The CTAO Multi-Dialect Compiler and System:
An Experimentation Workbench for
Future (C)LP Systems

M. Hermenegildo* F. Bueno* D. Cabeza* M. Carro*
M. Garcia de la Banda' P. Lépez* G. Puebla*

Abstract

CIAO is an advanced programming environment supporting Logic
and Constraint programming. It offers a simple concurrent ker-
nel on top of which declarative and non-declarative extensions are
added via libraries. Libraries are available for supporting the ISO-
Prolog standard, several constraint domains, functional and higher
order programming, concurrent and distributed programming, inter-
net programming, and others. The source language allows declaring
properties of predicates via assertions, including types and modes.
Such properties are checked at compile-time or at run-time. The
compiler and system architecture are designed to natively support
modular global analysis, with the two objectives of proving proper-
ties in assertions and performing program optimizations, including
transparently exploiting parallelism in programs. The purpose of
this paper is to report on recent progress made in the context of the
CIAO system, with special emphasis on the capabilities of the com-
piler, the techniques used for supporting such capabilities, and the
results in the areas of program analysis and transformation already
obtained with the system.

1 Introduction

CIAO is a multi-paradigm compiler, run-time system, and program develop-
ment environment. It efficiently supports the programming styles of LP, CLP,
and CC languages on multiprocessor machines. It also supports distributed
execution and Internet/ WWW programming. The program development tools
in the system include execution visualizers and modular global program ana-
lyzers. The latter infer several properties including types, modes, determinacy,
non-failure, and independence. Such properties can be checked against user
supplied assertions for debugging purposes. Several program transformations
(including parallelization) are also performed automatically.

The system offers a simple but versatile kernel language with sequential,

*CsS Dept., Technical U. of Madrid.
{herme,bueno,dcabeza,mcarro,plg,german}@fi.upm.es
TDept. of CS, Monash University, Clayton 3168, Australia.

mbanda@bruce.cs.monash.oz.au



parallel, concurrent, and distributed execution capabilities. All extensions to
this language and support packages are provided as libraries, which are intended
to be portable so that they can be used with little modification in other logic
and constraint logic programming systems.

The kernel language is directly supported by a comparatively simple abstract
machine, mainly based on the parallelism and concurrency capabilities of the
&-Prolog parallel abstract machine (the PWAM [Her86, HG91]). The CIAO
system is an evolution of &-Prolog [Her86, HG91], which uses the &-Prolog
abstract machine as underlying kernel execution mechanism and significantly
extends the &-Prolog parallelizing compiler to support several logic program-
ming paradigms.

The implementation of the CIAO system makes use of the observation that
the languages and programming styles that it implements share much at both
the semantic and the implementation levels [HtCg93, HtCg94]. In that work
we discussed several methodological aspects regarding the design and efficiency
of a class of future logic programming systems. In particular, we proposed a
novel view of parallel and concurrent logic programming systems. We argued
that a large number of the actual systems and models can be described through
the application of only a few basic principles. We also argued that, in fact, a
system supporting several models can be implemented using a comparatively
simple, common abstract machine. These principles include determinism, non-
failure, independence (also referred to as stability), and task granularity. We
also argued for a separation between those principles which have to do with the
computation rule (i.e., to performing the least work possible) and those directly
related to parallelism (i.e., to performing such work in the smallest amount of
time by splitting it among several processors). Finally, and basing our discussion
on the convergence of concepts that this view brought, we sketched the design
of the CIAO system.

In CTAO the different source-level constructs, and even full sub-languages,
are supported by compilation via source to source transformations into the kernel
language. This allows simplifying the core of the compiler which can then imple-
ment a reduced set of analysis and transformation techniques. These techniques
are based on novel semantic modeling of CLP and CC program behavior and on
the exploitation of fundamental optimization principles (independence/stability
and determinism), and techniques based on global analysis (program special-
ization and abstract executability). This approach allows reusing significant
portions of modern Prolog implementation technology. The same philosophy is
used in the language syntax design where the better part of the Prolog syntax
and language design is used extensively. As a result CIAO subsumes ISO-Prolog
(in some cases using a library) and ISO-Prolog programs run in CIAO.

Given the characteristics mentioned above, CIAO can be used quite effec-
tively for developing applications. However, one of its fundamental objectives
is to be a tool for easily experimenting with and evaluating language design



issues, including program analysis and transformation methods and lower-level
implementation techniques.

The main aim of this paper is to offer a general overview of the system and
provide references to publications or technical reports where the actual tech-
niques used are described. We hope that the reader will understand in this
context the large number of references to CIAO-related publications. A good
overview of work in the parallelization of logic programs can be found in [CC94].
Good overviews of recent progress in Constraint Logic Programming and Con-
current (Constraint) Logic Programming can be found respectively in [JM94]
and [Tic95]. Most of the papers and technical reports referenced can be obtained
from our Laboratory’s WWW server http://www.clip.dia.fi.upm.es/.

2 Some Design Guidelines of the CIAO System

We now expand on some of the considerations outlined in the introduction,
which guide the design of the CIAO system. Such guidelines include:

e Extensive property inference capabilities, but few compulsory assertions:
The system includes a global analyzer capable of inferring many prop-
erties such as types, modes, determinacy, non-failure, freeness, indepen-
dence, etc. However, in contrast to strongly typed systems such as Mer-
cury [HSC96], none of these annotations are compulsory. In addition, the
user can add annotations regarding this properties. Such annotations can
optionally be ‘checked” by the compiler or “trusted,” i.e., used to guide the
analysis (for example, when stating the interface of a module). The ana-
lyzer communicates the results of analysis in the same assertion language
[BCHP96, PBH97, Gro97, BDD*97, HtCG97].

o Support for ISO-Prolog: The system provides support for ISO-Prolog.
However, this is not done directly but rather via a library. The basic lan-
guage (when this library is not loaded) can be seen as constructed by first
eliminating “unnecessary” impure features in ISO-Prolog (which are put
in the library) and adding other features, but keeping the basic syntax.
For example, the CTAO system allows constraints, functions, higher order
syntax (e.g., P(X)), and other Prolog extensions, but all syntactically cor-
rect ISO-Prolog programs are also syntactically correct CIAO programs.

o Versatile compilation options and small ezecutables: The system provides
several different ways of producing executables. These include, in addi-
tion to the traditional modes of compilation in Prolog systems, support
for the use of CIAQ as a scripting language (which avoids any need to use
the compiler or top level for program development), compilation to byte-
code executables, compilation into C files for linking into C applications,
compilation to small native executables, etc.



o Support for Multiple Models and Paradigms: The system supports a range
of LP, CLP, and CC programming languages. It also supports several
computation rules, including standard left-to-right SLD resolution and the
determinate-first principle (as in the Andorra model [SCWY90, dMSC93]).

o Support for Distributed Execution: In the belief that many distributed
applications are a good target for computational logic systems, the CIAO
system includes extensive distributed execution capabilities. Such capabil-
ities allow the transparent execution of parallel/concurrent code written
for a multiprocessor in a distributed environment (of course, granularity
control is an issue here). Furthermore, the system includes the notions
of “team” of workers and “active module” (or active object), which con-
veniently encapsulate different types of functionalities desirable from a
distributed system, from parallelism for achieving speedup to client-server
applications (the notion of active object is provided as a smooth exten-
sion of the built-in module/object system). The distributed capabilities of
CIAO are described in [CH95]. In addition, the system also offers several
facilities and a library for developing WWW-based applications.*

o Implementation via Compilation into a Simple Kernel Language: This is
based on the belief that medium to high performance implementations of
many LP systems can be obtained in this way, with the advantages then
that optimizations can be performed via source to source transformations
and the low level machinery can be kept minimal. Optimizations, which
include parallelization, reduction of concurrency and synchronization, re-
ordering of goals, code simplification, specialization, etc., are performed
via source to source transformation. Most analysis phases are performed
at the kernel language level, so that the same analyzer can be used for sev-
eral models. For example, a single analyzer framework can handle Prolog
programs with delay and concurrent (constraint) programs.

e Explicit Control in the Kernel Language: makes it possible to perform
many control-related optimizations at the source level. Such explicit con-
trol is performed via operators which include:

— Sequential, Parallel, and Concurrent Operators: the presence of sepa-
rate sequentiality (“,”), concurrency (“&/1”) and parallelism (“&/2”,
“&>/2”, “<&/1”) operators allows performing optimizations such as
parallelization (task creation based on dependencies), partitioning
and schedule analysis (task coalescence based on dependencies), and
granularity control (task coalescence based on task size considera-

tions) as source to source transformations.

The parallel operators allow indicating points where parallelism can
be exploited. Their behavior is otherwise equivalent to that of the

1See http://www.clip.dia.fi.upm.es/miscdocs/html_pl/html_pl.html for details.



sequential operator. Thus, full backtracking is supported. These
operators essentially assume independence among goals. Commu-
nication of bindings is therefore not guaranteed until the join. No
variable locking is performed. The concurrency operator allows con-
current programming in the style of CC languages (also, the paral-
lelism in such concurrent execution may be exploited if resources are
available). Backtracking is limited to allow a relatively straightfor-
ward implementation. In particular, in the current version of the
CTAO system no “active shared binding” is allowed to be undone via
backtracking. An active shared binding is a binding to a variable
that is shared among active (i.e., non-finished) processes. Variable
communication (and locking) is performed.

— Eaxplicit And-Fairness Operator: based on the observation that and-
fairness in concurrent systems is still expensive to implement, a
fair concurrency operator (“&&/1”) is introduced which explicitly re-
quests the (efficient) association of computational resources (e.g., an
operating system thread) to a goal. Note that this leaves open the
possibility of implementing a fair source language that compiles ef-
ficiently into this and the above operators (perhaps via an analy-
sis which can determine the program points where fairness is really
needed — to ensure, for example, termination).

— Ezxplicit Synchronization: handled in the kernel language by means
of “wait/1” and “ask/1” operators (the latter as in concurrent con-
straint programming, the former as in &-Prolog), augmented with
some meta-tests on the variables (such as ground/1 or nonvar/1).

— Ezxplicit Placement Operator: The “@” operator allows control of task
placement in distributed execution. This operator can be combined
with any of the parallelism and concurrency operators mentioned
before. Other primitives for controlling distributed execution include
primitives for dealing with teams of workers, and for using active
modules or active objects.

o Generic Abstract Machine: a comparatively simple abstract machine di-
rectly supports the kernel language. The design of the abstract machine
is based on the belief that there is much in common at the abstract ma-
chine level among many of the LP, CLP, and CC models, and thus builds
strongly on the parallelism and concurrency capabilities of the PWAM/&-
Prolog abstract machine [Her86, HG91] and recent work on extending its
capabilities and efficiency [PGT96]. The abstract machine includes na-
tive support for attributed variables [Hol92, Hui90, Neu90] [Hol92] which
are used in the implementation of constraint solvers (as in other systems
such as Eclipse [Eur93] and SICStus 3 [Swe95]) and in supporting com-
munication among concurrent tasks [HCC95]. While the current abstract



urce
R

%%%”é' on Transdlation
(endorra] cc [ dpflp) abstract
domain
constraint
domain paralleljzation
—_— | agorithm

notion of

Parallelization

C s T dp [ & independence
Optimization | degree
(I T dp [ cc | sec)
- format

Output

Figure 1: CIAO Compiler Structure

machine supports only (“dependent” and “independent”) and-parallelism,
it is expected that combination with or-parallelism will be possible by ap-
plying the techniques developed in [GSCYH91, GC92, GHPSC94].

3 The CIAO Compiler

The CTAO compiler provides the required support for the different programming
paradigms and their optimization. As mentioned before, it is strongly based on
program analysis and transformation. The compilation process can be viewed
as a translation process from the input language to (kernel) CIAO. The system
is able to translate the input source, automatically extracting parallelism, com-
piling synchronization, and optimizing the final program. Optimizations include
simplifying the code to avoid run-time tests and suspensions, and specializing
predicates in order to generate much simpler and efficient code in the back end.

This compilation process is depicted in Figure 1, which illustrates the inputs
and outputs, as well as the compilation options, which are selected via either
menus or program flags. The compilation process is structured into several
steps. First, a module in a given input language is translated into the kernel
language. Then, analysis is performed if required to support the rest of the
compilation process. Some degree of analysis may also be performed to aid in
the translation step. After analysis, the program is optionally annotated for



parallel execution, simplified and specialized.

The output can then be loaded for execution on the abstract machine. As an
alternative, and using the transformational approach, most of the capability of
the system is also supported (with sometimes somewhat lower efficiency) on any
Prolog system with delay declarations and attributed variables (e.g., SICStus
Prolog Version 3 [Swe95]). In that sense, the CIAO compiler can also be viewed
as a library package for Prolog systems with these capabilities.

The compiler steps and options are discussed in the following sections. As
mentioned before, our aim herein is to offer a general description and provide
references for publications or technical reports where the techniques used are
described. An extended description of the capabilities of the compiler can be
found in the User’s Manual [Bue95].

3.1 Source Languages Supported and Transformations Performed

The compiler can deal with several languages and computation rules simulta-
neously and perform several translations among them. Currently, there are
three languages supported: the CIAO kernel language (backwards compatible
with Prolog, plus the specific CIAO primitives), languages based on the basic
Andorra model, and basic CC languages. Also, for each of these languages sev-
eral constraint domains can be chosen. Currently, the system supports those of
Prolog, CLP(R), and CLP(Q).

The mode of the system can be changed by typing at the top level the com-
mands ciao(Domain), andorra(Domain), or cc(Domain), where the variable
Domain has to be instantiated to either h, q, or r, indicating the desired con-
straint domain, i.e. Herbrand, Q, or R, respectively. Programs read from then
on will be assumed to have the characteristics associated to the new mode:

e ciao(Domain): CIAO full syntax (backwards compatible with Prolog, plus
the specific CIAO primitives) language; left-to-right and (encapsulated)
concurrency.

e andorra(Domain): Prolog language; computation rule based on the basic
Andorra principle.

e cc(Domain): basic CC language; concurrent computation rule.

Alternatively, the mode can be directly included in the program. This is done
in the module declaration, which has one additional argument available for the
specification of the mode.

Program transformations bridge the semantic gaps between the different
programming paradigms supported. The methods used for translating programs
based on the (Basic) Andorra model to CIAO are described in [BDGH94]. The
methods used for translating CC languages are an extension of those of [DGB94,
Deb93] and are described in [BHI95b].



3.2 Analysis

The CTAO compiler includes both local and global analysis of programs. Local
analysis of program clauses is usually very simple but not accurate. Nonethe-
less, it is sometimes partially useful in some optimizations, as in program par-
allelization [BGH94]. Global analysis is performed in the context of abstract
interpretation [CC77, Deb92, CC92]. The underlying framework of analysis
is that of PLAI [HWD92, MH90, MH92]. PLAI implements a generic (goal-
dependent and goal-independent) top-down driven abstract interpreter. The
whole computation is domain-independent. This allows plugging in different
abstract domains, provided suitable interfacing functions are defined. PLAI
also incorporates incremental analysis [HPMS95] in order to deal with large
programs and is capable of analyzing full languages (in particular, full standard
Prolog [BCHP96, CRV94]).

A modification of the PLAT framework capable of analyzing dynamically
scheduled programs is also provided in order to support the concurrent mod-
els. Note that, thanks to the transformational approach, only two frameworks
are used (one for simple, left-to-right execution and another for the case when
there are dynamically scheduled goals). The compiler automatically decides the
framework to be used.

The CIAO analyzer incorporates the following domains, which are briefly
explained below: Sh, Sh+Fr, ASub, Sh+ASub, and Sh+Fr+ASub, which are
used in logic programming, and Def, Fr, Fd, which can be used either in logic or
constraint logic programming, and LSign, which is more specific to constraint
logic programming.? Programs with dynamic scheduling can be analyzed with
the Sh+Fr and Def domains.

3.2.1 HERBRAND: For the analysis of (classical) logic programs (over the
Herbrand domain) the CIAO compiler includes a number of traditional domains
proposed in the literature for capturing properties such as variable groundness,
freeness, sharing, and linearity information. This includes the set sharing Sh
[JL89, MHS&9], set sharing and freeness Sh+Fr [MH91], and pair sharing ASub
[Son86] domains. Combinations of the Sh and Sh+Fr domains with ASub are
also supported, resulting in the Sh+ASub and Sh+Fr+ASub domains. The
combination is done in such a way that the original domains and operations
of the analyzer over them are re-used, instead of redefining the domains for
the combination [CC79, CMB*95]. Two other domains, a modified version of
Path sharing [KS95] and Aeqns (abstract equations) [MSJB95] are currently
being incorporated to the system. In addition the system performs type and
determinacy /non-failure analysis [BJ88, GAW94, DLH97].

3.2.2 CONSTRAINT PROGRAMMING: Several domains are available, some
of which have been implemented by other users of the PLAI system, notably

2Some of these domains have been implemented by other users of the PLAI system, notably
the K. U. Leuven, Monash University, and the U. of Melbourne.



the K. U. Leuven, Monash University, and the U. of Melbourne.

The abstract domain Def [GHB196] determines whether program variables
are definite, i.e. constrained to a unique value. In doing this it keeps track
of definite dependencies among variables. The abstract domain Fr [GHB'96]
determines which variables act as degrees of freedom with respect to the satisfi-
ability of the constraint store in which they occur. In doing this it keeps track
of possible dependencies among variables. The definite and possible dependen-
cies are used to perform accurate definiteness and non-freeness propagation,
respectively, and are also useful in their own right to perform several program
optimizations. A combined domain Fd which infers both definiteness and free-
ness is also integrated.

A preliminary version of the domain LSign [MS94] is also supported. This
domain is aimed at inferring accurate information about possible interaction be-
tween linear arithmetic equalities and inequalities. The key idea is to abstract
the actual coefficients and constants in constraints by their “sign”. A prelim-
inary implementation of this domain shows very promising accuracy, although
at a cost in efficiency.

3.2.3 DYNAMICALLY SCHEDULED PROGRAMS: CIAO also includes a ver-
sion of the PLAI framework which is capable of accurately analyzing (con-
straint) programs with dynamic scheduling (e.g., including delay declarations
[Col82, Car87]). Being able to analyze constraint languages with dynamic
scheduling also allows analyzing CC languages with angelic nondeterminism.3
This is based on the observation that most implementations of the concurrent
paradigm can be viewed as a computation which proceeds with a fixed, sequen-
tial scheduling rule but in which some goals suspend and their execution is post-
poned until some condition wakes them. Initial studies showed that accurate
analysis in such programs is possible [MGH94], although this technique involves
relatively large cost in analysis time. The analysis integrated into the CIAO
compiler uses a novel method which improves on the previous one by increasing
the efficiency without significant loss of accuracy [GMS95]. The approach is
based on approximating the delayed atoms by a closure operator.

A direct method for analysis of CC programs has also been developed and
is currently being integrated into the compiler. This method is an extension of
previous work of Debray [DGB94, Deb93]. It is based on the observation that
for certain properties, it is possible to extend existing analysis technology for the
underlying fixed computation rule in order to deal with such programs [BH95b].
In particular, this idea has been applied using as starting point the original
framework for the analysis of sequential programs. The resulting analysis can
deal with programs where concurrency is governed by the Andorra model as
well as standard CC models. The advantage with respect to the method above

3This is a kind of nondeterminism which does not give rise to an arbitrary choice when
applying a search rule.



is lower analysis time, in exchange for a certain loss of accuracy.

3.3 Parallelization

LP, CLP, and CC offer an interesting case study for automatic parallelization.
On the one hand these languages pose significant challenges to automatic paral-
lelization, such as a symbolic nature, non-determinism, irregular computations,
dynamic control flow, and (well behaved) pointers. On the other hand they
offer a clear semantics on which formal program analysis and transformation
techniques can be easily based. In the CTAO compiler the information inferred
during the analysis phase is used for independence detection, which is the core
of the LP and CLP parallelization process [BGH94, GBH96]. The compile-time
parallelization module is currently aimed at uncovering goal-level, restricted
(i-e., fork and join), independent and-parallelism (IAP). Independence has the
very desirable properties of correct and efficient execution w.r.t. standard se-
quential execution of Prolog or CLP. In the context of LP, parallelization is
performed based on the well-understood concepts of strict and non-strict in-
dependence [HR95], using the information provided by the abstract domains.
While the notions of independence used in LP are not directly applicable to
CLP, specific definitions for CLP (and constraint programming with dynamic
scheduling) have been recently proposed [GHM93, Gar94] and they have been
incorporated in the CTAO compiler in order to parallelize CLP and CC programs
[GHM95]. Additionally, the compiler has side-effect and granularity analyzers
(not depicted in Figure 1) which infer information which can yield the sequen-
tialization of goals (even when they are independent) based on efficiency or
maintenance of observable behavior.

The actual automatic parallelization of the source program is performed in
CTAO during compilation of the program by the so called annotation algorithms.
The algorithms currently implemented are: mel, cdg, udg [Mut91, Bue94], and
urlp [CH94]. To our knowledge, the CIAO system is the first one to perform
automatic compile-time (And-)parallelization of CLP programs [GBH96].

3.4 Optimization

The CIAO compiler performs several forms of code optimization by means of
source to source transformations. The information obtained during the analysis
phase is not only useful in automatic program parallelization, but also in this
program specialization and simplification phase.

The CIAO compiler can optimize programs to different degrees, as indicated
by the user. It can just simplify the program, where simplification amounts
to reducing literals and predicates which are known to always succeed, fail, or
lead to error. This can speed up the program at run-time, and also be useful
to detect errors at compile-time. It can also specialize the program using the
versions generated during analysis [PH95a]. This may involve generating dif-
ferent versions of a predicate for different abstract call patterns, thus increasing
the program size whenever this allows more optimizations. In order to keep the

10



size of the specialized program as reduced as possible, the number of versions of
each predicate is minimized attaining the same results as with Winsborough’s
algorithm [Win92].

As well as handling sequential code, the optimization module of the CIAO
compiler contains what we believe is the first automatic optimizer for languages
with dynamic scheduling [PH95b]. The potential benefits of the optimization
of this type of programs were already shown in [MGH94], but they can now be
obtained automatically. These kinds of optimizations include simplification and
elimination of suspension conditions and elimination of concurrency primitives
(sequentialization).

3.5 Granularity Control

The compiler also performs granularity control using the techniques described
in [DLH90, Tic88, LHD94, DGHL94, LH95]. The compiler estimates the gran-
ularity of parallel tasks, i.e. the work available under them, by generating ex-
pressions that are upper and lower bounds for the computation time of parallel
tasks as a function of the size of task input data. These functions are used at
run-time to perform granularity control by comparing cost bounds to suitable
thresholds. The results so far are encouraging, and we plan to perform much
further investigation in this very important area.

3.6 Output

The back end of the compiler takes the result of the previous program transfor-
mations and generates a number of final output formats. Normally, the result
of the compiler is intended for the CIAO/&-Prolog abstract machine. Output
possibilities are then byte-code (“.ql”) files, C-files (for linking into traditional
applications), stand-alone executables, and incore compilation (when the com-
piler is running inside the system rather than as a stand-alone application). As
mentioned before, and as an alternative output, most of the capability of the
system can also be handled by any Prolog which supports delay declarations and
attributed variables. Alternatively, also AKL [JH91] can be used as a target,
using the techniques described in [BH95a].

Finally, it is possible to obtain the results of each of the intermediate compi-
lation phases. This allows visualizing and affecting the transformation, analysis,
parallelization, and optimization processes. Because of the source to source na-
ture of the compiler, this output is always a (possibly annotated) kernel CIAO
program.

4 Performance Evaluation Tools

Two tools have been developed to complement the environment and help during
performance debugging. VisAndOr [CGH93] is a tool for visualizing parallel ex-
ecutions. It supports both conjunctive and disjunctive execution graphs (or- and
and-parallelism). It is currently in use by several other researchers in the field
and it is distributed with other parallel systems such as Muse [AK90]. IDRA

11



[FCH94] is a simulator which can quite accurately compute ideal speedups from
traces from a sequential execution of a parallelized program. It allows evaluat-
ing the performance of the parallel run-time system independently of the qual-
ity of the parallelization performed by the compiler, by comparing the obtained
speedups with those predicted by IDRA for the given parallelized program.

5 Some Future Directions

We have briefly described the current status of the CIAO system. The current
main objective of the system is to be an experimentation and evaluation vehicle
for programming constructs and optimization and implementation techniques
for the programming paradigms of LP, CLP, CC, and their combinations. The
system has already shown itself useful in illustrating the power (or lack thereof)
of a number of analysis and optimization techniques (see the referenced papers
for details). Additionally, we are developing pilot applications with the system
which should provide valuable feedback regarding its capabilities.

While the CIAO system illustrates that analysis and optimization of concur-
rent programs is possible, much work remains in improving the efficiency and
accuracy of the analysis and in improving the performance gains obtained with
the resulting optimizations.

As mentioned in Section 3.3, the automatic parallelization currently per-
formed in the CIAQO system is at the goal level. However, it is possible to
parallelize at finer granularity levels, thus obtaining greater degrees of paral-
lelism. The concept of local independence [MRB194, BHMR94] can be used for
this purpose. Although some promising progress has been made in this direc-
tion [HCC95], it remains as future work to implement a system fully capable of
efficiently exploiting this very fine grained level of parallelism.

While our work in detection of parallelism in the CTAO compiler concentrates
on compile-time detection of parallelism, run-time detection also needs to be
explored. Significant progress has been made in this area by models and systems
such as DDAS [She92], Andorra-I, and AKL.

Some parts of the CIAO system (e.g., the PLAT analyzers, the parallelizers,
the WWW libraries, the distributed programming libraries, etc.) have been
distributed in the public domain and have been used experimentally by several
researchers. Current versions of other parts of the system which are less de-
veloped are available for experimentation (please contact the authors; further
information can be obtained from http://www.clip.dia.fi.upm.es/). Both
kernel system and all the libraries are intended to be put gradually in the public
domain.

Acknowledgments

The development of the CTIAO system is a collaborative effort of several groups
and includes work developed at the U. of Arizona (S. Debray’s group), New Mex-
ico State University (G. Gupta and E. Pontelli), K. U. Leuven (M. Bruynooghe’s

12



group), and Monash and Melbourne U. (M. Garcia de la Banda, K. Marriott,
and P. Stuckey), in addition to the CLIP (Computational Logic, Implementa-
tion, and Parallelism) group at the Technical University of Madrid. Parts of
this work have been funded by ESPRIT projects PRINCE, PARFORCE, and
ACCLAIM, and CICYT project IPL-D.

References

[AK90]

[BCHP96]

[BDD*97]

[BDGHY4]

[BGH94]

[BH954a]

[BHO5D)]

[BHMR94]

K. A. M. Ali and R. Karlsson. The Muse Or-Parallel Prolog Model
and its Performance. In 1990 North American Conference on Logic
Programming, pages 757-776. MIT Press, October 1990.

F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla. Global
Analysis of Standard Prolog Programs. In FEuropean Symposium
on Programming, number 1058 in LNCS, pages 108-124, Sweden,
April 1996. Springer-Verlag.

F. Bueno, P. Deransart, W. Drabent, G. Ferrand,
M. Hermenegildo, J. Maluszynski, and G. Puebla. On the Role
of Semantic Approximations in Validation and Diagnosis of Con-
straint Logic Programs. In Proc. of the 3rd. Int’l Workshop on
Automated Debugging-AADEBUG’97, pages 155-170, Linkoping,
Sweden, May 1997. U. of Linkoping Press.

F. Bueno, S. K. Debray, M. Garcia de la Banda, and
M. Hermenegildo. QE-Andorra: A Quiche-Eating Implementa-
tion of the Basic Andorra Model. Technical Report CLIP13/94.0,
T.U. of Madrid (UPM), September 1994.

F. Bueno, M. Garcia de la Banda, and M. Hermenegildo. Effective-
ness of Global Analysis in Strict Independence-Based Automatic
Program Parallelization. In International Symposium on Logic Pro-
gramming, pages 320-336. MIT Press, November 1994.

F. Bueno and M. Hermenegildo. An Automatic Translation Scheme
from CLP to AKL. Technical Report CLIP7/95.0, Facultad de
Informética, UPM, June 1995.

F. Bueno and M. Hermenegildo. Analysis of Concurrent Constraint
Logic Programs with a Fixed Scheduling Rule. In ICLP95 WS on
Abstract Interpretation of Logic Languages, Japan, June 1995.

F. Bueno, M. Hermenegildo, U. Montanari, and F. Rossi. From
Eventual to Atomic and Locally Atomic CC Programs: A Con-
current Semantics. In Fourth International Conference on Alge-
braic and Logic Programming, number 850 in LNCS, pages 114—
132. Springer-Verlag, September 1994.

13



[BJ8S

[Bue94]

[Bue95]

[Car87]

[CCT7)

[CCT9]

[CC92]

[CC94]

[CGHO3]

[CHO4]

[CH95]

M. Bruynooghe and G. Janssens. An Instance of Abstract Interpre-
tation Integrating Type and Mode Inference. In Fifth International
Conference and Symposium on Logic Programming, pages 669—683,
Seattle, Washington, August 1988. MIT Press.

F. Bueno Carrillo. Awutomatic Optimisation and Parallelisation
of Logic Programs through Program Transformation. PhD thesis,
Universidad Politécnica de Madrid (UPM), October 1994.

F. Bueno. The CTAO Multiparadigm Compiler: A User’s Man-
ual. Technical Report CLIP8/95.0, Facultad de Informética, UPM,
June 1995.

M. Carlsson. Freeze, Indexing, and Other Implementation Issues
in the Wam. In Fourth International Conference on Logic Pro-
gramming, pages 40-58. University of Melbourne, MIT Press, May
1987.

P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lat-
tice Model for Static Analysis of Programs by Construction or Ap-
proximation of Fixpoints. In Fourth ACM Symposium on Princi-
ples of Programming Languages, pages 238-252, 1977.

P. Cousot and R. Cousot. Systematic Design of Program Analysis
Frameworks. In Sizth ACM Symposium on Principles of Program-
ming Languages, pages 269-282, San Antonio, Texas, 1979.

P. Cousot and R. Cousot. Abstract Interpretation and Applica-
tion to Logic Programs. Journal of Logic Programming, 13(2 and
3):103-179, July 1992.

J. Chassin and P. Codognet. Parallel Logic Programming Systems.
Computing Surveys, 26(3):295-336, September 1994.

M. Carro, L. Gémez, and M. Hermenegildo. Some Paradigms for
Visualizing Parallel Execution of Logic Programs. In 1993 Inter-
national Conference on Logic Programming, pages 184-201. MIT
Press, June 1993.

D. Cabeza and M. Hermenegildo. Extracting Non-strict Inde-
pendent And-parallelism Using Sharing and Freeness Information.
In 199} International Static Analysis Symposium, number 864 in
LNCS, pages 297-313, Namur, Belgium, September 1994. Springer-
Verlag.

D. Cabeza and M. Hermenegildo. Distributed Concurrent Con-
straint Execution in the CIAO System. In Proc. of the 1995

14



[CMB+95]

[Col82]

[CRV94]

[Deb92]

[Deb93]

[DGBY4]

[DGHLY4]

[DLH90]

[DLHY7]

COMPULOG-NET Workshop on Parallelism and Implementation
Technologies, Utrecht, NL, September 1995. U. Utrecht / T.U.
Madrid. Available from http://www.clip.dia.fi.upm.es/.

M. Codish, A. Mulkers, M. Bruynooghe, M. Garcia de la Banda,
and M. Hermenegildo. Improving Abstract Interpretations by
Combining Domains. ACM Transactions on Programming Lan-
guages and Systems, 17(1):28-44, January 1995. Available from
http://www.clip.dia.fi.upm.es.

A. Colmerauer et al. Prolog II: Reference Manual and Theoretical
Model. Groupe D’intelligence Artificielle, Faculté Des Sciences De
Luminy, Marseille, 1982.

B. Le Charlier, S. Rossi, and P. Van Hentenryck. An Abstract In-
terpretation Framework Which Accurately Handles Prolog Search—
Rule and the Cut. In International Symposium on Logic Program-
ming, pages 157-171. MIT Press, November 1994.

S. Debray, editor. Journal of Logic Programming, Special Issue:
Abstract Interpretation, volume 13(1-2). North-Holland, July 1992.

S. K. Debray. Implementing logic programming systems: The
quiche-eating approach. In ICLP ’93 Workshop on Practical Im-
plementations and Systems Experience in Logic Programming, Bu-
dapest, Hungary, June 1993.

S. Debray, D. Gudeman, and P. Bigot. Detection and Optimization
of Suspension-free Logic Programs. In 1994 International Sympo-
sium on Logic Programming, pages 487-501. MIT Press, November
1994.

S. K. Debray, P. Lépez Garcia, M. Hermenegildo, and N.-W. Lin.
Estimating the Computational Cost of Logic Programs. In Static
Analysis Symposium, SAS’94, number 864 in LNCS, pages 255—
265, Namur, Belgium, September 1994. Springer-Verlag.

S. K. Debray, N.-W. Lin, and M. Hermenegildo. Task Granularity
Analysis in Logic Programs. In Proc. of the 1990 ACM Conf. on
Programming Language Design and Implementation, pages 174—
188. ACM Press, June 1990.

S. K. Debray, P. Lépez Garcia, and M. Hermenegildo. Non-Failure
Analysis for Logic Programs. In 1997 International Conference
on Logic Programming, pages 48-62, Leuven, Belgium, June 1997.
MIT Press, Cambridge, MA.

15



[AMSC93]

[Eur93]
[FCH94]

[Gar94]

[GBHY6]

[GCY2]

[GAWO4]

[GHB96]

[GHM93]

[GHMOY5]

Vitor Manuel de Morais Santos Costa. Compile-Time Analysis for
the Parallel Execution of Logic Programs in Andorra-1. PhD thesis,
University of Bristol, August 1993.

European Computer Research Center. Eclipse User’s Guide, 1993.

M. Ferndndez, M. Carro, and M. Hermenegildo. IDRA (IDeal Re-
source Allocation): A Tool for Computing Ideal Speedups. In
ICLP WS on Parallel and Data Parallel Execution of Logic Pro-
grams, June 1994.

M. Garcia de la Banda. Independence, Global Analysis, and Paral-
lelism in Dynamically Scheduled Constraint Logic Programming.
PhD thesis, Universidad Politécnica de Madrid (UPM), Facul-
tad Informatica UPM, 28660-Boadilla del Monte, Madrid-Spain,
September 1994.

M. Garcia de la Banda, F. Bueno, and M. Hermenegildo. Towards
Independent And-Parallelism in CLP. In Programming Languages:
Implementation, Logics, and Programs, number 1140 in LNCS,
pages 77-91, Aachen, Germany, September 1996. Springer-Verlag.

G. Gupta and V. Santos Costa. And-Or Parallelism in Full Pro-
log based on Paged Binding Array. In Parallel Architectures and
Lenguages Furope ’92. Springer Verlag, June 1992.

J.P. Gallagher and D.A. de Waal. Fast and precise regular ap-
proximations of logic programs. In Pascal Van Hentenryck, editor,
Proceedings of the Eleventh International Conference on Logic Pro-
gramming, pages 599—613. The MIT Press, 1994.

M. Garcia de la Banda, M. Hermenegildo, M. Bruynooghe, V. Du-
mortier, G. Janssens, and W. Simoens. Global Analysis of Con-
straint Logic Programs. ACM Transactions on Programming Lan-
guages and Systems, 18(5):564-615, 1996.

M. Garcia de la Banda, M. Hermenegildo, and K. Marriott. In-
dependence in Constraint Logic Programs. In 1993 International
Logic Programming Symposium, pages 130-146. MIT Press, Cam-
bridge, MA, October 1993.

M. Garcia de la Banda, M. Hermenegildo, and K. Marriott. Inde-
pendence and Search Space Preservation in Dynamically Scheduled
Constraint Logic Languages. Technical Report CLIP10/95.0, Fac-
ultad de Informética, UPM, February 1995.

16



[GHPSC94]

[GMS95]

[Gro97]

[GSCYH1]

[HCC95]

[Her86]

[HGI1]

[Hol92]

[HPMS95]

[HR95]

G. Gupta, M. Hermenegildo, E. Pontelli, and V. Santos-Costa.
ACE: And/Or-parallel Copying-based Execution of Logic Pro-
grams. In International Conference on Logic Programming, pages
93-110. MIT Press, June 1994.

M. Garcfa de la Banda, K. Marriott, and P. Stuckey. Efficient
Analysis of Constraint Logic Programs with Dynamic Scheduling.
In 1995 International Logic Programming Symposium, pages 417—
431, Portland, Oregon, December 1995. MIT Press, Cambridge,
MA.

The CLIP Group. Program Assertions. The CIAO System Doc-
umentation Series — TR CLIP4/97.1, Facultad de Informética,
UPM, August 1997.

G. Gupta, V. Santos-Costa, R. Yang, and M. Hermenegildo. ID-
IOM: Integrating Dependent and-, Independent and-, and Or-
parallelism. In 1991 International Logic Programming Symposium,
pages 152-166. MIT Press, October 1991.

M. Hermenegildo, D. Cabeza, and M. Carro. Using Attributed
Variables in the Implementation of Concurrent and Parallel Logic
Programming Systems. In Proc. of the Twelfth International Con-
ference on Logic Programming, pages 631-645. MIT Press, June
1995.

M. Hermenegildo. An Abstract Machine for Restricted AND-
parallel Execution of Logic Programs. In Third International Con-
ference on Logic Programming, number 225 in Lecture Notes in
Computer Science, pages 25-40. Imperial College, Springer-Verlag,
July 1986.

M. Hermenegildo and K. Greene. The &-Prolog System: Exploit-
ing Independent And-Parallelism. New Generation Computing,
9(3,4):233-257, 1991.

C. Holzbaur. Metastructures vs. Attributed Variables in the Con-
text of Extensible Unification. In 1992 International Symposium on

Programming Language Implementation and Logic Programming,
pages 260-268. LNCS631, Springer Verlag, August 1992.

M. Hermenegildo, G. Puebla, K. Marriott, and P. Stuckey. Incre-
mental Analysis of Logic Programs. In International Conference
on Logic Programming, pages 797-811. MIT Press, June 1995.

M. Hermenegildo and F. Rossi. Strict and Non-Strict Independent
And-Parallelism in Logic Programs: Correctness, Efficiency, and

17



[HSC96]

[HtCg93]

[HtCg94]

[HtCG97]

[Hui90]

[HWD92]

[JHO1]

[JL89)

[TMO4]

[KS95]

[LHO5]

Compile-Time Conditions. Journal of Logic Programming, 22(1):1-
45, 1995.

F. Henderson, Z. Somogyi, and T. Conway. Determinism analysis
in the mercury compiler. In Proc. Australian Computer Science
Conference, Melbourne, Australia, January 1996.

M. Hermenegildo and the CLIP group. Towards CIAO-Prolog — A
Parallel Concurrent Constraint System. In Proc. of the Compulog
Net Area Workshop on Parallelism and Implementation Technolo-
gies. FIM/UPM, Madrid, Spain, June 1993.

M. Hermenegildo and the CLIP group. Some Methodological Issues
in the Design of CTAO - A Generic, Parallel, Concurrent Constraint
System. In Principles and Practice of Constraint Programming,
number 874 in LNCS, pages 123-133. Springer-Verlag, May 1994.

M. Hermenegildo and the CLIP Group. Programming with Global
Analysis. In Proceedings of ILPS’97. MIT Press, October 1997.
(abstract of invited talk).

S. Le Huitouze. A New Data Structure for Implementing Ex-
tensions to Prolog. In P. Deransart and J. Maluszynski, editors,
Proceedings of Programming Language Implementation and Logic
Programming, number 456 in Lecture Notes in Computer Science,
pages 136-150. Springer, August 1990.

M. Hermenegildo, R. Warren, and S. K. Debray. Global Flow Anal-
ysis as a Practical Compilation Tool. Journal of Logic Program-
ming, 13(4):349-367, August 1992.

S. Janson and S. Haridi. Programming Paradigms of the Andorra
Kernel Language. In 1991 International Logic Programming Sym-
posium, pages 167-183. MIT Press, 1991.

D. Jacobs and A. Langen. Accurate and Efficient Approximation
of Variable Aliasing in Logic Programs. In 1989 North American
Conference on Logic Programming. MIT Press, October 1989.

J. Jaffar and M.J. Maher. Constraint Logic Programming: A Sur-
vey. Journal of Logic Programming, 19/20:503-581, 1994.

A. King and P. Soper. Depth-k Sharing and Freeness. In Interna-
tional Conference on Logic Programming. MIT Press, June 1995.

P. Lépez Garcia and M. Hermenegildo. Efficient Term Size Com-
putation for Granularity Control. In International Conference on
Logic Programming, pages 647-661. The MIT Press, June 1995.

18



[LHD94]

[MGH94]

[MHS9]

[MH90]

[MH91]

[MH92]

[MRB+94]

[MS94]

[MSJB95]

P. Lépez Garcia, M. Hermenegildo, and S. K. Debray. Towards
Granularity Based Control of Parallelism in Logic Programs. In
Hoon Hong, editor, Proc. of First International Symposium on
Parallel Symbolic Computation, PASCO’94, pages 133-144. World
Scientific, September 1994.

K. Marriott, M. Garcia de la Banda, and M. Hermenegildo. Ana-
lyzing Logic Programs with Dynamic Scheduling. In 20th. Annual
ACM Conf. on Principles of Programming Languages, pages 240—
254. ACM, January 1994.

K. Muthukumar and M. Hermenegildo. Determination of Vari-
able Dependence Information at Compile-Time Through Abstract
Interpretation. In 1989 North American Conference on Logic Pro-
gramming, pages 166—189. MIT Press, October 1989.

K. Muthukumar and M. Hermenegildo. Deriving A Fixpoint Com-
putation Algorithm for Top-down Abstract Interpretation of Logic
Programs. Technical Report ACT-DC-153-90, Microelectronics
and Computer Technology Corporation (MCC), Austin, TX 78759,
April 1990.

K. Muthukumar and M. Hermenegildo. Combined Determination
of Sharing and Freeness of Program Variables Through Abstract
Interpretation. In 1991 International Conference on Logic Pro-
gramming, pages 49-63. MIT Press, June 1991.

K. Muthukumar and M. Hermenegildo. Compile-time Derivation
of Variable Dependency Using Abstract Interpretation. Journal of
Logic Programming, 13(2/3):315-347, July 1992. Originally pub-
lished as Technical Report FIM 59.1/IA/90, Computer Science
Dept, Universidad Politecnica de Madrid, Spain, August 1990.

U. Montanari, F. Rossi, F. Bueno, M. Garcia de la Banda, and
M. Hermenegildo. Towards a Concurrent Semantics based Analy-
sis of CC and CLP. In Principles and Practice of Constraint Pro-
gramming, number 874 in LNCS, pages 151-161. Springer-Verlag,
May 1994.

K. Marriott and P. Stuckey. Approximating Interaction Between
Linear Arithmetic Constraints. In 1994 International Symposium
on Logic Programming, pages 571-585. MIT Press, 1994.

A. Mulkers, W. Simoens, G. Janssens, and M. Bruynooghe. On
the Practicality of Abstract Equation Systems. In International
Conference on Logic Programming. MIT Press, June 1995.

19



[Mut91] Kalyan Muthukumar. Compile-time Algorithms for Efficient Par-
allel Implementation of Logic Programs. PhD thesis, University of
Texas at Austin, August 1991.

[Neu90] U. Neumerkel. Extensible Unification by Metastructures. In Pro-
ceeding of the META’90 workshop, 1990.

[PBH97] G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Lan-
guage for Debugging of Constraint Logic Programs. In Proceed-
ings of the ILPS’97 Workshop on Tools and Environments for
(Constraint) Logic Programming, October 1997. Available from
ftp://clip.dia.fi.upm.es/pub/papers/assert lang tr discipldeliv.ps.gz.

[PGT196] E. Pontelli, G. Gupta, D. Tang, M. Carro, and M. Hermenegildo.
Improving the Efficiency of Nondeterministic And-parallel Sys-
tems. The Computer Languages Journal, 22(2/3):115-142, July
1996.

[PH95a] G. Puebla and M. Hermenegildo. Implementation of Multiple Spe-
cialization in Logic Programs. In Proc. ACM SIGPLAN Sympo-
sium on Partial Evaluation and Semantics Based Program Manip-
ulation, pages 77-87. ACM Press, June 1995.

[PHI5D] G. Puebla and M. Hermenegildo. Specialization and Optimiza-
tion of Constraint Programs with Dynamic Scheduling. Technical
Report CLIP12/95.0, Facultad de Informética, UPM, September
1995. Presented at the 1995 COMPULOG Meeting on Program
Development.

[SCWY90] V. Santos-Costa, D.H.D. Warren, and R. Yang. Andorra-I: A Par-
allel Prolog System that Transparently Exploits both And- and
Or-parallelism. In Proceedings of the 8rd. ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming. ACM,
April 1990.

[She92] K. Shen. Exploiting Dependent And-Parallelism in Prolog: The
Dynamic, Dependent And-Parallel Scheme. In Proc. Joint Int’l.
Conf. and Symp. on Logic Prog., pages 717-731. MIT Press, 1992.
To appear in JLP special issue.

[Son8&6] H. Sondergaard. An application of abstract interpretation of logic
programs: occur check reduction. In European Symposium on Pro-
gramming, LNCS 123, pages 327-338. Springer-Verlag, 1986.

[Swe95) Swedish Institute of Computer Science, P.O. Box 1263, S-16313
Spanga, Sweden. Sicstus Prolog V3.0 User’s Manual, 1995.

20



[Tic88]

[Tic95]

[Win92]

E. Tick. Compile-Time Granularity Analysis of Parallel Logic Pro-
gramming Languages. In Int. Conf. on FGCS. Tokyo, November
1988.

E. Tick. The Deevolution of Concurrent Logic Programming Lan-
guages. The Journal of Logic Programming, 23(1-3):89-125, 1995.

W. Winsborough. Multiple Specialization using Minimal-Function
Graph Semantics. Journal of Logic Programming, 13(2 and 3):259-
290, July 1992.

21



