for example, by setting the cost to 0 as the time of the
bytecodes that are faster, avoiding negative solutions.

5.4 Dealing with unbound instructions
We now consider the case of bytecode instructions whose execution
time depends on the specific values that certain parameters can
take at run time. In such cases the accuracy of our analysis can
be increased by taking advantage of static term-size analysis and
the addition of cost-related assertions for such instructions. Such
assertions make it possible to introduce ad-hoc functions giving the
size of the input parameters of the bytecode.

In fact, our system is able to deal with several metrics (e.g.,
value, length, size, depth, ...) as shown in (12; 11; 13), but for
brevity, in the following paragraphs we will describe an example
unifying lists.

Let us take, the instruction unify variable(V, W) and let us
assume that we want to calculate an upper bound for its execution
time upon success and for the case where the two arguments to
unify are lists of numbers. We assume that an upper bound to the
execution time is proportional to the number of iterations necessary
to scan the lists. The timing model for such instruction is thus
K1 + K2 ∗ length(V), because if the instruction succeeds, the
length of both V and W should be equal. The value of constants
K1 andK2 is calculated by setting up two benchmarks which unify
lists of different length l1 and l2. If the cost of unify variable
for these two list lengths is, respectively, B1 and B2, then we set
up the following system of linear equations:

B1 = K1 +K2 × l1
B2 = K1 +K2 × l2 (8)

Note that B1 and B2 can be added to the system of equations (2)
to get its values in one step, and later, we solve K1 and K2 in the
system of linear equations (6).

6. Experimental results
In order to evaluate the techniques presented so far we need to
choose a concrete bytecode language and an implementation of its
abstract machine to execute and profile with. As mentioned before,
the de-facto target abstract machine for most Prolog compilers is
the WAM (23; 1) or one of its derivatives. In order to evaluate
the feasibility of the approach we have chosen a relatively simple
WAM design, which is quite close to the original WAM definition.
It is based on (9), but has been ported from Java to C/C++ to
achieve similar performance of other Prolog systems. The use of a
relatively simple abstract machine allows evaluating the technique
while avoiding the many practical complications present in modern
implementations, such as having complex instructions resulting
from merging other, simpler ones, or specializations of instruction
and argument combinations. This of course does not preclude the
application of our technique to the more complex cases.

In our concrete abstract machine, we have considered 42 equa-
tions for 43 bytecodes, differentiating the success and failure cases.

As we have seen in Proposition ??, there exists a linear relationship
between the number of bytecodes that a program will call which
can be stated as:

0 = x30 + x38 − x13 − x15 − x17 − x22 − x41

−x43 − x49 − x50 − x51 − x52 − x53

where the xi represent the number of times the bytecode tagged as
βi has been executed for any program being analyzed (see Tables 4
and 6).

By Proposition 1, we are free to select any arbitrary solution of
the linear system. The proposed solution has been found by setting
arbitrarily the cost of fail to zero. Then, our set of linear equations,
discarding those whose calibrators are composed only with one
bytecode, is as follows:

0 = β13 c01 = β01 + β07

c20 = β20 + β33 + β43 c09 = β09 + β24

c11 = β01 + β11 + 2β28 + β30 c15 = β15 + β38

c46 = β01 + 2β28 + β30 + β50 c17 = β17 + β30

c42 = β01 + 2β27 + β30 + β52 c07 = β07 + β24

c22 = β01 + β22 + β23 + β30 c29 = β01 + β17 + β30

c34 = β01 + β23 + β30 + β35 c37 = β17 + β38

c36 = β01 + 2β28 + β30 + β37 c38 = β07 + β24 + β39

c40 = β01 + β23 + β30 + β41 c19 = β19 + β33

c43 = β01 + β27 + β28 c13 = β01 + β13 + β30

+β30 + β49

c49 = β01 + 2β19 + 2β27 c51 = β01 + 2β20

+β30 + 2β31 + 2β33 + β51 +β30 + 2β31 + β53

(9)
Solving this linear system we get:

β01 = c29 − c17
β07 = −c29 + c17 + c01
β09 = −c29 + c17 + c09 − c07 + c01
β11 = −2c27 − c13 + c11
β13 = 0
β15 = −c37 + c29 + c15 − c13
β17 = c29 − c13
β19 = c19 − c32
β20 = −c44 − c32 + c20
β22 = −c23 + c22 − c13
β24 = c29 − c17 + c07 − c01
β30 = −c29 + c17 + c13
β35 = c34 − c23 − c13
β37 = c36 − 2c27 − c13
β38 = c37 − c29 + c13
β39 = c38 − c07
β41 = c40 − c23 − c13
β49 = c43 − c27 − c26 − c13
β50 = c46 − 2c27 − c13
β51 = c49 − 2c30 − 2c26 − 2c19 − c13
β52 = c42 − 2c26 − c13
β53 = c51 + 2c44 + 2c32 − 2c30 − 2c20 − c13

(10)

The leftmost column of Tables 4 and 6 summarizes the cali-
bration data for the instructions of our WAM implementation. For
brevity, we actually only show those being used in the examples
tested, although we have calibrated all of them. In the second col-
umn there is a tag that is the variable name in the linear equations
system. In the examples we deal with a subset of Prolog which
only has operations on integers, atoms, lists, and terms. Likewise,
we obviate issues like modules or syntactic sugar which can be
dealt with at the Prolog level. A few additional built-in predicates
are required to have a minimal functionality including write/1,
consult/1, etc. They are profiled separately and their timing is
given to the system through assertions. This is also a valid solution
in order to be able to analyze larger programs.

Bytecode Tag Intel N810 Sparc
(ns) (ns) (ns)

allocate β01 29 366 1055
arith add β02 29 489 1438
arith div β03 29 580 1541
arith mod β04 29 641 1553
arith mul β05 28 519 1468
arith sub β06 28 519 1438
call β07 11 183 261
cut β08 13 183 581
deallocate β09 7 305 142
execute β12 15 152 574
get constant atom β14 38 518 1211
get constant int β16 28 396 1157
get level β18 28 213 1054
get list β19 20 275 763
get struct β20 52 642 1766
get value β21 43 488 1457
get variable β23 43 549 1658
proceed β24 17 61 699
put a constant atom β25 20 122 594
put a constant int β26 20 122 506
put constant atom β27 37 274 1085
put constant int β28 37 274 997
put value β29 21 183 910
retry me else β30 33 336 999
set constant atom β31 26 213 861
set constant int β32 25 183 767
set variable β33 29 213 850
trust me β38 29 336 973
try me else β39 30 457 1132
unequal β40 21 244 1021
unify variable(nvar,var) β42 35 396 1309
unify variable(var,nvar) β43 35 397 1309
unify variable(int,int) β44 32 275 1179
unify variable(atm,atm) β46 44 427 1413

unify variable(
str(1),str(1)) β47 77 885 2560

unify variable(
list(1),list(1)) β45 96 1068 3291

unify variable(
list(100),list(100)) β48 4062 42511 217975

Table 4. Timing model for the WAM instructions. Cost of byte-
codes when they succeed.

The experiments were made on the following representative
platforms:

• UltraSparc-T1, 8 cores x 1GHz (4 threads per core), 8GB of
RAM, SunOS 5.10.

• Intel Core Duo 1.66GHz, 2GB of RAM, Ubuntu Linux 7.04.
• Nokia N810. 400MHz processor, 128MB of RAM, Internet

Tablet OS, Maemo Linux based OS2008 51.3

In order to reduce noise in the data because of spurious results,
we have repeated each experiment 20 times and present the lowest
results. In the calibration step 1000 repetitions were made (i.e., r =
1000). When possible, the tests were performed with the machines
in single-user mode, stopping unnecessary processes. System tasks
such as garbage collection, which, as mentioned before, is not
considered in our model at the moment, were turned off.

Platform Timing Model (ns)
Intel 44 + 40.62 ∗ length(X)
N810 427 + 425.11 ∗ length(X)
Sparc 1413 + 2179.75 ∗ length(X)

Table 5. Timing model given by a linear function, for
unify variable(X,Y) when the arguments are lists of integers,
and the instruction does not fail.

Bytecode Tag Intel N810 Sparc
(ns) (ns) (ns)

fail β13 0 0 0
get constant atom β15 32 457 1256
get constant int β17 26 366 1169
get value β22 25 244 1106
unequal β41 11 61 651
unify variable β43 121 1065 3867

unify variable(
const1,const2)
const1 6= const2

β49 41 154 697

unify variable(int,int) β50 122 1035 3830
unify variable(

list(1),list(1)) β51 338 3227 12229

unify variable(atm,atm) β52 127 1126 4282
unify variable(

str(1),str(1)) β53 223 2381 9239

Table 6. Timing model for the WAM instructions. Cost of byte-
codes when they fail.

Tables 4 and 6 show the timing model for this WAM and the
architectures studied. In the benchmarks used the is/2 instruc-
tion is compiled into basic operations over pairs of numbers. The
table shows the corresponding instructions named arith *. We
also have separated the cost of the instructions put constant,
get constant when they are called for an atom or an integer.
Note however, that their cost is very similar in most cases, but
this will still help to reduce errors in the estimation. For the
unify variable instruction we have also included calibrations
for several cases depending on the type and size of the input argu-
ments in order to increase precision. In other cases, as mentioned
in 5.4, the execution time of this instruction is not bounded by any
a-priori known constant. Since, as also shown in Section 5.4, in our
implementation it is possible to use functions instead of constants
as timing model for a given instruction, in this table we include in
the calibrations two data points for the case when the arguments
are lists of integers, and for lists of size (length) 1 and 100 (β45

and β48 in Table 4). The value for an empty list is the same as for
unifying any two equal atoms, i.e., β46 in Table 4. Table 5 shows
the resulting timing model for unify variable using these values
to fit our linear model for this instruction.

Using the timing model shown in Tables 4, 5, and 6, we have
performed some experiments with a series of programs on the three
platforms (Intel, N810, and Sparc) in order to assess the accuracy
of our technique for estimating execution times. The results of
these experiments are shown in Tables 8 (Intel), 9 (N810), and 10
(Sparc).

Column Pr. No. lists the program identifiers, whose associa-
tion with the programs and the input data sizes used is shown in
Table 7. Column Cost App. indicates the type of approximation
of the automatically inferred cost functions which estimate exe-
cution times (as a function on input data size): upper bound (U),
lower bound (L), or exact (E). Such cost functions are shown in
column Cost Function for the three different platforms considered

No. Program Data size
1 append(+A,+,-) x=length(A)=150
2 evalpol(+A,+X,-) x=length(A)=100
3 fib(+N,-) x=N=16
4 hanoi(+N,+,+,+,-) x=N=8
5 nreverse(+L,-) x=length(L)=83
6 palindro(+A,-) x=length(A)=9
7 powset(+A,-) x=length(A)=11
8 list diff(+L,+D,-) x=length(L)=65

y=length(D)=65
9 list inters(+L,+D,-) x=length(L)=65

y=length(D)=65
10 substitute(+A,+B,-) x=term size(A)=67

y=term size(B)=80
11 derive(+E,+,-) x=term size(E)=75

Table 7. List of program examples used in the experimental as-
sessment.

in our experiments. The variables x and y represent the sizes of the
input arguments to the programs which are relevant for the infer-
ence of the cost functions. The type of approximation directly de-
pends on the one used by the static analysis described in Section 4
for estimating the number of executed instructions (as a function
on input data size). The value E means that the lower and upper
bound cost functions are the same, and thus, since the analysis is
safe, this means that the exact cost function was inferred. Using
the cost functions shown in column Cost Function, and in order
to assess their accuracy, we have also estimated execution times
for particular input data for each program and compared them with
the observed execution times. These execution times are shown in
columns Est. and Obs. respectively. Column D. shows the relative
harmonic difference between the estimated and the observed time 2.
The source of inaccuracies in the execution time estimations of our
technique come mainly from two sources: the timing model (which
gives the execution time estimation of bytecodes, as shown in Ta-
bles 4 and 6)) and the static analysis (described in Section 4, which
estimates the number of times that the bytecodes are executed, de-
pending on the input data size). Since we are interested in iden-
tifying the source(s) of inaccuracies, we have also introduced the
column Prf. It shows the result of estimating execution times using
the timing model and assuming that the static analysis was perfect
and obtained a function which provides the exact number of times
that the bytecodes are executed. This obviously represents the case
in which all loss of accuracy must be assigned to the timing model.
The “perfect” cost model is obtained from an actual execution by
instrumenting the profiler so that it records the number of times
each instruction is executed for the application and the particular
input data. Column Pr.D. shows the relative harmonic difference
between Prf. and the observed execution time Obs.

The upper part of Tables 8, 9, and 10, up to the double line
corresponds to examples where an exact cost function for the num-
ber of executed bytecodes was automatically inferred by the static
analysis (note that, as expected, the values Est. and Prf. are the
same). We can see that with an exact static analysis, the estimated
execution times Est. are quite precise, which in turn supports the
accuracy of our timing model.

It is particularly interesting to compare these results with those
which were obtained using a variety of higher-level models in (19).
Table 11 provides the standard deviation of the four high-level
models of (19) as well as that of the abstract machine-based model
presented in this paper, for the Intel platform and our set of bench-

2 rel harmonic diff(x, y) = (x− y)(1/x + 1/y)/2.

Pr. Cost. Intel (µs)
No. App. Cost Function Est. Prf. Obs. D. % Pr.D. %

1 E 0.73x+ 0.21 110 110 113 -2.4 -2.4
2 E 0.69x+ 0.19 69 69 71 -2.3 -2.3
3 E 0.69 · 1.6x + 0.21(−0.62)x − 0.72 1525 1525 1576 -3.3 -3.3
4 E −0.0042 · 2x + 0.73x · 2x − 0.86 1501 1501 1589 -5.7 -5.7
5 E 0.37x2 + 0.49x+ 0.12 2569 2569 2638 -2.7 -2.7
6 E 0.36 · 2x + 0.37x · 2x − 0.24 1875 1875 2027 -7.8 -7.8
7 E 0.91 · 2x + 0.87x− 0.6 1868 1868 1931 -3.3 -3.3
8 L 0.66x+ 0.2 43 68 81 -67.2 -17.8

U 0.78xy + 1.7x+ 0.4 3414 3569 3640 -6.4 -2.0
9 L 0.83x+ 0.2 54 79 91 -54.6 -14.8

U 0.78xy + 1.7x+ 0.4 3414 3694 4011 -16.2 -8.2
10 L 2x 135 142 124 8.6 13.7

U 1.4xy + 1.4y + 6.1x+ 4.1 7922 2937 2858 120.6 2.7
11 L 2.9x 216 138 111 72.3 22.5

U 3x+ 3 226 216 162 34.0 29.5

Table 8. Observed and estimated execution time with cost functions, Intel platform (microseconds).

Pr. Cost. N810 (µs)
No. App. Cost Function Est. Prf. Obs. D. % Pr.D. %
1 E 7.8x+ 2.7 1169 1169 1037 12.0 12.0
2 E 7.8x+ 2.7 786 786 641 20.6 20.6
3 E 8.3 · 1.6x + 2.5(−0.62)x − 8.4 18333 18333 14496 23.7 23.7
4 E 0.74 · 2x + 7.8x · 2x − 10 16095 16095 16144 -0.3 -0.3
5 E 3.9x2 + 5.7x+ 1.6 27247 27247 28381 -4.1 -4.1
6 E 4.4 · 2x + 3.9x · 2x − 2.9 20167 20167 20416 -1.2 -1.2
7 E 9.5 · 2x + 10x− 6 19517 19517 19653 -0.7 -0.7
8 L 7.3x+ 2.8 474 744 640 -30.4 15.1

U 8.2xy + 19x+ 5.5 35849 37162 29266 20.4 24.1
9 L 8.7x+ 2.8 569 839 732 -25.4 13.7

U 8.2xy + 19x+ 5.5 35849 38076 29907 18.2 24.4
10 L 21x 1399 1475 1068 27.3 32.9

U 15xy + 15y + 64x+ 43 85893 30375 25543 153.3 17.4
11 L 29x 2190 1423 854 108.7 53.3

U 30x+ 30 2306 2193 1342 56.8 51.1

Table 9. Observed and estimated execution time with cost functions, Nokia N810 platform (microseconds).

Model Deviation
High Level 1 51.17 %

2 31.06 %
3 21.48 %
4 58.45 %

Abs. Machine 4.72 %

Table 11. Comparison between the higher level models and the
abstract machine-based model, on the Intel platform.

marks. It can be observed that the results obtained with the abstract
machine-based model are more than five times better on the same
platform than those obtained using the higher-level models.

With the abstract machine-based model, and for this type of pro-
grams we believe that the remaining error comes simply from the
accumulated loss of accuracy of the bytecode instruction profiling
and expect that making the timing model more precise will increase
precision even further.

The lower part of Tables 8, 9, and 10 shows programs for
which there is no unique value for Timep(n), where Timep(n)
(as described in Section 4.1) denotes the cost (in time units) of

computing a call to program p for an input of size n on a given
platform. The reason is that for such programs, the number of
instructions executed does not only depend on the input data sizes,
but also depends on other characteristics of the input data (e.g., their
actual values). Thus, for a given data size, there are actual lower
and upper bounds for the cost of the program calls. For this reason,
the two observed execution times shown in column Obs. for each
program have been obtained by running the program with the input
data, of the size specified in Table 7, that yield the actual lower and
upper bounds to the execution times for such size. In this case, the
static analysis infers approximations to such actual lower and upper
bound cost functions (L and U respectively). These predictions
are understandably much less accurate in these cases than those
in the first part of the table, but still reasonable. In any case, lower
bounds and upper bounds tend to be reasonably smaller or bigger
than the observed execution times respectively. In general, for the
programs in the lower part of the tables with big (absolute) values
for D., the (absolute) value for Pr.D. is reasonably small. This
means that, in those cases, most of the inaccuracy in the estimation
of execution times (Est.) comes from the static analysis, which
does not approximate actual lower and upper bound cost functions
accurately enough, and that the timing model used for predicting

Pr. Cost. Sparc (µs)
No. App. Cost Function Est. Prf. Obs. D. % Pr.D. %
1 E 26x+ 7.4 3906 3906 4670 -18.0 -18.0
2 E 25x+ 7.1 2543 2543 2985 -16.1 -16.1
3 E 26 · 1.6x + 7.8(−0.62)x − 27 56828 56828 59120 -4.0 -4.0
4 E 1.2 · 2x + 26x · 2x − 33 53504 53504 63156 -16.7 -16.7
5 E 13x2 + 17x+ 4.3 90973 90973 109849 -19.0 -19.0
6 E 13 · 2x + 13x · 2x − 8.5 66400 66400 78980 -17.4 -17.4
7 E 32 · 2x + 32x− 22 66224 66224 78151 -16.6 -16.6
8 L 24x+ 7.1 1574 2458 2991 -68.7 -19.7

U 27xy + 62x+ 14 118269 123733 129951 -9.4 -4.9
9 L 30x+ 7.1 1940 2824 3394 -58.9 -18.5

U 27xy + 62x+ 14 118269 127378 133703 -12.3 -4.8
10 L 68x 4545 4821 4634 -1.9 4.0

U 48xy + 48y + 207x+ 140 277175 101779 111829 103.8 -9.4
11 L 95x 7104 4628 4038 59.6 13.7

U 98x+ 98 7454 7147 6081 20.5 16.2

Table 10. Observed and estimated execution time with cost functions, Sparc platform (microseconds).

the execution time of bytecodes is reasonably precise. Thus, we
believe that using a better static analysis for inferring cost functions
which take into account other characteristics of the input data,
besides their sizes, would significantly improve the predictions. In
any case, there is always a reasonable slack in the precision of the
estimations due to the timing measurements and the timing model.

7. Conclusions and Future Work
We have developed a framework for estimating upper and lower
bounds on the execution times of logic programs running on a
bytecode-based abstract machine. We have shown that working
at the abstract machine level allows taking into account low-level
issues without having to tailor the analysis for each architecture and
platform, and allows obtaining more accurate estimates than with
previous approaches, including comparatively accurate upper and
lower bound estimations of execution time.

Although the framework has been presented in the context of
logic programs, we believe the technique can easily be applied to
other languages. This adaptation of the approach, while certainly
not trivial, to some extent would actually imply some simplifica-
tion, since backtracking does not need to be taken into account.
For example, analyses have been recently developed for Java byte-
code (3) which infer the number of execution steps using simi-
lar techniques to those used in logic programming (12; 11; 13).
Such analyses could be adapted, following the techniques presented
herein, to take into account the bytecode timing information and
would then be able to estimate actual execution time for Java pro-
grams. Appropriate cost models for Java bytecode are already being
developed in (22).

We believe that the more accurate execution time estimates that
can be obtained with our technique can be very useful in several
contexts including parallelism, compilation, real-time applications,
pervasive systems, etc. More concretely, increased timing preci-
sion can improve the effectiveness of resource/granularity control
in parallel/distributed computing. This belief is based on previous
experimental results, where it appeared that, even if improved pre-
cision in timing estimates is not essential, it does yield increased
speedups. Also, the inferred cost functions can be used to develop
automatic program optimization techniques. For example, they can
be used for performing self-tuning specialization which compares
statically the estimated execution time of different specialized ver-
sions (10).

Given that our experimental results are encouraging with re-
spect to actually being able to find more accurate upper and lower
bounds to program execution times, the approach may eventually
also be used for verification (or falsification) of timing constraints,
as in, for example, real-time systems, which was not possible in
an accurate way with previous approaches. In fact, our approach
(which can be adapted to take also into account destructive assign-
ment, as in (20)) can potentially be used to solve a common prob-
lem in current WCET static analysis, where only constant WCET
bounds (i.e., non dependent on input data sizes) are inferred. These
bounds are not always appropriate since the WCET of a given pro-
gram often depends on several input parameters, and using an ab-
solute bound, covering all possible situations (i.e., all possible val-
ues or sizes of input), produces only a very gross over approxima-
tion (15). Substituting the estimated costs of the bytecodes by the
actual worst-case costs of the instructions and using our approach,
the WCET is expressed as a cost function parameterized by the size
or values of input arguments, providing tighter WCET approxima-
tions. On the other hand, WCET work has produced more accurate
(but, unfortunately, non-freely available) timing models which take
into account many low-level parameters (such as cache behavior,
pipeline state, etc.) which we have abstracted away in our work. It
is clear that a combination of both techniques might be very useful
in practice.

References
[1] H. Ait-Kaci. Warren’s Abstract Machine, A Tutorial Reconstruction.

MIT Press, 1991.

[2] E. Albert, P. Arenas, S. Genaim, and G. Puebla. Automatic Inference
of Upper Bounds for Recurrence Relations in Cost Analysis. In Proc.
of Static Analysis Symposium (SAS), LNCS. Springer-Verlag, July
2008. To appear.

[3] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost
analysis of java bytecode. In R. D. Nicola, editor, 16th European Sym-
posium on Programming, ESOP’07, volume 4421 of Lecture Notes in
Computer Science, pages 157–172. Springer, March 2007.

[4] R. Bagnara, A. Pescetti, A. Zaccagnini, E. Zaffanella, and
T. Zolo. Purrs: The Parma University’s Recurrence Relation Solver.
http://www.cs.unipr.it/purrs.

[5] I. Bate, G. Bernat, G. Murphy, and P. Puschner. Low-Level Analysis
of a Portable Java Byte Code WCET Analysis Framework. In Proc.
7th International Conference on Real-Time Computing Systems and
Applications, pages 39–48, Dec. 2000.

[6] I. Bate, G. Bernat, and P. Puschner. Java virtual-machine support
for portable worst-case execution-time analysis. In 5th IEEE Inter-
national Symposium on Object-oriented Real-time Distributed Com-
puting, Washington, DC, USA, Apr. 2002.

[7] R. Benzinger. Automated higher-order complexity analysis. Theor.
Comput. Sci., 318(1-2), 2004.

[8] F. Bueno, P. López-Garcı́a, and M. Hermenegildo. Multivariant Non-
Failure Analysis via Standard Abstract Interpretation. In 7th Inter-
national Symposium on Functional and Logic Programming (FLOPS
2004), number 2998 in LNCS, pages 100–116, Heidelberg, Germany,
April 2004. Springer-Verlag.

[9] S. Buettcher. Warren’s Abstract Machine - A Java Implementation.
http://www.stefan.buettcher.org/cs/wam/index.html.

[10] S.-J. Craig and M. Leuschel. Self-tuning resource aware specialisation
for Prolog. In PPDP ’05: Proceedings of the 7th ACM SIGPLAN
international conference on Principles and practice of declarative
programming, pages 23–34, New York, NY, USA, 2005. ACM Press.

[11] S. K. Debray and N. W. Lin. Cost analysis of logic programs. ACM
Transactions on Programming Languages and Systems, 15(5):826–
875, November 1993.

[12] S. K. Debray, N.-W. Lin, and M. Hermenegildo. Task Granularity
Analysis in Logic Programs. In Proc. of the 1990 ACM Conf. on
Programming Language Design and Implementation, pages 174–188.
ACM Press, June 1990.

[13] S. K. Debray, P. López-Garcı́a, M. Hermenegildo, and N.-W. Lin.
Lower Bound Cost Estimation for Logic Programs. In 1997 Inter-
national Logic Programming Symposium, pages 291–305. MIT Press,
Cambridge, MA, October 1997.

[14] S. Diehl, P. Hartel, and P. Sestoft. Abstract machines for program-
ming language implementation. Future Generation Computer Sys-
tems, 16(7):739–751, 2000.

[15] A. Ermedahl, J. Gustafsson, and B. Lisper. Experiences from Indus-
trial WCET Analysis Case Studies. In R. Wilhelm, editor, Proc. Fifth
International Workshop on Worst-Case Execution Time (WCET) Anal-
ysis, Palma de Mallorca, July 2005.

[16] G. Gómez and Y. A. Liu. Automatic time-bound analysis for a higher-
order language. In PEPM. ACM Press, 2002.

[17] M. Hermenegildo, G. Puebla, F. Bueno, and P. López-Garcı́a. Inte-
grated Program Debugging, Verification, and Optimization Using Ab-
stract Interpretation (and The Ciao System Preprocessor). Science of
Computer Programming, 58(1–2):115–140, October 2005.

[18] E. Y.-S. Hu, A. J. Wellings, and G. Bernat. Deriving java virtual
machine timing models for portable worst-case execution time anal-
ysis. In On The Move to Meaningful Internet Systems 2003: OTM
2003Workshops, volume 2889 of LNCS, pages 411–424. Springer, Oc-
tober 2003.

[19] E. Mera, P. López-Garcı́a, G. Puebla, M. Carro, and M. Hermenegildo.
Combining Static Analysis and Profiling for Estimating Execution
Times. In Ninth International Symposium on Practical Aspects
of Declarative Languages, number 4354 in LNCS, pages 140–154.
Springer-Verlag, January 2007.

[20] J. Navas, M. Méndez-Lojo, and M. Hermenegildo. Customizable Re-
source Usage Analysis for Java Bytecode. Technical report, Univer-
sity of New Mexico, Department of Computer Science, UNM, January
2008. Submitted for publication.

[21] J. Navas, E. Mera, P. López-Garcı́a, and M. Hermenegildo. User-
Definable Resource Bounds Analysis for Logic Programs. In 23rd In-
ternational Conference on Logic Programming (ICLP 2007), volume
4670 of LNCS, pages 348–363. Springer-Verlag, September 2007.

[22] G. Román-Dı́ez and G. Puebla. Java bytecode timing cost models.
Technical Report CLIP12/2007.0, Technical University of Madrid,
School of Computer Science, UPM, December 2007.

[23] D. Warren. An Abstract Prolog Instruction Set. Technical Report
309, Artificial Intelligence Center, SRI International, 333 Ravenswood
Ave, Menlo Park CA 94025, 1983.

[24] R. Wilhelm. Timing analysis and timing predictability. In F. S.
de Boer, M. M. Bonsangue, S. Graf, and W. P. de Roever, editors,
Formal Methods for Components and Objects, Third International
Symposium, FMCO 2004, Leiden, The Netherlands, November 2 - 5,
2004, Revised Lectures, volume 3657 of Lecture Notes in Computer
Science, pages 317–323. Springer, 2004.

http://www.stefan.buettcher.org/cs/wam/index.html

	Introduction
	Mappings Between Program Segments and Bytecodes
	Modeling the Execution Time of Instructions
	Static Cost Analysis
	Overview of the Approach
	Estimating the Execution Time of Clauses and Predicates

	Estimating Instruction Execution Times via Profiling
	Instruction Profiling
	Measuring Time Accurately
	Getting Instruction Execution Time
	Dealing with unbound instructions

	Experimental results
	Conclusions and Future Work

