In Proceedings of the 1996 APPIA-GULP-ProDE Conference on Declarative Programming
Implementing Distributed Concurrent Constraint
Execution in the CIAO System*

Daniel Cabeza Manuel Hermenegildo
{dcabeza,herme}@fi.upm.es

Computer Science Department
Technical University of Madrid (UPM), Spain

Abstract

This paper describes the current prototype of the distributed CIAO system.
It introduces the concepts of “teams” and “active modules” (or active objects),
which conveniently encapsulate different types of functionalities desirable from
a distributed system, from parallelism for achieving speedup to client-server ap-
plications. The user primitives available are presented and their implementation
described. This implementation uses attributed variables and, as an example of
a communication abstraction, a blackboard that follows the Linda model. Fi-
nally, the CIAO WWW interface is also briefly described. The functionalities of
the system are illustrated through examples, using the implemented primitives.

1 Introduction

Many portions of applications of interest currently have a distributed nature. Con-
current, distributed, or agent-based computation in LP and CLP has been the subject
of much research, including the early concurrent logic languages and more recent ap-
proaches based on the “Concurrent Constraint” (CC) programming paradigm [18], as
well as “distributed” or “blackboard” LP and CLP systems (e.g., [2, 3], and Prolog
systems incorporating Linda [8, 1]). Our purpose in this paper is to address the issue
of building (agent based) distributed applications which use the programming styles
of both of the major paradigms mentioned above, while using to the extent possi-
ble existing LP and CLP systems. In particular, we describe a simple, distributed
implementation of the CIAO language [12, 4, 13], a concurrent constraint language
that is backwards compatible with traditional LP and CLP systems (basically Prolog,
extended with constraints, parallelism, and concurrency). The resulting distributed
CIAO system provides distributed execution capabilities in both the (C)LP and CC
styles of programming.

Distributed execution can be used for various purposes: one is to build distributed
networks of concurrent, communicating agents. Another one is to exploit coarse-
grained parallelism in a distributed environment with the objective of obtaining ex-
ecution speedups. Yet another, quite different purpose, is to request and/or provide
remote services in a distributed communication network (as is often done by WWW

*This work was funded in part by ESPRIT project 7195 “ACCLAIM” and by CICYT projects
TIC93-0975-CE and TIC93-0737-C02-01 IPL-D. The authors would also like to thank F. Bueno and
G. Puebla for useful discussions in the context of the paper.

servers). Intuitively, the first two models involve several agents cooperating to run the
same application. This is addressed by the notion of “team” of workers in CTAQO. The
last model is supported in CIAO by the notion of “active module” (or active object),
and, also, by the WWW interface. We believe that these proposed concepts conve-
niently encapsulate many different types of functionalities desirable from a distributed
system.

In the following we describe the current prototype of the distributed CTAO system
by describing each concept (Teams, Active Modules, WWW Interface), presenting the
user primitives available, and in some cases discussing their implementation. The par-
ticular implementation presented uses attributed variables [17, 15, 6, 14, 9] and, as an
example of a communication abstraction, a blackboard that follows the Linda model
[8]. An interesting characteristic of this implementation is that it is done entirely
at the source (Prolog) level. The functionalities of the system are also illustrated
through examples, using the implemented primitives. Note that, except where oth-
erwise noted, all the CTIAO builtins have a meaning equivalent to that of SICStus
Prolog v2.1 [7].

2 Teams

A team is a set of CIAO workers that share the same code and cooperate to run
it. At startup, a worker belongs to a team which includes only itself. Two primitives
are provided that add workers to the current team and delete workers from it.

e add_worker(Id), add_worker (Host,Id) — Adds a worker to the team. If Host
is provided, run the worker in it, else run the worker in the current host (this
is useful, for example, to have true concurrency between threads). A unique
identifier for the worker created is returned in Id.

e delete_worker(Id) — Deletes a worker from the team. If Id is instantiated
then delete the worker with this identifier, else delete an idle worker and unify
Id with its identifier.

The team model allows concurrency (or parallelism) between workers. Note that
this is only useful if tasks are of sufficient granularity. Thus, if the parallelization is
done automatically by a compiler, an analysis of granularity is of vital importance.’
The primitives of the language provide a means for expressing independent And-
parallelism and also concurrency (dependent And-parallelism). We now discuss them.

e A &> H - Sends out goal A, to be executed potentially by another worker of the
team, returning in the variable H a handler of the goal sent (used in the following
primitive).

e H <& — Gets the results of the goal pointed to by H, or executes it if it has not
been executed yet. Backtracking of the goal will be done at this point.

e A & B — Performs a parallel “fork” of the two goals involved and waits for the
execution of both to finish. This is the parallel conjunction operator used, for

1The CTAO compiler includes a granularity control system [16].

example, by the &-Prolog parallelizing compiler [5]. If no workers are idle, then
the two goals may be executed by the same worker and sequentially, i.e., one
after the other. This primitive can be implemented using the previous two:

A& B :- B & H, call(A), H <& .

Note that these first three primitives are intended for independent And-
parallelism, and, as such, the bindings made (or constraints placed) on the
shared variables are not seen until the threads join (that is, there is an implicit
copy_term in the goals sent out).

e A & — Sends out goal A to be executed potentially by another worker of the
team. No waiting for its return is performed. Updates on the variables of A
(tells) will be exported to other workers sharing them.

o A && — “Fair” version of the &/1 operator. If there is no idle worker, create one
to execute goal A. This way, fairness among concurrent threads is ensured.

e wait(X) — Suspends the execution until X is bound.
e ask(C) — Suspends the execution until the constraint C' is satisfied.

e A @ Id - Placement operator. Allows control of task placement in distributed
execution: goal A is to be executed on worker Id (which may be remote). This
operator can be combined with any of the parallelism and concurrency operators
mentioned before.

Members of a team can communicate among each other either by shared variables
or explicitly by means of a blackboard. This blackboard provides a set of Linda-like
[8] primitives, essentially reproducing the functionality of the Linda library present
in SICStus Prolog v2.1 [1]. Workers can write (using out/1), read (using rd/1), and
remove (using in/1) data to and from the blackboard. If the data is not present on the
blackboard, the worker suspends until it is available. Alternatively, other primitives
(in_noblock/1 and rd_noblock/1) do not suspend if the data is not available — they
fail instead and thus allow taking an alternative action if the data is not in the
blackboard. There are also input primitives that wait on disjunctions of terms (in/2
and rd/2).

2.1 Implementation Issues

In the current implementation, each worker is implemented by a process in the
corresponding host, and the add_worker primitives are ultimately implemented with
the UNIX command rsh (which executes a command in a remote host). All the
communication between workers is implemented via the blackboard, which is created
the first time a distributed primitive is executed. The blackboard itself is implemented
using a UNIX sockets interface, which is also available at the user level.

Idle workers listen to the blackboard in order to obtain goals, which would have
been posted previously by the primitives &>/2, &/1, or &&/1, in order to execute them.
If the goal was issued by the &>/2 primitive, the worker returns its solutions back to
the blackboard. The solutions are gathered in turn by the <&/1 primitive. This

essentially implements in a distributed fashion a goal stealing scheduling algorithm
similar to that of the &-Prolog system [11].

The distributed communication using shared variables follows the lines proposed
in [10], where some of the proposed operators were already presented.? The dis-
tributed concurrency primitives &/1 and &&/1 take care of marking with an attribute
of “communication variable” the variables of the goal (note that if an analysis is done
this can be optimized by marking only the relevant variables). Then, when they are
involved in a unification, the hook for attributed variables posts the bindings (or con-
straints) to the blackboard to inform other workers about them (after ensuring their
consistency). Also, when a wait is done on a communication variable, the worker
suspends until a binding for this variable is posted to the blackboard.

Also, the requisite that the workers in the same team share the code implies that
builtins that modify it (e.g. compile, assert, etc) must be performed by all the
workers (“globalized”). Thus, the compiler, when processing code that deals with
distributed execution, transforms these builtins into code that that automatically
posts them to the blackboard to be executed by all the members of the team (using
expand term). Also, when a new worker is added to the team, it must be put in the
same state as its siblings. This is managed by recording the execution of “global”
builtins, so that the add_worker primitive can send to the new worker the series of
such builtins to execute. Care must be taken with nested global executions: during
global compilation of a file, “global” builtins must be executed locally. This is easily
implemented with a flag that tells whether we are executing in the scope of a global
builtin or not.

In order to be more concrete we sketch part of the code of the implementation
outlined above. The code presented is a simplified version of the actual code. The
implementation of the primitives intended for independent And-parallelism is shown
below. For simplicity, we show the version in which the answers are returned together.
The (more efficient) alternative is to post to the blackboard each solution right after
computing it, so that the continuation can proceed concurrently with the computation
of the additional answers.

:- op(950, xfx, ’&>’).
:- op(950, xf, ’<&’).

Q & H :-
% start blackboard if not done yet
get_blackboard_address(_),
new_query_id(N),
% clean blackboard on backtracking
undo (in([
’$answers’ (N,_),
’$query’ (N,_)

1,),
out (’$query’ (N,Q)),
H = query(N,Q).

2The discussion in presented primarily in terms of bindings, but the techniques are extensible
to (variable based) constraint synchronization, specially if constraint handling is performed also via
attributed variables, as in the CIAO system.

query(N,Q) <& :-

in([
’$answers’ (N,_),
’$query’ (N,)
1, Data),

Data = ’$query’ (_,Qr) ->
findall(Qr,Qr,As)
; Data = ’$answers’ (_,As)

% restore data in blackboard on backtracking

undo (out (’$answers’ (N, As))),
member (Q,As) .

Note that the builtin undo/1 above executes its argument on backtracking, as if
defined by

undo(_).
undo(G) :- call(G), fail.

Now, we show the main loop that idle workers execute to get work from the
blackboard, and how the $query requests produced above are handled.

idle_worker_loop(Id) :-
out (’$idle’ (Id)),
in([

’$concurrent’ (Id,_,_), % concurrent goal for me
’$halt’ (Id), % halt

’$global’ (Id,_,_), % global call
’$concurrent’ (_,_), % concurrent goal
’$query’ (_,_), % query

], Command),

in_noblock(’$idle’ (Id)) ->
process_command (Command, Id)

; Command = ’$concurrent’ (_,_,_) —->
process_command (Command , Id)

; out (Command)
NCommand = ’éconcurrent’(Id,_,_),
in(NCommand) ,
process_command (NCommand, Id)

),
fail.
idle_worker_loop(Id) :- idle_worker_loop(Id).

process_command (’$query’ (N,Q),Id) :- !,
findall(Q,Q,Answers),
out (’$answers’ (N, Answers)) .

Note above the use of the $idle token which ensures that if a && primitive chooses
an idle worker this worker will execute the corresponding concurrent goal.

2.2 Using Parallelism: an Example

In this section we will show an example of the uses of the primitives introduced in
the previous section. The program in the example first gets some work, then finds out

somehow which hosts in the local network are not too loaded, starts a worker in each
one, processes the work, stops the started workers, and exits. The important effect
here is that the elements of the list L in process_1ist(L) are processed in parallel
by the team of workers. Thus, if N workers were started, the list would be processed
N times faster (modulo communication overhead).
main :-—

get_list (L),

collect_unloaded_hosts(Hosts),

add_workers(Ids, Hosts),

process_list (L),

delete_workers(Ids),
halt.

get_list(L) :- ...

process_list([HIT]) :-
process(H) &
process_1ist(T).

process_list([]).

collect_unloaded_hosts(Hosts) :— ...

add_workers([Id|Ids], [Host|Hosts]) :-
add_worker(Id,Host),
add_workers(Ids,Hosts).

add_workers([1,[]).

delete_workers([Id|Ids]) :-
delete_worker(Id),
delete_workers(Ids).

delete_workers

3 Active Modules

An active module (or an active object, if modularity is implemented via objects)
is a module to which computational resources are attached (in our case, a CIAO
process or a CIAO team). In a distributed environment, this is useful to provide
remote services to other members of the network. In principle, every module can be
activated, and from the programmer point of view an active module is like an ordinary
module. An active module has an address (network address) that must be known to
use it. Thus, the only difference between an ordinary module and an active module
is that to use an active module one has to know its address.

Now we present the constructions of the language that implement active modules.
Note that for concreteness and compatibility in the description of modules we mainly
follow the same scheme as SICStus Prolog.

e :- use_activemodule(Module,Predicates) — A declaration used to import
the predicates in the list Predicates from the (already) active module Module.
From this point on, the code should be written as if a standard use module/2
declaration had been used. The declaration needs the following hook predicate
to be defined.

e module address(Module,Address) — This predicate must give, for each active
module imported in the code, its address.

e save_active module(Name, Address, Hook) — Saves the current code as an
active module, into executable file Name. When the file is executed (for example,
at the operating system level by “Name &”), Address is unified with the address
of the module, and Hook is called in order to export this address as required.

Note that this scheme is very flexible. For example, the predicate
module_address/2 itself could be imported, thus allowing a configurable standard
way of locating active modules. One could, for example, use a directory accessible
by all the involved machines to store the addresses of the active modules in them,
and this predicate would examine this directory to find the required data. A more
elegant solution would be to implement a name server, that is, an active module with
a known address that records the addresses of active modules and supplies this data
to the modules that actively import it. Later we will show how such a name server
can be implemented and used.

3.1 Implementation Issues

Active modules are essentially daemons: Prolog executables which are started as
independent processes at the operating system level. For simplicity we will assume
communication with active modules is also implemented by means of a blackboard.?
Each active module has its own blackboard. Requests to execute goals in the module
are put into the blackboard by remote programs. When such a request arrives, the
process running the active module takes it and executes it, returning to the blackboard
the computed results. These results are then taken by the remote processes. When an
active module is run by a team, the blackboard of the team can be used for both inter-
team communication and outer communication. The address of an active module is
then the address of its blackboard (in particular, in the current implementation it is
a UNIX socket in a machine).

Thus, when the compiler finds a use_active module declaration, it defines the
imported predicates as remote calls to the active module. For example, if the predicate
P is imported from the active module M, the predicate would be defined as

P :- module_address(M,A), remote_call(A,P)

A remote call to an active module involves sending the predicate to its corresponding
blackboard and waiting for its results to be posted to the blackboard. For this pro-
cedure the address of the blackboard of the active module must be known, and this
is achieved by the predicate module_address/2.

The predicate save_activemodule/3 saves the current code like save/1, but
when the execution is started a blackboard is created whose address is the first argu-
ment of the predicate, and the expression in the second argument is executed. Then,
the execution goes into an idle worker loop of reading execution requests from the
blackboard, executing them, and returning the solutions back to the blackboard.

3In practice, in the case of teams with only one worker it is obviously more efficient to simply
connect directly with the active module via a socket.

3.2 Using Active Modules: an Example

In this section we will show the implementation of a remote database server using
the primitives introduced in the previous section, and how the server would be used.

The code for the server uses the primitive save active module to make the
dbserver executable, assigning it address “alba:888”:

:— module(database, [stock/2]).

stock(pl, 23).
stock(p2, 45).
stock(p3, 12).

:- save_active_module(dbserver, alba:888, true).

At this point the executable “dbserver” would be started as a process
(“dbserver &”, at the unix level) and it would be ready for other modules to import
it. The code of a module that uses the previous active module could start like this:

:— module(sales)
:— use_active_module(database, [stock/2]).

module_address(database, alba:888).

replenish(P) :-
stock (P, S),

Calls to stock/2 in the previous module will be executed remotely by the ac-
tive module “dbserver”. Except for the module_address definition, the code would
be identical if use_module replaced use_active module (but not the execution, of
course).

3.3 A Name Server for Active Modules

As a more complex example of the uses of active modules, let us now sketch how
a name server such as the one mentioned earlier could be implemented.

First we program the name server module that will be active, and whose address
ought to be fixed and known. Assume we want it to be run in host clip at socket
number 999. The “state” of the name server is implemented using the database:*

:- module(name_server, [dyn_mod_addr/2, add_address/2]).
:— dynamic dyn_mod_addr/2.

add_address(Module, Address) :-
retractall (dyn_mod_addr (Module,_)),

assert (dyn_mod_addr (Module, Address)).

:- save_active_module(name_server, clip:999, true) .

Then, we make a module that uses this, and that will be imported in the standard
way by modules that want to use active modules and this name server. Note that the

4Note, however, that it could alternatively be implemented as a perpetual process, using the
concurrency and communication primitives presented in the previous section.

call to dyn_mod_addr below will be executed by performing a remote call to the name
server.

:— module(locate_module_addresses, [module_address/2]).
:- use_active_module(name_server, [dyn_mod_addr/2]).

module_address(name_server, clip:999).

module_address(Module, Address) :-
dyn_mod_addr (Module, Address).

Thus, modules which will become active and want the name server to be notified
must proceed as follows. Note that again the add_address goal below will be in fact
executed as a remote call to the name server.

:- module(flight_reservation, [find_connections/4]).
:— use_active_module(name_server, [add_address/2]).

find_connections(Origin, Destination, Date, Flights) :- ...

T- save_active_module(flight_reservation, Address,
add_address(flight_reservation, Address)).

Finally we show how to import active modules managed by the name server:

module(travel_agency) .

use_module (locate_module_addresses, [module_address/2]).
use_active_module(flight_reservation, [find_connections/4]).

airplane_trip(from_to(Origin, Destination), Date, Trip) :-
find_connections(Origin, Destination, Date, Flights),

In this case, the call to find connections/4 will be executed as a remote call to
the active module flight reservation.

4 Interfacing with the WWW

We would like to finalize with some comments on an issue which is also related
to distributed execution and remote information access: interfacing with the WWW.
Using similar techniques to those illustrated in the previous sections, we have im-
plemented a publicly available WWW library for LP/CLP systems which enables
convenient WWW access to and from programs written with current LP and CLP
systems. This library provides several functionalities found to be useful in the devel-
opment of LP/CLP-based WWW applications.

HTML to Herbrand syntax conversion. We provide a means of converting Her-
brand terms, which are easy to manipulate in an LP/CLP system, into HTML
text and viceversa. Herbrand to HTML conversion is obviously useful when a
program produces output to be parsed by browsers. HTML to Herbrand con-
version is useful when reading remote pages, which are often in HTML format,
and manipulating their contents (for example, to perform an intelligent keyword
analysis of the text within or to find pointers within the document and in turn
follow them). The translation facilities should support for the creation of forms.
Three builtins are provided for the task:

e output_html(T) — Accepts in T a term representing HTML code and sends
to the standard output the HTML text it represents.

e html term(T,L) — Accepts in T a term representing HTML code and pro-
duces in L a list of atoms which are the traduction of the term. Used by
output._html/2.

e parse html(S,T) — Accepts in S a string (list of characters) containing
HTML code and produces in T the Herbrand term which represents it.

An example of a term representing HTML code is:

html([title(’My page’), image(’photo.gif’),
heading(1,’Hi there’), --, ’Hello, ...’])

Form output parsing. It is often necessary to parse the output from forms. Such
output is provided, as defined by the HTTP protocol, in a format that is
reminscent of the attribute-value pair list that is usual in a symbolic language,
but in a different syntax. The following builtin is provided to perform this
conversion:

e get_form input(Dic) — Translates form input provided by GET or POST
http requests to a dictionary Dic of Attribute=Value pairs.

HTTP/FTP protocol support as a builtin. A builtin is provided which gives
the programmer facilities to download documents from the net via the FTP
and HTTP protocols, among others. By means of a list of options, it provides
many levels of functionality.

e get_url(URL, Opts) — Gets the document pointed to by URL, and pro-
cesses it according to the list of options Opts. Some of the options provided
are:

content (L) — Unifies L with list of characters that corresponding to the
document (which can then perhaps be parsed by the HTML parsing
primitives mentioned above).

file(F) — Writes the document into file F (useful for example for caching)

size(S) — Unifies S with the document size.

type(T) — Unifies T with the type of the document.

date(D) — Unifies D with the date of the document.

It is worth mentioning that the predicate determines whether a document or
just its header needs to be fetched depending on the options passed (e.g., the
last three options only need the header).

Standard WWW interface to active modules.
A standard form handler (“cgi-bin” application) wich can connect to one or
several active modules (as presented in the previous sections) provides a generic

human interface to such modules (allowing querying and modification) via the
WWW.

Access to remote modules via WWW. A URL address can be provided in a
standard module declaration instead of the usual file address. This allows a
program to import code from a URL, so that when the module is updated the
program also gets updated.

Another useful feature, in many areas but specially in the context of the WWW,
is the possibility of executing Prolog scripts: i.e., simple Prolog executable files which
run without need for compilation. While the intrinsic characteristics of LP and CLP
systems (for example, very easy parsing via grammar rules) make them quite conve-
nient implementation vehicles for cgi-bin applications (i.e., applications accessible by
the WWW), the often large size of the resulting executables and the need to compile or
consult in most systems may deter cgi-bin application programmers from using these
systems. In fact, often, shell scripts or interpreted languages such as Perl are used for
producing small to medium-sized cgi-bin applications, mainly for the convenience of
not having to compile the source file. It appears convenient to provide a means for
LP/CLP programs to be executable as scripts, even if with reduced performance. We
provide a separate library which fulfills this need.

The interested reader is referred to the WWW address

http://www.clip.dia.fi.upm.es/miscdocs/html pl/html pl.html

for more details and the source for the WWW library. An example of an application
developed with this library can be found at

http://www.clip.dia.fi.upm.es/miscdocs/webchat_info.html

5 Conclusions

We have presented the current prototype of the distributed CIAQO system, intro-
ducing the concepts of “teams” and “active modules” (or active objects), and some
details of the CTAO WWW interface. These concepts conveniently encapsulate dif-
ferent types of functionalities desirable from a distributed system, from parallelism
for achieving speedup to client-server applications. We have presented the user prim-
itives available, sketching their implementation. This implementation uses attributed
variables and, as an example of a communication abstraction, a blackboard that fol-
lows the Linda model. An interesting characteristic of the implementation is that it
is done enterely at the source (Prolog) level. We are currently working on adding
new functionality to the system. The code is also being provided as a public domain
standard library for SICStus Prolog and other Prolog systems (please contact the
authors or http://www.clip.dia.fi.upm.es for details).

References

[1] J. Almgren, S. Andersson, L. Flood, C. Frisk, H. Nilsson, and J. Sundberg. Sicstus
Prolog Library Manual. Po Box 1263, S-16313 Spanga, Sweden, October 1991.

[2] K. De Bosschere. Multi-Prolog, Another Approach for Parallelizing Prolog. In Proceed-
ings of Parallel Computing, pages 443-448. Elsevier, North Holland, 1989.

[3] A. Brogi and P. Ciancarini. The Concurrent Language, Shared Prolog. ACM Transac-
tions on Programming Languages and Systems, 13(1):99-123, 1991.

[4]
[5]

[6]

[7]

(8]
[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

F. Bueno. The CIAO Multiparadigm Compiler: A User’s Manual. Technical Report
CLIP8/95.0, Facultad de Informdtica, UPM, June 1995.

F. Bueno, M. Garcia de la Banda, and M. Hermenegildo. Effectiveness of Global Anal-
ysis in Strict Independence-Based Automatic Program Parallelization. In International
Symposium on Logic Programming, pages 320-336. MIT Press, November 1994.

M. Carlsson. Freeze, Indexing, and Other Implementation Issues in the Wam. In Fourth
International Conference on Logic Programming, pages 40-58. University of Melbourne,
MIT Press, May 1987.

M. Carlsson. Sicstus Prolog User’s Manual. Po Box 1263, S-16313 Spanga, Sweden,
February 1988.

N. Carreiro and D. Gelernter. Linda in Context. Communications ACM, 32(4), 1989.
European Computer Research Center. Eclipse User’s Guide, 1993.

M. Hermenegildo, D. Cabeza, and M. Carro. Using Attributed Variables in the Im-
plementation of Concurrent and Parallel Logic Programming Systems. In Proc. of the
Twelfth International Conference on Logic Programming, pages 631-645. MIT Press,
June 1995.

M. Hermenegildo and K. Greene. The &-Prolog System: Exploiting Independent And-
Parallelism. New Generation Computing, 9(3,4):233-257, 1991.

M. Hermenegildo and the CLIP group. Some Methodological Issues in the Design of
CIAO - A Generic, Parallel, Concurrent Constraint System. In Principles and Practice
of Constraint Programming, LNCS 874, pages 123-133. Springer-Verlag, May 1994.

M. Hermenegildo and the CLIP group. The CIAO Multiparadigm Compiler and System:
A Progress Report. In Proc. of the Compulog Net Area Workshop on Parallelism and
Implementation Technologies. Technical University of Madrid, September 1995.

C. Holzbaur. Metastructures vs. Attributed Variables in the Context of Extensible Uni-
fication. In 1992 International Symposium on Programming Language Implementation
and Logic Programming, pages 260-268. LNCS631, Springer Verlag, August 1992.

S. Le Houitouze. A New Data Structure for Implementing Extensions to Prolog. In
P. Deransart and J. Matuszynski, editors, Proceedings of Programming Language Imple-
mentation and Logic Programming, number 456 in Lecture Notes in Computer Science,
pages 136-150. Springer, August 1990.

P. Lépez Garcia, M. Hermenegildo, and S.K. Debray. Towards Granularity Based
Control of Parallelism in Logic Programs. In Proc. of First International Symposium on
Parallel Symbolic Computation, PASCO’94, pages 133-144. World Scientific Publishing
Company, September 1994.

U. Neumerkel. Extensible Unification by Metastructures. In Proceeding of the META 90
workshop, 1990.

E. Tick. The Deevolution of Concurrent Logic Programming Languages. The Journal
of Logic Programming, 23(1-3):89-125, 1995.

