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Abstract:

This paper presents a study of the effectiveness of three different algorithms for

the parallelization of logic programs based on compile—time detection of independence among
goals. The algorithms are embedded in a complete parallelizing compiler, which incorporates
different abstract interpretation—based program analyses. The complete system shows the task

of automatic program parallelization to be practical. The trade—offs involved in using each of the

algorithms in this task are studied experimentally, weaknesses of these identified, and possible

improvements discussed.
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1 Introduction

The parallel execution of a set of goals is en-
sured to be correct and efficient w.r.t. the se-
quential execution if the goals are proved to be
independent [12]. This is the basis of the Inde-
pendent And-Parallelism (IAP) model (see e.g.
[6, 7, 13]). Thus, the aim of automatic paral-
lelization in this model is to detect the indepen-
dence of sets of goals and to choose the best par-
allelization among all existing possibilities.

This work can be done at run—time. However,
checking independence of goals in the resolvent
at run-time is not always straightforward. In
general, it implies performing (not inexpensive)
checks which guarantee the sufficient conditions
for independence, prior to the execution of the
goals involved, and also considering all possible
combinations of goals in all resolvents, in order
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to choose the best parallelization possible [6, 15].
An interesting way of reducing both sources of
overheads is to mark at compile—time selected
program literals for parallel execution and, when
independence can not be determined statically
(via program analysis) [4], generate paralleliza-
tion tests which will minimize the checking over-
head for the goals arising from such literals [7,
11, 8, 16, 14]. In this context, the parallelization
process can be seen as a source to source trans-
formation, which has been called annotation.

For this purpose, three different algorithms —
called annotators, were presented in [16]: MEL,
CDG, and UDG. Each of them implements a
strategy for automatic parallelization based on
a different heuristic. Since then, the algorithms
have been extended and enhanced in various ways.
We report on these extensions and present a new
and exhaustive comparative study of the three
different strategies from the point of view of their
effectiveness in the task they were designed for.
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2 Background

Although the algorithms for automatic paralleliza-
tion can be viewed (and defined) independently
of the concept of independence whose sufficient
conditions will allow the parallelization, in our
study we have instantiated this concept to the
particular case of Strict Independence [6]. In this
section we will briefly introduce this notion and
the sufficient conditions associated to it, and the
role and management of such conditions in the
process of automatic parallelization.

Parallelization tests based on
Strict Independence

2.1

Two goals are strictly independent [12] for a sub-
stitution iff (after applying the substitution) they
do not share any variable. Let ¢1,...,¢, be the
literals to be parallelized. Following the above
ideas, we must generate at compile-time a con-
dition i_cond which, when evaluated at run—time,
guarantees that the goals which are instantiations
of such literals are strictly independent.

Consider the set of conditions which includes
“true”, “false”, or any set, interpreted as a con-
junction, of one or more of the tests ground(z),
indep(z,y), where z and y can be goals, vari-
ables, or terms in general. Let ground(z) be
true when z is ground and false otherwise. Let
indep(z,y) be true when z and y do not share
variables and false otherwise. If ¢1,...,¢9, are
considered in isolation, rather than as part of
a program, an example of a correct i_cond is
{ground(z)|VYz € SVG} U {indep(z, y)|V(z,y) €
SV I}, where SVG is the set of variables z oc-
curing in at least two elements of {g1,...,9n},
and SV'I the set of pairs of variables, each one
occuring in a different element of {g1,...,9n}
(SVGNSVI=0).

It is easy to see that in general a ground-
ness check is less expensive than an independence
check, and thus a condition, such as the one given,
where some independence checks are replaced by
groundness checks is obviously preferable.

If the above condition is satisfied the liter-
als are strictly independent for any possible sub-
stitution, thus ensuring that the goals resulting
from the instantiations of such literals will also
be strictly independent. However, when consid-
ering the literals involved as part of a clause and
within a program, the test can be simplified since
strict independence then only needs to be ensured
for those substitutions which can appear in that
program. This fundamental observation is clearly
instrumental when using the results of abstract

interpretation—based global analysis in the pro-
cess of automatic parallelization.

2.2 Identifying and Simplifying De-
pendencies

The annotation process is divided into two sub-
tasks. The first one is concerned with identify-
ing the dependencies between each two goals in a
clause and the minimum number of tests for en-
suring their independence, based on the sufficient
conditions applicable. The second one is con-
cerned with the core of the annotation process,
namely to apply a particular strategy in order to
obtain an optimal (under such a strategy) paral-
lel expression among all the possibilities detected
in the previous step, hopefully further optimizing
the number of tests. The first task is common to
all the annotators, and is briefly summarized in
the following. Note, however, that simplification
is also applicable in the second task, once an ex-
pression has been built by a particular algorithm.

The dependencies between goals can be repre-
sented in the form of a dependency graph. Infor-
mally, a dependency graph is a directed acyclic
graph where each node represents a goal and each
edge represents in some way the dependency be-
tween the connected goals. A conditional depen-
dency graph (CDG) is one in which the edges are
adorned with sufficient conditions. If those condi-
tions are satisfied, the dependency does not hold.
In an unconditional dependency graph (UDG)
dependencies always hold, i.e. conditions are al-
ways “false.”

Example 1 Consider a clause body with literals
a(w), b(x,y), c(y,z). The left-to—right prece-
dence relation for the goals in the body of the
clause can be represented using a directed, acyclic
graph in which we associate with each edge which
connects a pair of literals the sufficient condition
for their strict independence, thus resulting in the

following dependency graph:
aw)

ground(y), indep(x,z)

The conditions labeling the edges can be sim-
plified by using compile-time information pro-
vided by an analyzer (or the user). For any clause
C, the information actually known at every pro-
gram point 7 in C' can be expressed in what we
call a domain of interpretation GI: a subset of
the first order logic theory, such that each ele-
ment £ of GI defined over the variables in C' is
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a set of formulae (interpreted as their conjunc-
tion) which contains relevant information for the
notion of independence the checks are built on.
The simplification process [1] is then based on
identifying tests which are ensured to either fail
or succeed w.r.t. this information: if a test is en-
sured to succeed, it can be eliminated, and edges
possibly removed; if it is ensured to fail, it can be
reduced to false, yielding an unconditional edge.

3 Building Parallel Expres-
sions

The vehicle for expressing and implementing in-
dependent and—parallelism used in this study will
be the &-Prolog language. This language is es-
sentially Prolog, with the addition of the par-
allel conjunction operator “&” (used in place of
“,” —comma— when goals are to be executed con-
currently), a set of parallelism-related builtins,
which includes the groundness and independence
tests already described, and a number of synchro-
nization primitives which allow expressing both
restricted and non-restricted parallelism. Com-
bining these primitives with the normal Prolog
constructs, such as “=>” (if-then-else), users can
conditionally trigger parallel execution of goals.
For syntactic convenience an additional construct
is also provided: the Conditional Graph Ezpres-
sion (CGE). A CGE has the general form (i_cond
=> goal, & goaly & ... & goaly) and repre-
sents an if-then-else where the else part is a copy
of the then part replacing “&” with “,”. &-Prolog
if-then-else expressions and CGEs can be nested
in order to create richer execution graphs.

The annotation task is thus performed as sour-
ce to source transformations of the (&-Prolog)
program in which each clause is annotated with
parallel expressions and conditions which encode
the notion of independence used.

Example 2 Different (but not all) possible CGEs
for the goals a(w), b(x,y), c(y,z) of Ezample
1 would be:

a(w), ( ground(y),indep(x,z) =>
b(x,y) & c(y,z) )

indep(w,x),indep(w,z),indep(x,z),
ground(y) => a(w) & b(x,y) & c(y,z)

indep(w, [x,y]1) -> a(w) & b(x,y), c(y,2)
; a(w), ( ground(y),indep(x,z) =>
b(x,y) & c(y,z) )

Given a clause, several different annotations
are possible. Different heuristic algorithms im-

plement different strategies to select among all
possible parallel expressions for a given clause.

3.1 The MEL Algorithm

This algorithm is based on a heuristic which tries
to find points in the body of a clause where it can
be split into different expressions. One such point
occurs where a new variable appears. Consider a
goal which has the first occurrence of a variable in
a clause, and this variable is used as an argument
of another goal to the right of the first one. The
condition in Strict TAP which must hold for two
goals which share variables establishes that these
variables must be ground; obviously this is not
the case for the previously mentioned goals, and
thus this is a point where it is not appropriate to
annotate a parallel expression.

The algorithm proceeds in this manner from
right to left, i.e. from the last goal of the body
to the neck of the clause. The clause body is
then broken into two at the points where shared
new variables appear, and a parallel expression
(a CGE) built for the right part of the sequence
split. In proceeding backwards the underlying
intention is to allow capturing the longest paral-
lel expressions possible, since goals are generally
expected to be more instantiated — and there-
fore more likely independent — towards the end
of the clause. A similar heuristic would proceed
forwards but splitting the body at the second oc-
currences of new variables.

Example 3 Consider a clause h(X) :- p(X,Y),
q(X,2),r(X),s(Y,Z). Its body can be compiled
(under the conditions for strict independence) to
the following &-Prolog parallel expression:

ground(X) => p(X,Y) & q(X,Z),
(indep(X,Y),indep(X,Z) => r(X) & s(Y,Z)).

Note that the body is split at q(X,Z) and not at
p(X,Y), the largest expression being achieved in
this way. Also, the first CGE should have the
condition indep(Y,Z) but it does not since this
condition is automatically satisfied by virtue of
the fact that Z is a new variable.

As originally described, the algorithm is in-
stantiated to the particular case of strict indepen-
dence. Nonetheless, we propose to define its main
heuristic in terms of a CDG and thus make it
independent of the particular notion of indepen-
dence for which the conditions are constructed.
Let a CDG be built for each clause in the program
being annotated. The MEL algorithm can then
be defined as finding edges in the CDG labeled
with “false” and partitioning the clause body at
these points (see [2] for a detailed description).
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3.2 The UDG Algorithm

This algorithm starts with a graph G(V, F') which
is a UDG, i.e. all dependencies are unconditional.
This graph is the result of making all conditional
dependencies in a general graph hard dependen-
cies. The algorithm seeks to maximize the amount
of parallelism possible under these dependencies,
i.e. the maximum parallelism achievable with no
run-time tests. This is achieved if for any two
goals for which a dependency is not present, they
are annotated to be run in parallel — thus, no
loss of parallelization opportunities occurs. For
this, the transitive dependency relations among
goals, represented by the graph edges, are con-
sidered, and conditions upon these established.
Because the UDG is transitively closed, it holds
that Yo,y € V -z dep* y < (y,2) € E.

The UDG algorithm works as follows [16].
It starts with the set of independent goals I =
{p € V| Ve € V-I(z,p) € E}, those which
do not have incoming edges. A set of partitions
PP={Pc?2! |Vpe P -3z € V-x dep* p} is then
built, so that there is at least one goal in V' —1T for
each of these partitions P which depends on all
elements of P. These goals are grouped together
so that VP, € PP -Q; = {z € V |Vp e P;-
z dep* p}. In this context, no loss of parallelism
can occur when converting the graph into a linear
(parallel) expression, if and only if VPP, € PP,
lePQIm\/PlﬂPQIpl\/lePQIPQ,al’ld
PNPy=P =V €Q1,92€ Q2 -q2 dep™ 1

Under such conditions, a corresponding par-
allel expression is constructed from a set of rules
which guarantee that, for a transitively closed
graph, no loss of parallelism occurs using such
expression. However, note that from the defini-
tion of the partitions in PP, it always holds that
VP Py € PP - P # Py and either:

(1) lePQI@,OI'

(2) leP2:P17OI'leP2:P2,OI'

(3) lePQIPSt P#@,P#Pl,P;éPQ
and the UDG algorithm relies on either the first
case or a special sub—case of the second one. In
order to extend the algorithm to deal with all pos-
sible cases, different possible graph linearizations
have to be considered. However, each possible
extension implies a loss of parallelism.

We have considered extending the algorithm
to deal with all of the second case and with the
third case [2]. In particular, for case (2) there
are two other sub—cases, in addition to the one
which implies no loss of parallelism. For one of
them there are two possible parallel expressions,

and three for the other one; thus, we have five
other possibilities. Let Py = {p1}, P2 = {p1,p2},

Q1 = {q11, 912} and @2 = {g2} be the minimum
sets that fulfill the conditions in case (2) which
allow building expressions for all of the five sub—
cases. These will be as follows:

b.1 (p1,q11,q12)&p2, g2 c.1 (p1, 911, q12)&p2, g2
b.2 p1&pa, (q11, q12)&q2 ¢.2 p1&epa, q11&q12, ¢2

c.3 (p1, 12)&p2, q11&q>
The most natural extension will be that of

cases b.1 and c.1, because they apply the same
intuition behind “sub—case a” (the original strat-
egy) to the cases where the conditions of this one
do not hold. This extension leads to the algo-
rithm we have used for our study. Nonetheless,
when the execution efficiency of the parallel ex-
pressions obtained is considered, it turns out that
the extension may be more profitable if made in
another direction.

This can be seen with a simple experiment.
Consider assigning to each of the goals above an
upper bound on its granularity and computing
all possible combinations of granularities of all
the goals. Then, the efficiency of each of the five
possible parallel expressions can be computed. In
Table 1 the percentage of combinations where
each parallel expression behaves best is shown.
The percentage includes the situations where all
the expressions behave the same, and thus the
total percentage can add up to more than 100%.

Max.Goal % Best Case

Grain b.1 | b.2 || c.1 | c.2 | c.3
1 0 100 0 100 0

2 18 100 12 100 12

3 22 97 15 96 12

4 23 95 16 93 11

5 24 94 16 92 11

6 24 93 17 91 10

7 24 92 17 90 10

8 24 92 17 89 10

9 24 91 17 88 10

10 24 91 17 88 9

Table 1: Performance test for parallel expressions

From the table, it is clear that the best paral-
lelization strategy corresponds to the second op-
tion in both cases (b.2 and ¢.2). This is due to
the fact that this strategy performs a better load
balancing of parallel tasks with goals which are
already balanced (i.e. have almost the same gran-
ularity, as with maximum grain of 1 or 2) or for
which the differences in grain size are not high.
When a bigger difference is allowed (increasing
the maximum permitted goal grain size) the av-
erage efficiency of this strategy decreases some-
what, while the strategy of b.1 and c.1 — that
used to extend the algorithm — progressively be-
haves better, but in any case the asymptotic val-
ues seem to stabilize.
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It is worth noting that this result points out
the importance of having granularity information
on the goals being annotated, so that the anno-
tators could attempt a load balancing of expres-
sions. Granularity information is also useful in
controlling parallel execution (see [10]). Unfortu-
nately, having good measures for the granularity
of goals is a difficult task. In their absence, the
strategy of cases b.2 and c¢.2 should be pursued.

3.3 The CDG Algorithm

This algorithm is quite close to the previous one,
except that in this case the conditional dependen-
cies present in a CDG G(V, E) are used. To do
this, all possible states of computation which can
occur w.r.t. the conditions present in the graph
are considered, and the body goals annotated
with the best parallel expressions achievable un-
der these conditions. The algorithm starts with
the same set I of independent goals as above [16].
The main difference resides in that goals depend-
ing unconditionally on goals in I are not coupled
to them (i.e. the closure of the dependency rela-
tion upon each F; and corresponding @; in the
UDG algorithm is not performed). On the con-
trary, the CDG algorithm focuses on the condi-
tional dependencies present in the graph.
Consider the set D = V — I of dependent
goals. The sets of conditions other than “false”
in labels of edges between goals in I and goals
in D, IConds = {label((p,x)) # false | (p,z) €
E,p € I,z € D}, and in labels of edges among
goals in D, DConds = {label((z,y)) # false |
(z,y) € E,z,y € D} are built. The algorithm
proceeds by incrementally constructing the paral-
lel expression exp as follows, let I = {p1,...,pn}:

(1) if D = 0 then ezp is p1& ... &p,

(2) if D# 0, DConds = IConds = () then exp
is built using UDG

if D# 0, DConds # 0, IConds = () then
exp is p1& ... &p,, expr, where exp; is re-
cursively computed for G(V — I, Ey) with
Ei=EFE—{(px)e E|pel}

if D# 0, DConds # 0, IConds # () then
exp is constructed from the boolean combi-
nations of the elements of IConds

(3)

(4)

For each boolean combination C' the graph
G(V, E) is updated as if the conditions in C held,
that is, all conditions in labels of edges of £ which
are implied by elements of C' are deleted and
all labels with conditions which are incompatible
with some element of C' rewritten into “false.”
Note that an edge can be removed if its label be-
comes void (i.e. “true”). In [16] an algorithm to

perform this updating in the particular case of
Strict IAP is presented. The parallel expressions
resulting from recursively applying the CDG al-
gorithm after this updating are annotated as if-
then-elses and combined in a simplified form.

Note that, in case (3) of the algorithm, an
unconditional parallel expression is built for ele-
ments in I followed sequentially by another ex-
pression recursively computed for the rest of the
goals. No consideration is made regarding the
unconditional dependencies which can occur from
other goals to goals in I. The UDG algorithm,
on the other hand, does this, and groups goals
depending unconditionally on those of I together
and with those on which they depend, building
a different expression for the different groups of
goals made. An extension of the CDG algorithm
in this direction will extract from the CDG the
subgraph of unconditional dependencies on goals
of I (for the case mentioned above) and behave as
UDG, returning an updated graph to the orig-
inal algorithm. This extension will allow a one—
to—one correspondence between both algorithms,
the expressions constructed by each of them be-
ing the same, modulo the conditions present in
conditional expressions.

Example 4 Consider the clause h:- p(X),q(¥)
r(X),s(X,Y). There are unconditional dependen-
cies for r(X) on p(X) and s(X,Y) on p(X) and
a(Y), and a dependency (labeled ground (X)) for
s(X,Y) on r(X). The original CDG algorithm
will annotate its body as:

p(X)&q(Y), (ground(X) => r(X) & s(X,Y)).
UDG regards the dependency as unconditional:
(p(X), (X)) & q(¥), s(X,Y).

While its equivalent conditional expression, which
CDG will yield if suitable modified, is:

ground(X) -> (p(X),r(X)) & (q(¥),s(X,Y))
; (p(X),r (X)) & q(Y), s(X,Y).

its worst case suberpression being that of UDG.

Further extensions of the CDG algorithm in
the same direction can be done [2]. The heuris-
tic of considering all combinations of conditions
can be replaced by the UDG strategy of parti-
tioning the graph into strongly dependent groups
of goals. In this case the effect would be that
the parallel expressions being annotated will look
like conditional expressions nested inside uncon-
ditional ones. This turns out to be a different al-
gorithm than CDG: it results in the same UDG
algorithm performing not only on unconditional
edges of the graph but also on conditional ones,
annotating however such conditional edges with
the required conditions.
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4 Experimental Results

The MEL, CDG, and UDG algorithms have
been integrated in the &-Prolog system [11] par-
allelizing compiler. Compiler switches determine
whether or not code will be parallelized and, if so,
through which type of analysis and annotator. In
our experiments, a number of analyses have been
used, both local and global. Since the focus of
this paper is on the annotation algorithms, we
only present herein results for the cases of lo-
cal analysis and the most powerful of the global
analyses available. A study of the performance
of different analyzers can be found in [1].

|| Bench. || Cl | AvG | G | CGE | AvC | C ||
aiakl 7 3.00 5 2 3.50 5
ann 65 3.32 6 26 2.62 6
bid 18 2.78 5 8 2.50 4
boyer 10 3.60 6 2 2.00 2
browse 9 2.89 5 5 2.20 3
deriv 5 3.20 4 4 2.00 2
fib 1 6.00 6 1 2.00 2
grammar 4 2.50 3 4 2.25 3
hanoiapp 1 6.00 6 1 4.00 4
mmatrix 3 2.33 3 2 2.00 2
occur 3 3.00 4 2 2.00 2
progeom 6 3.00 5 3 3.00 4
gplan 47 4.00 9 31 2.68 5
gsortapp 2 3.50 4 1 4.00 4
query 2 4.50 6 2 2.00 2
rdtok 46 3.43 8 0 0.00 0
read 37 4.14 7 2 2.00 2
serialize 6 3.17 4 2 3.00 3
tak 2 5.00 7 1 4.00 4
tictactoe 37 4.24 | 48 5 2.20 3
warplan 26 3.69 | 10 16 2.56 5
zebra 2 | 10.50 | 19 3.33 6

Table 2: Benchmark Profile

A relatively wide range of programs (avail-
able by FTP at clip.dia.fi.upm.es) has been used
as benchmarks. Due to lack of space, they are
not discussed here. Instead, Table 2 gives (in
our view) more insight into their complexity use-
ful for the interpretation of the results. For each
benchmark, columns show the number of clauses
for which an annotation is considered! (“CI”),
the average and maximum number of goals in
these clauses (“AvG” and “G”), the number of
CGEs whose creation is attempted by the anno-
tators (“CGE”), and the average and maximum
number of goals in such CGEs (“AvC” and “C”).
The rationale behind the three last columns lays
in the treatment of builtins and side—effects. An-
notators share a common subprocess which par-
titions the clause body at the points where these

1Facts and clauses involved in query preparation are
not considered.

occur, so that annotation is not concerned with
them (in general, side—effects cannot be allowed
to execute freely in parallel with other goals).

4.1 Annotation Efficiency

Table 3 presents the results in terms of annota-
tion times in seconds (SparcStation 10, one pro-
cessor, SICStus 2.1, native code). It shows for
each annotator the average time out of ten ex-
ecutions in two different situations: with infor-
mation given by a local analysis (“local” in the
tables), and with that provided by a global anal-
ysis (“global”) based on a combination of the

Sharing+Freeness and ASub abstract domains [5].

Bench. local global

prog. MEL | CcDG | UDG MEL | CcDG | UDG
aiakl 0.26 | 0.26 | 0.24 0.37 | 0.36 | 0.36
ann 1.55 | 1.55 | 1.43 7.60 | 7.60 | 7.53
bid 0.39 | 0.39 | 0.36 0.48 | 0.45 | 0.46
boyer 0.34 | 0.31 | 0.31 0.68 | 0.66 | 0.64
browse 0.53 | 0.46 | 0.45 0.63 | 0.56 | 0.55
deriv 0.20 | 0.18 | 0.18 0.27 | 0.26 | 0.25
fib 0.13 | 0.11 | 0.11 0.15 | 0.15 | 0.14
grammar 0.17 | 0.15 | 0.15 0.21 | 0.20 | 0.20
hanoiapp 0.18 | 0.18 | 0.16 0.22 | 0.20 | 0.20
mmatrix 0.21 | 0.19 | 0.19 0.22 | 0.21 | 0.20
occur 0.26 | 0.25 | 0.24 0.28 | 0.27 | 0.26
progeom 0.20 | 0.19 | 0.18 0.25 | 0.24 | 0.24
gplan 1.59 | 1.67 | 1.35 3.63 | 3.43 | 3.43
gsortapp 0.17 | 0.16 | 0.16 0.19 | 0.18 | 0.18
query 0.26 | 0.23 | 0.23 0.29 | 0.27 | 0.28
rdtok 0.87 | 0.79 | 0.80 1.87 | 1.82 | 1.84
read 0.90 | 0.82 | 0.82 2.02 | 1.99 | 2.01
serialize 0.22 | 0.20 | 0.20 0.41 | 0.38 | 0.39
tak 0.17 | 0.15 | 0.15 0.23 | 0.21 | 0.21
tictactoe 0.90 | 0.81 | 0.81 2.08 | 2.03 | 2.02
warplan 0.54 | 0.54 | 0.51 2.89 | 2.86 | 2.77
zebra 2.08 300 | 0.57 4.96 | 4.65 | 4.64

Table 3: Annotation Efficiency

4.2 Performance of CGEs and Tests

One way to measure the effectiveness of the anno-
tators is to count the number of CGEs which ac-
tually result in parallelism and to study the over-
head introduced in the program by the tests gen-
erated. For this purpose we have measured the
total number of checks which occur in the anno-
tated programs (“T” in the tables), the number
of these which are not checked in the execution
of the program (“N”), and, for the rest, the num-
ber of them which always succeed (“S”), always
fail (“F”), or sometimes succeed and sometimes
fail (“SF”). Also, the number of times the checks
have succeeded (“TS”) or failed (“TF”) during

execution, and the number of parallel expressions
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Bench. Info Ann ground/indep E
T | N[ S [ F [SF] Ts [ 1IF
mel 0/10 0/0 0/10 | 0/0 | 0/0 0/10 0/0 2
alakl local cdg 4/42 | 2/38 | 2/4 | 0/0 | 0/0 2/4 0/0 2
udg 0/0 0/0 0/0 0/0 | 0/0 0/0 0/0 0
global all 0/0 0/0 0/0 0/0 | 0/0 0/0 0/0 2
mel || 7/12 | 2/0 | 4/12 | 1/o | 0/0 | 17/4a | 1jo || 27
bid local |[cdg || 10/19 | 5/7 | 4/12 | 1/o | 0jo | 17/44 | 1jo || 27
wdg || 0/0 | 0/0 | 0/o |0/o [ 0/0 | 0/0 | 0/o || ©
global || all 0/0 | 0/0 | 0/0 | 0/o [0/0 | ©0/0 | 0j/o || 27
mel || 2/2 | 0/0 | 1/2 | 1/o | 0/0 | 13/220 | 13/0 || 110
progeom || local cdg 2/2 0/0 1/2 | 1/o | o/o | 13/220 | 13/0 || 110
wdg || 0/0 | 0/0 | 0/0 |[0/0 [ 0/0 | 0/0 | 0/0 || ©
global || all 0/0 | 0/0 | 0/0 | 0/o |0/0o | ©0/0 | 0/0 | 110
Table 4: No Checks with “global”
Bench. Info Ann ground/indep E
T [ N ] S | F [SF] TS J[1F
deriv local mel/cdg || 4/16 | 0/0 | 4/16 | 0/0 | 0/ 0 | 538/2152 | 0/ 0 538
global all 0/0 | 0/0 | 0/0 | 0/0 | 0/0 0/0 0/0 538
mmatrix local mel/cdg 2/ 8 0/0 2/8 0/0 | 0/0 182/728 0/ 0 182
global all 0/0 | 0/0 | 0/0 | 0/0 | 0/0 0/0 0/0 182
occur local mel/cdg 2/ 5 0/0 2/5 0/0 | 0/o0 252/279 0/ 0 252
global all o/1 | 0/1 | 0/o | 0/o | 0/o 0/0 0/0 252
gsortapp local mel/cdg 0/ 1 0/0 0/1 0/0 | 0/0 0/250 0/ 0 250
global all 0/0 | 0/0 | 0/o | 0/o | 0/0 0/0 0/0 250
query local mel/cdg 1/ 4 0/0 0/4 1/0 | 0/0 0/4 2/ 0 1
global all 0/0 | 0/0 | 0/0 | 0/0 | 0/0 0/0 0/0 1
read local mel/cdg 1/ 6 0/0 1/6 0/0 | 0/0 1/6 0/ 0 1
global all 0/0 | 0/0 | 0/0 | 0/0 | 0/0 0/0 0/0 1
serialize local mel/cdg 0/ 4 0/0 0/4 0/0 | 0/o0 0/36 0/ 0 9
global all 0/0 | 0/0 | 0/0o | 0/o | 0/o 0/0 0/0 9
tictactoe local mel/cdg || 10/3 | 0/0 | 10/3 | 0/0 | 0/0 | 29796/5176 | 0/ 0 || 11124
global all 0/0 | 0/0 | 0/0 | 0/o | 0/0 0/0 0/0 | 11124
[ all | local | udg [ 0/0 | 0/o [ o/o [ 0/o | 0/0 | 0/0 [0/0 ] 0 |

Table 5: MEL=CDG —

which have been effectively run in parallel as a re-
sult (“E”). We have parallelized our benchmarks
using the three annotators in the two different
situations of analysis already mentioned. The re-
sults for each benchmark and each of the situa-
tions are shown in tables 4, 5, 6, 7, and 8.

| | Bench. | E | |
fib 986
grammar 0
rdtok 0
tak 2372

Table 6: No Checks — Identical Code

Table 6 shows programs for which the par-
allelized result is identical in all cases. Table 4
gives the figures for the programs for which all
algorithms give the same result for “global” but
different otherwise. In the programs of Table
5, MEL and CDG yield the same result (not

Identical Code in “global”

UDG), but it is different for “global” and “lo-
cal.” The same happens in Table 7, but the result
of UDG is the same with “global” and “local.”
The rest of the programs appear in Table 8.

4.3 Speedup Results

An arguably better way of measuring the effec-
tiveness of the annotators is to measure the speed-
up achieved: the ratio of the parallel execution
time of the program (ideally for an unbounded
number of processors) to that of the sequential
program. In order to concentrate on the avail-
able parallelism itself, without the limitations im-
posed by a fixed number of physical processors,
a novel evaluation environment, called IDRA,
has been defined in [9]. IDRA takes as input a
real execution trace file of a parallel program and
the time for its sequential execution, and com-
putes the achievable speedup for any number of
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Bench. Info Ann ground/indep E
T | N S T F [SF] TS | TF
Tocal || mel/cdg || 4/2 | O/1 | 3/1 | 1/0 | 0/0 | 42/14 | 38348/ 0 14
boyer global [[ mel/cdg || 4/0 | 0/0 | 3/0 | 1/0 | 0/0 42/0 38348/ 0 14
all udg 0/0 [ 0/0 [ 0/0 | 0/0 | 0/0 0/0 0/ 0 0
Tocal || mel/cdg || 3/7 | 0/2 | 1/4 | 2/0 | 0/1 | 60/16300 | 25/ 20 || 4105
browse || global || mel/cdg || 2/2 | 0/0 | 0/1 | 2/0 | 0/1 0/4105 25/ 20 4105
all udg 0/0 [ 0/0 [ 0/0 | 0/0 | 0/0 0/0 0/ 0 0
Table 7: CDG/MEL Identical Code
Bench. Info Ann ground/indep E
T [ N [ S [ F [SF[ TS [ TF
mel 14/ 36 3/19 3/12 5/1 3/4 | 168/183 | 207/ 93 99
local cdg 22/ 46 6/29 5/12 8/1 3/4 | 180/183 | 297/ 93 99
udg 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0
ann mel 6/ 14 0/3 0/6 3/1 3/4 75/111 138/ 93 99
global cdg 12/ 18 2/8 1/5 6/1 3/4 81/105 228/ 93 99
udg 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0
mel 2/ 1 0/0 | 2/1 | 0J/o | 0jo | 510/255 | 0/0 | 255
local | cdg 5/ 1 2/T | 3/0 | 0/0 | 0/0 | 765/0 0/0 || 255
wdg || 0/0 0/0 | 0/0 | 0/o [0/o | 0/0 0/0 0
hanoiapp mel 0/0 0/0 0/0 0/0 | 0/0 0/0 0/0 255
global |[cdg 0/0 0/0 | 0/o | 0/o [0/o| 0/o 0/0 || 255
udg 0/0 0/0 0/0 0/0 0/0 0/0 0/0 255
mel || 13/ 57 | 9/47 | 3/10 | 1/0 | 0/o | 6/12 3/ 0 7
local |[cdg || 16/84 | 12/74 | 3/10 | 1/0 | 0/0 | /12 3/0 7
wdg || 0/0 0/0 | 0/0 | 0/0 [0/o | 0/0 0/0 0
gplan mel 2/ 1 2/1 0/0 0/0 0/0 0/0 0/ 0 7
global cdg 2/ 1 2/1 0/0 0/0 0/0 0/0 0/0 7
udg 0/0 0/0 0/0 0/0 0/0 0/0 0/0 7
mel || 14/ 11 | 3/3 | 6/8 | 2/0 | 3/0 | 105/47 | 50/ 0 66
local | cdg || 28/15 | 13/9 | 8/5 | 3/1 | 4/0 | 113/45 | 58/4 66
wdg || 0/0 0/0 | 0/0 | 0/0 [0/o| 0/0 0/ 0 6
warplan mel 14/ 7 3/1 6/6 2/0 | 3/0 | 105/33 50/ 0 66
global |[cdg || 28/ 10 | 13/6 | 8/3 | 3/1 | 4/0 | 113/29 | 58/ 4 66
wdg || 0/0 0/0 | 0/o | 0/o [0/o| o0/o 0/ 0 6
mel || 0/ 250 | 0/247 | 0/2 | 0/1 | 0/0 | o/iiz | 0/ 56 1
local | cdg || 1/ 4835 | 0/4729 | 1/96 | 0/10 | 0/0 | 56/3346 | 0/ 420 1
wdg || 0/ 0 0/0 | 0/0 | 0/o [0/o | 0/o 0/ 0 1
zebra mel 0/0 0/0 0/0 0/0 | 0/0 0/0 0/0 1
global |[cdg 0/0 0/0 | 0/0 | 0/o [0/o| 0/0 0/0 1
wdg || 0/0 0/0 | 0/0 | 0/0 [0/o| 0/0 0/0 1

Table 8: Other Programs

processors. Trace files are encoded descriptions
of the events occurred during the execution of a
program. Since &-Prolog generates all possible
parallel tasks of a parallel program, regardless of
the number of processors in the system, all possi-
ble execution graphs, with their ezact execution
times, can be constructed from this data. The
results have been shown to be very good approx-
imations to the best possible parallel execution [9].
Though ideal, match closely the actual speedups
obtained in the &-Prolog system for the number
of processors available.

The results for a representative subset of the
benchmarks used are presented in figures 1, 2,
and 3. For each benchmark and situation of anal-
ysis, a diagram with speedup curves obtained

with IDRA is shown. Each curve represents the
speedup achievable for the parallelized version of
the program obtained with one annotator.

5 Discussion

Annotation times are fairly acceptable for all an-
notators. MEL and CDG usually take the same
time, with a slight difference favoring CDG for
simpler programs. On the contrary, MEL takes
less time for complex programs, like zebra. Note
that complexity here is measured as the number
of literals in clauses: the higher the number of lit-
erals, the more linearizations of the clause graph
are possible and this dominates the complexity
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of CDG, as it tries to consider all possible al-
ternatives. UDG takes much less than the other
two without information (from global analysis),
because in this case it can rarely find any oppor-
tunities for parallelization. When having infor-
mation, it takes as much as the other two.
Regarding the parallelized programs resulting
from annotation, we identify several classes of
programs. Two purely sequential programs and
two (simple) parallel programs appear in Table 6,
the simplest cases. The annotators are successful
at detecting such sequentiality and do not gener-
ate any parallel expression. In the case of simple
parallel programs, where independence of goals
can be inferred even with a local analysis of the
clauses, all the annotators are able to exploit this
(unconditional) parallelism, with no checks.
Programs whose parallelization is more com-
plex appear in Table 5. MEL and CDG, as
well as UDG (when having good information)
are able to extract parallelism to a great extent.
This is shown by the fact that none of the checks
ever fail at execution time. For MEL and CDG
the annotated code is exactly the same, and thus
the same parallelism is exploited. The worst case
is that of UDG, which cannot exploit any par-
allelism without information.? When having in-

2This can actually be observed in all tables, except for
the cases of warplan and zebra; the parallelism exploited
in these cases is marginal, and with granularity analysis
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formation, its annotated code is also identical to
that of the other two: all annotators are able to
extract the same amount of parallelism without
the need for checks.

For more complex programs, like those of Ta-
ble 4, the differences in the behavior of MEL
and CDG are more apparent. Once again, for
these programs the three annotators behave the
same when having good global information, and
extract the same parallelism as when not hav-
ing such information, but without checks. With-
out information, though, annotators are forced to
place some checks to be executed at run—time. In
the case of CD@G, it turns out that most of these
checks are not actually executed at run—time be-
cause many of the possible parallel expressions
annotated by CDG are not used in the execution
of the program. Nonetheless, note that in the
case of aiakl, the expression exploited has many
less checks than the corresponding one annotated
by MEL (for the same goals in the program): 2
ground checks and 4 indep checks against 10 in-
dep checks. This is due to the graph lineariza-
tion performed by CDG, taking all possibilities
into account. If-then-elses built by CDG can be
viewed as an “indexing” over the possible paral-
lel expressions, based on some checks. In aiakl,
this indexing is able to lead to the parallel ex-

it would be avoided.
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pressions with less effort than that required by
MEL, which simply puts conditions at certain
points in the clause.

In Table 7 there are two programs which are
harder to parallelize. UDG cannot extract par-
allelism, because there is no unconditional paral-
lelism. MEL and CDG extract the same amount
of conditional parallelism, but for both algorithms
the number of checks is less when having infor-
mation. In fact, little parallelism is obtained. In
the case of boyer, significant parallelism can be
exploited but only using the concept of non—strict
independence [12; 3]; in browse, although a good
number of goals are executed in parallel, a critical
part of the algorithm is still sequential.

Programs in Table 8 deserve more discussion.
The first thing to be noticed is that in some
cases UDG is not able to extract parallelism
even with information — this happens for ann,
and for warplan and zebra, in which the paral-
lelism extracted is marginal. On the contrary, for
hanoiapp and gplan the same parallelism as the
other two annotators is extracted by UDG. Con-
sidering the high complexity of qplan, the analy-
sis turns out to be quite effective.

Regarding MEL and CDG, it has to be noted
that in most programs of Table 8 the overhead
in number of checks of CDG is high. Although
in some cases (e.g. gqplan) it happens (as it hap-
pened in aiakl or bid) that these extra checks
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(and the corresponding expressions) are discarded
at execution time, in other cases they yield some
overhead also at execution time. This is the case
for ann, as can be seen in Figure 3, where speed-
ups for CDG are always lower than for MEL.
The same happens also for warplan.

An interesting case is that of hanoiapp. Its
speedup curves (also in Figure 3) illustrate a case
where CDG achieves good speedups while MEL
shows very little speedup. MEL correctly but
inefficiently parallelizes a call to hanoi and a call
to append, while CDG parallelizes a call to hanoi
with a sequence composed of the other call to
hanoi and a call to append. MEL needs an indep
check, while CDG uses instead a ground check,
which is much less expensive.

In general, though, the differences in speed-
ups are not significant. Exceptions are hanoiapp,
as discussed, and programs with very little par-
allelism, as in aiakl (Figure 1). In this case, as
in hanoiapp, CDG does better than MEL due
to its ability to annotate different possibilities for
the same clause body. In this program only one
body with two parallel expressions is parallelized,
and since very little speedup is achieved, the dif-
ferent annotations of the two algorithms are more
relevant. For other programs with good speed-
ups, as those in Figure 2, this does not happen.

6 Conclusions

We have studied the effectiveness of three algo-
rithms for parallelization of logic programs us-
ing strict independence by comparing a number
of measures. The algorithms have been imple-
mented and incorporated in a complete paralleliz-
ing compiler. This compiler also includes a num-
ber of program analyzers based on well-known
approximation domains. The complete system
proves the task of automatic program paralleliza-
tion feasible. Performance of the annotators at
this task, in terms of the time taken in annotat-
ing the programs, shows them to be practical, al-
though CDG in some cases (e.g. zebra) requires
some improvement.

The comparison study shows that MEL and
CDG give very similar results in practice. De-
spite this, each one of them has its advantages
and disadvantages. CDG appears to be better
when not having information if the programs are
simple, or for more complex programs, if good
analyses are available. In the latter case, CDG
can be able to extract more sophisticated paral-
lelism than MEL. On the contrary, for compli-
cated programs for which the analysis is not ac-
curate enough (or no analysis is available), CDG
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can cause significant overhead, and thus MEL is
a reasonable alternative. To avoid slow-downs
caused by too much dependency checking over-
head, there is always the option of using UDG.
However, UDG is not effective when not having
good analyses which yield accurate information.

Several improvements are possible in order to
obtain performance beyond our results. The dis-
cussed extensions of UDG and CDG [2] should
also be compared in practice. Providing the algo-
rithms with granularity information and allowing
them to perform a load balancing of annotated
goals based on this information can be of great
importance. Also, CDG can be enhanced with
heuristics to determine best and/or most proba-
ble alternatives, in order to reduce its overheads.
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