
Towards a High-Level Implementation of
Execution Primitives for Unrestricted,

Independent And-parallelism

Amadeo Casas1 Manuel Carro2 Manuel V. Hermenegildo1,2

{amadeo, herme}@cs.unm.edu {mcarro, herme}@fi.upm.es

1 Depts. of Comp. Science and Electr. and Comp. Eng., Univ. of New Mexico, USA.
2 School of Comp. Science, Univ. Politécnica de Madrid, Spain and IMDEA-Software.

Abstract. Most efficient implementations of parallel logic programming
rely on complex low-level machinery which is arguably difficult to imple-
ment and modify. We explore an alternative approach aimed at taming
that complexity by raising core parts of the implementation to the source
language level for the particular case of and-parallelism. We handle a sig-
nificant portion of the parallel implementation at the Prolog level with
the help of a comparatively small number of concurrency-related primi-
tives which take care of lower-level tasks such as locking, thread manage-
ment, stack set management, etc. The approach does not eliminate alto-
gether modifications to the abstract machine, but it does greatly simplify
them and it also facilitates experimenting with different alternatives. We
show how this approach allows implementing both restricted and unre-
stricted (i.e., non fork-join) parallelism. Preliminary experiments show
that the performance sacrificed is reasonable, although granularity con-
trol is required in some cases. Also, we observe that the availability of
unrestricted parallelism contributes to better observed speedups.

Keywords: Parallelism, Virtual Machines, High-level Implementation.

1 Introduction

The wide availability of multicore processors is finally making parallel com-
puters mainstream, thus bringing a renewed interest in languages and tools to
simplify the task of writing parallel programs. The use of declarative paradigms
and, among them, logic programming, is considered an interesting approach for
obtaining increased performance through parallel execution on multicore archi-
tectures, including multicore embedded systems. The high-level nature of these
languages allows coding in a style that is closer to the application and thus
preserves more of the original parallelism for automatic parallelizers to uncover.
Their amenability to semantics-preserving automatic parallelization is also due,
in addition to this high level of abstraction, to their relatively simple semantics,
and the separation between the control component and the declarative spec-
ification. This makes it possible for the evaluator to execute some operations
in any order (including in parallel), without affecting the meaning of the pro-
gram. In addition, logic variables can be assigned a value at most once, and

thus it is not necessary to check for some types of flow dependencies or to
perform single statement assignment (SSA) transformations, as done with im-
perative languages. At the same time, the presence of dynamic data structures
with “declarative pointers” (logical variables), irregular computations, or com-
plex control makes the parallelization of logic programs a particularly interesting
case that allows tackling complex parallelization-related challenges in a formally
simple and well-understood context [14].

Parallel execution of logic programs has received considerable attention and
very significant progress has been made in the area (see, e.g., [11] and its refer-
ences). Two main forms of parallelism have been exploited: Or-parallelism (Au-
rora [22] and MUSE [2]) parallelizes the execution of different clauses of a predi-
cate (and their continuations) and is naturally applicable to programs which per-
form search. And-parallelism refers to the parallel execution of different goals in
the resolvent. It arises naturally in different kinds of applications (independently
of whether there is implicit search or not), such as, e.g., divide-and-conquer al-
gorithms. Systems like &-Prolog [16], DDAS [27] and others have exploited and-
parallelism, while certain combinations of both and- and or-parallelism have
been exploited by e.g. &ACE [24], AKL [20], and Andorra [26].

The basic ideas of the &-Prolog model have been adopted by many other
systems (e.g., &ACE and DDAS). It consists of two components: a paralleliz-
ing compiler which detects the possible runtime dependencies between goals in
clause bodies and annotates the clauses with expressions to decide whether par-
allel execution can be allowed at runtime, and a run-time system that exploits
that parallelism. The run-time system is based on an extension of the original
WAM architecture and instruction set, and was originally implemented, as most
of the other systems mentioned, on shared-memory multiprocessors, although
distributed implementations were also taken into account. We will follow the
same overall architecture and assumptions herein, and concentrate as well on
(modern) shared-memory, multicore processors.

These models and their implementations have been shown very effective at
exploiting parallelism efficiently and obtaining significant speedups. However,
most of them are based on quite complex, low-level machinery which makes
implementing and maintaining these systems inherently hard. In this paper we
explore an alternative approach that is based on raising some components to the
source language level and keeping at low level only selected operations related to,
e.g., thread handling and locking. We expect of course a performance impact,
but hope that this division of concerns will make it possible to more easily
explore variations on the execution schemes. While doing this, another objective
of our proposal is to be able to easily exploit unrestricted and-parallelism, i.e.,
parallelism that is not restricted to fork-join operations.

2 Classical Approaches to And-Parallelism

In goal-level and-parallelism, a key issue is which goals to select for parallel
execution in order to avoid situations which lead to incorrect execution or slow-
down [19, 14]. Not only errors but also significant inefficiency can arise from the

simultaneous execution of computations which depend on each other since, for
example, this may trigger more backtracking than in the sequential case. Thus,
goals are said to be independent if their parallel execution will not perform ad-
ditional search and will not produce incorrect results. Very general notions of
independence have been developed, based on constraint theory [10]. However for
simplicity we discuss only those based on variable sharing.

In Dependent and-parallelism (DAP) goals are executed in parallel even if
they share variables, and the competition to bind them has to be dynamically
dealt with using notions such as sequencing bindings from producers to con-
sumers. Unfortunately this usually implies substantial execution overhead. In
Strict Independent and-parallelism (SIAP) goals are allowed to execute in par-
allel only when they do not share variables, which guarantees the correctness
and no-slowdown. Non-strict independent and-parallelism (NSIAP) is a signifi-
cant extension, also guaranteeing the no-slowdown property, in which goals are
parallelized even if they share variables, provided that at most one goal binds a
shared variable or the goals agree in the possible bindings for shared variables.
Compile-time tools have been devised and implemented to statically detect cases
where this holds, thus making the runtime machinery lighter and faster. Unde-
termined cases can, if deemed advantageous, be checked at runtime.

Another issue is whether any restrictions are posed on the patterns of paral-
lelization. For example, Restricted and-parallelism (RAP) constrains parallelism
to (nested) fork-join operations. In the &-Prolog implementation of this model
conjunctions which are to be executed in parallel are often marked by replacing
the sequential comma (,/2) with a parallelism operator (&/2).

In this paper we will focus on the implementation of IAP and NSIAP paral-
lelism, as both have practically identical implementation requirements. Our ob-
jective is to exploit both restricted and unrestricted, goal-level and-parallelism.

Once a method has been devised for selecting goals for parallel execution,
an obviously relevant issue is how to actually implement such parallel execution.
One usual implementation approach used in many and-parallel systems (both for
IAP [16, 24] and for DAP [27]) is the multi-sequential, marker model introduced
by &-Prolog [13]. In this model parallel goals are executed in different abstract
machines which run in parallel. In order to preserve sequential speed, these
abstract machines are extensions of the sequential model, usually the Warren
Abstract Machine (WAM) [29, 1], which is the basis of most efficient sequential
implementations. Herein we assume for simplicity that each (P)WAM has a
parallel thread (an “agent”) attached and that we have as many threads as
processors. Thus, we can refer interchangeably to WAMs, agents, or processors.
Within each WAM, sequential fragments appear in contiguous stack sections
exactly as in the sequential execution.3 The new data areas are [16]:

Goal List: A shared area onto which goals that are ready to execute in parallel
are pushed. WAMs can pick up goals from other WAMs’ (or their own)
goal lists. Goal list entries include a pointer to the environment where the

3 This can actually be relaxed: continuation markers [28] allow sequential execution
to spread over non-contiguous sections. We will not deal with this issue here.

s(X,Z)

s(X,Z)

p(X,Y,Z)

r(X,Y)

q(X)

r(X,Y)

q(X) s(X,Z)

End marker
Parcall frame Parcall frame

Input marker

End marker

Parcall frame

Input marker

q(X)

p(X, Y, Z) :− q(X), r(X, Y) & s(X, Z).

c)b)a)

p(X,Y,Z) p(X,Y,Z)

Fig. 1. Sketch of data structures layout using the marker model.

goal was generated and to the code starting the goal execution, plus some
additional control information.

Parcall Frames: They are created for each parallel conjunction and hold the
necessary data for coordinating and synchronizing the parallel execution of
the goals in the parallel conjunction.

Markers: They separate stack sections corresponding to different parallel goals.
When a goal is picked up by an agent, an input marker is pushed onto the
choicepoint stack. Likewise, an end marker is pushed when a goal execution
ends. These are linked to ensure that backtracking will happen following a
logical (i.e., not physical) order.

Figure 1 sketches a possible stack layout for a program such as:
p(X, Y, Z) :- q(X), r(X, Y) & s(X, Z).

with query p(X, Y, Z). We assume that X will be ground after calling q/1.
Different snapshots of the stack configurations are shown from left to right.
Note that in the figure we are intermixing parcall frames and markers in the
same stack. Some actual implementations have chosen to place them in different
parts of the available data areas.4

When the first WAM executes the parallel conjunction r(X, Y) & s(X, Z),
it pushes a parcall frame onto its stack and a goal descriptor onto its goal stack for
the goal s(X, Z) (i.e., a pointer to the WAM code that will construct this call in
the argument registers and another pointer to the appropriate environment), and
it immediately starts executing r(X, Y). A second WAM, which is looking for
jobs, picks s(X, Z) up, pushes an input marker into its stack (which references
the parcall frame, where data common to all the goals is stored, to be used in
case of internal failure) and constructs and starts executing the goal. An end
marker is pushed upon completion. When the last WAM finishes, it will link
the markers (so as to proceed adequately on backtracking and unwinding), and
execution will proceed with the continuation of p/3.

Classical implementations using the marker model handle the &/2 operator at
the abstract machine level: the compiler issues specific WAM instructions for &/2,
4 For example, in &ACE parcall frames are pushed onto a separate stack and their

slots are allocated in the heap, to simplify memory management.

which are executed by a modified WAM implementation. These modifications
are far from trivial, although relatively isolated (e.g., unification instructions are
usually not changed, or changed in a generic, uniform way).

As mentioned in the introduction, one of our objectives is to explore an
alternative implementation approach based on raising components to the source
language level and keeping at low level only selected operations. Also, we would
like to avoid modifications to the low-level compiler. At the same time, we want
to be able to easily exploit unrestricted and-parallelism, i.e., parallelism that is
not restricted to fork-join operations. These two objectives are actually related
in our approach because, as we will see in the following section, we will start by
decomposing the parallelism operators into lower-level components which will
also allow supporting unrestricted and-parallelism.

3 Decomposing And-Parallelism

It has already been reported [6, 5] that it is possible to construct the and-parallel
operator &/2 using more basic yet meaningful components. In particular, it is
possible to implement the semantics of &/2 using two end-user operators, &>/2
and <&/1, defined as follows:5

– G &> H schedules goal G for parallel execution and continues with the
code after G &> H. H is a handler which contains (or points to) the state of
goal G.

– H <& waits for the goal associated with H (G, in the previous item) to
finish. At that point all bindings G could possibly generate are ready, since G
has reached a solution. Assuming goal independence between G and the calls
performed while G was being executed, no binding conflicts will arise.

G &> H ideally takes a negligible amount of time to execute, although the pre-
cise moment in which G actually starts depends on the availability of resources
(primarily, free agents/processors). On the other hand, H <& suspends until the
associated goal finitely fails or returns an answer. It is interesting to note that
the approach shares some similarities with the concept of futures in parallel func-
tional languages. A future is meant to hold the return value of a function so that
a consumer can wait for its complete evaluation. However, the notions of “return
value” and “complete evaluation” do not make sense when logic variables are
present. Instead, H <& waits for the moment when the producer goal has com-
pleted execution, and the “received values” (a tuple, really) will be whatever
(possibly partial) instantiations have been produced by such goal.

With the previous definitions, the &/2 operator can be expressed as:
A & B :- A &> H, call(B), H <&.

5 We concentrate on forward execution here. See Section 4.5 for backtracking behavior.
Also, although exception handling is beyond our current scope, exceptions uncaught
by a parallel goal surface at the corresponding <&/1, where they can be captured.

(Actual implementations will of course expand A & B at compile time using the
above definition in order not to pay the price of an additional call and the meta-
call. The same can be applied to &> and <&.) However, these two new operators
can additionally be used to exploit more and-parallelism than is possible with
&/2 alone [9]. We will just provide some intuition by means of a simple example
(an experimental performance evaluation is included in Section 5.)6

Consider predicate p/3 defined as follows:

p(X,Y,Z) :- a(X,Z), b(X), c(Y), d(Y,Z).

whose (strict) dependencies (assuming that X,Y,Z are free and do not share on
entry) are shown in Figure 2. A classical fork-join parallelization is shown in Fig-
ure 3, while an alternative (non fork-join) parallelization using the new operators
is shown in Figure 4. We assume here that solution order is not relevant.

b(X)

c(Y) d(Y,Z)

a(X,Z)

Fig. 2. Dep. graph for p/3.

It is obvious that it is always possible to par-
allelize programs using &>/2 and <&/1 and obtain
the same parallelism as with &/2 (since &/2 can be
defined in terms of &>/2 and <&/1). The converse
is not true. Furthermore, there are cases (as in Fig-
ure 4) where the parallelizations allowed by &>/2
and <&/1 can be expected to result in shorter ex-
ecution times, for certain goal execution times [9].
In our example, the annotation in Figure 3 misses
the possible parallelism between the subgoals c/1

and b/1, which the code in Figure 4 allows: c/1 is scheduled at the beginning of
the execution, and it is waited for in Hc <&, just after b/1 has been scheduled
for parallel execution.

In addition to &>/2 and <&/1, we propose specialized versions in order to
obtain additional functionality or more efficiency. In particular, &!>/2 and <&!/1
are intended to be equivalent to &>/2 and <&/1, respectively, but only for single-
solution, non-failing goals, where there is no need to anticipate backtracking
during forward execution. These primitives allow the parallelizer to flag goals
that analysis has detected to be deterministic and non-failing (see [18]), and this
can result in important simplifications in the implementation.

4 Sketch of a Shared Memory Implementation

Our proposed implementation divides responsibilities among several layers. User-
level parallelism and concurrency primitives intended for the programmer and
parallelizers are at the top and written in Prolog. Below, goal publishing, search-
ing for available goals, and goal scheduling are written at the Prolog level, relying
on some low-level support primitives for, e.g., locking or low-level goal manage-
ment, with a Prolog interface but written in C.

6 Note that the &>/2 and <&/1 operators do not replace the fork-join operator &/2 at
the language level due to its conciseness in cases in which no extra parallelism can
be exploited with &>/2 and <&/1.

p(X, Y, Z):-

a(X, Z) & c(Y),

b(X) & d(Y, Z).

Fig. 3. Nested fork-join annotation.

p(X, Y, Z) :-

c(Y) &> Hc,

a(X, Z),

b(X) &> Hb,

Hc <&,

d(Y, Z),

Hb <&.

Fig. 4. Using the new operators.

In our current implementation for shared-memory multiprocessors, and sim-
ilarly to [16], agents wait for work to be available, and execute it if so. Every
agent is created as a thread attached to an (extended) WAM stack set. Sequen-
tial execution proceeds as usual, and coordination with the rest of the agents is
performed by means of shared data structures. Agents make new work available
to other agents (and also to itself) through a goal list which is associated with
every stack set and which can be consulted by all the agents. This is an instance
of the general class of work-stealing scheduling algorithms, which date back at
least to Burton and Sleep’s [4] research on parallel execution of functional pro-
grams and Halstead’s [12] implementation of Multilisp, and the original &-Prolog
abstract machine [13, 16], for logic programs.

In the following subsections we will introduce the library with the (determin-
istic) low-level parallelism primitives and we will present the design (and a sketch
of the actual code, simplified for space reasons) of the main source-level algo-
rithms used to run deterministic, non-failing goals in parallel. We will conclude
with some comments on the execution of nondeterministic goals in parallel.

4.1 Low-Level Parallelism Primitives

The low-level layer has been implemented as a Ciao library (“apll”) written in
C which provides basic mechanisms to start threads, wait for their completion,
push goals, search for goals, access to O.S. locks, etc. Most of these primitives
need to refer to an explicit goal and need to use some information related to its
state (whether it has been taken, finished, etc.). Hence the need to pass them a
Handler data structure which abstracts information related to the goal at hand.

The current (simplified) list of primitives follows. Note that this is not in-
tended to be a general-purpose concurrency library (such as those available in
Ciao and other Prolog systems —–in fact, very little of what should appear in
such a generic library is here), but a list of primitives suitable for efficiently
implementing at a higher-level different approaches to exploiting independent
and-parallelism. We are, for clarity, adding explicitly the library qualification.

apll:push goal(+Goal,+Det,-Handler) atomically creates a unique handler (an
opaque structure) associated to Goal and publishes Goal in the goal list for
any agent to pick it up. Handler will henceforth be used in any operation
related to Goal. Det describes whether Goal is deterministic or not.

apll:find goal(-Handler) searches for a goal published in some goal list. If one
exists, Handler is unified with a handler for it; the call fails otherwise, and

it will succeed at most once per call. Goal lists are accessed atomically so as
to avoid races when updating them.7

apll:goal available(+Handler) succeeds if the goal associated to Handler has
not been picked up yet, and fails otherwise.

apll:retrieve goal(+Handler,-Goal) unifies Goal and the goal initially associ-
ated to Handler.

apll:goal finished(+Handler) succeeds if the execution state of the goal associ-
ated to Handler is finished, and fails otherwise.

apll:set goal finished(+Handler) sets to finished the execution state of the goal
associated to Handler.

apll:waiting(+Handler) succeeds when the execution state of the agent which
published the goal associated to Handler is suspended and fails otherwise.

Additionally, a set of locking primitives is provided to perform synchronization
and to obtain mutual exclusion at the Prolog level. Agents are synchronized by
using two different locks:8 one which is used to ensure mutual exclusion when
dealing with shared data structures (i.e., when adding new goals to the list),
and another one which is used to synchronize the agent waking up when <&/1 is
waiting for either more work to be available, or the execution of a goal picked
up by some other agent to finish. Both can be accessed with specific (* self)
predicates to specify the ones belonging to the calling agent. Otherwise, they are
accessed through a goal Handler, and then the locks accessed are those belonging
to the agent which created the goal that Handler refers to (i.e., its creator).

apll:suspend suspends the execution of the calling thread.
apll:release(+Handler) releases the agent which created Handler (which could

have suspended itself with the above described predicate).
apll:release some suspended thread selects one out of any suspended threads

and resumes its execution.
apll:enter mutex(+Handler) attempts to enter mutual exclusion by using the

lock of the agent associated to Handler, in order to access its shared vari-
ables.

apll:enter mutex self same as above, with the agent’s own mutex.
apll:exit mutex(+Handler) signals the lock in the realm of the agent associated

to Handler in order to exit mutual exclusion.
apll:exit mutex self same as above with the calling thread.

The following sections will clarify how these primitives are intended to be used.

4.2 High-level Goal Publishing

Based on the previous low-level primitives, we will develop the user-level ones.
We will describe a particular strategy (which is the one used in our experiments)
in which idle agents are suspended and resumed depending on the availability
of work, instead of continuously looking for tasks to perform.
7 Different versions exist of this primitive which can be used while implementing dif-

ferent goal scheduling strategies.
8 Note that both locks are local to the thread, i.e., they are not global locks.

H <&! :-

apll:enter_mutex_self,

(

apll:goal_available(H) ->

apll:retrieve_goal(H,Goal),

apll:exit_mutex_self,

call(Goal)

;

apll:exit_mutex_self,

perform_other_work(H)

).

perform_other_work(H) :-

apll:enter_mutex_self,

(

apll:goal_finished(H) ->

apll:exit_mutex_self

;

find_goal_and_execute,

perform_other_work(H)

).

Fig. 6. Goal join with continuation.

Goal &!> Handler :-

apll:push_goal(Goal,det,Handler),

apll:release_some_suspended_thread.

Fig. 5. Publishing a (deterministic) parallel goal.

A call to &!>/2 (or &>/2 if
the goal is nondeterministic)
publishes the goal in the goal
list managed by the agent,
which makes it available to
other agents. Figure 5 shows the (simplified) Prolog code implementing this
functionality (again, the code shown can be expanded in line but is shown as
a meta-call for clarity). First, a pointer to the goal generated is inserted in the
goal list, and then a signal is broadcast to let suspended agents know that new
work is available. As we will see later, the agent receiving the signal will resume
its execution, pick up the new parallel goal, and start its execution.

After executing Goal &!> H, H will hold the state of Goal, which can be
inspected both by the thread which publishes Goal and by any thread which picks
up Goal to execute it. Therefore, in some sense, H takes the role of the parcall
frame in [16], but it goes to the heap instead of being placed in the environment.
Threads can communicate and synchronize through H in order to consult and
update the state of Goal. This is especially important when executing H <&!.

4.3 Performing Goal Joins

Figure 6 provides code implementing <&!/1 (the deterministic version of <&/1).
First, the thread needs to check whether the goal has been picked up by some
other agent, using apll:goal available/1. If this is not the case, then the pub-
lishing agent executes it locally, and <&!/1 succeeds trivially. Note that mutual
exclusion is requested with apll:enter mutex self/0 in order to avoid incor-
rect concurrent accesses to (shared) data structures related to goal management.

If the goal has been picked up by another agent and its execution has finished,
then <&!/1 will automatically succeed (note that mutual exclusion is entered
again in order to safely check the goal status). In that case, the bindings made
during goal execution are, naturally, available, since we are dealing with a shared-
memory implementation. If the goal execution has not finished yet then the
thread will search for more work in order to keep itself busy, and it will only
suspend if there is definitely no work to perform at the moment. This ensures
that overall efficiency is kept at a reasonable level, as we will see in Section 5.

find_goal_and_execute :-

apll:find_goal(Handler),

apll:exit_mutex_self,

apll:retrieve_goal(Handler,Goal),

call(Goal),

apll:enter_mutex(Handler),

apll:set_goal_finished(Handler),

(

apll:waiting(Handler) ->

apll:release(Handler)

;

true

),

apll:exit_mutex(Handler).

find_goal_and_execute :-

apll:exit_mutex_self,

apll:suspend.

Fig. 7. Finding a parallel goal and executing it.

create_agents(0) :- !.

create_agents(N) :-

N > 0,

conc:start_thread(agent),

N1 is N - 1,

create_agents(N1).

agent :-

apll:enter_mutex_self,

find_goal_and_execute,

agent.

Fig. 8. Creating parallel agents.

We want to note, again, that this process is protected from races when accessing
shared variables by using locks for mutual exclusion and synchronization.

Figure 7 shows the code for find goal and execute/0, which searches for
work in the system. If a goal is found, the executing thread will retrieve and ex-
ecute it, ensure mutual exclusion on the publishing agent data structures (where
the handler associated to the goal resides), mark the goal execution as finished
and resume the execution of the publishing agent, if it was suspended. In that
case, the publishing agent (suspended in eng suspend/0) will check which sit-
uation applies after resumption and act accordingly after recursively invoking
the predicate perform other work/1. If no goal was available for execution,
find goal and execute/0 will suspend waiting for more work to be created.

4.4 Agent Creation

Agents are generated using the create agents/1 predicate (Figure 8) which
launches a number of O.S. threads using the start thread/0 predicate imported
from a generic concurrency library (thus the conc prefix used, again, for clarity).
Each of these threads executes the agent/0 code, which continuously either
executes work in the system and looks for more work when finished, or sleeps
when there is nothing to execute. We assume for simplicity that agent creation is
performed at system startup or just before starting a parallel execution. Higher-
level predicates are however provided in order to manage threads in a more
flexible way. For instance, ensure agents/1 makes sure that a given number of
executing agents is available. In fact, agents can be created lazily, and added
or deleted dynamically as needed, depending on machine load. However, this
interesting issue of thread throttling is beyond the scope of this paper.

4.5 Towards Non-determinism

For simplicity we have left out of the discussion and also of the code the support
for backtracking, which clearly complicates things. We have made significant
progress in our implementation towards supporting backtracking so that, for ex-
ample, the failure-driven top level is used unchanged and memory is recovered
orderly at the end of parallel executions. However, completing the implementa-
tion of backtracking is still the matter of current work.

There are interesting issues both at the design level and also at the imple-
mentation level. An interesting point at the design level is for example deciding
whether backtracking happens when going over &>/2 or <&/1 during backward
execution. Previous work [6, 5] leaned towards the latter, which is also probably
easier to implement; however, there are also reasons to believe that the former
may in the end be more appropriate. For example, in parallelized loops such as:

p([X|Xs]):- b(X) &> Hb, p(Xs), Hb <&.

spawning b(X) and keeping the recursion local and not the other way around
is important because task creation is the real bottleneck. However, the solution
order is not preserved if backtracking occurs at <&/1, but it is if backtracking
occurs at &>/2. Note that in such loops the loss of last call optimization (LCO)
is only of relative importance, since if there are several solutions to either b/1 or
p/1, LCO could not be applied anyway, and a simple program transformation
(to store handlers in an accumulating parameter) can recover it if necessary.

At the implementation level, avoiding the “trapped goal” and “garbage slots”
problems [17] is an issue to solve. One approach under consideration to this end
is to move trapped stack segments (sequential sections of execution) to the top
of the stack set in case backtracking is needed from a trapped section. Sections
which become empty can be later compacted to avoid garbage slots. In order to
express this at the Prolog level, we foresee the need of additional primitives, still
the subject of further work, to manage stack segments as first-class citizens.

Another fundamental idea in the approach that we are exploring is not to
create markers explicitly, but use instead, for the same purpose, standard choice
points built by creating alternatives (using alternative clauses) directly in the
control code (in Prolog) that implements backtracking.

5 Experimental Results

We now present performance results obtained after executing a selection of well-
known benchmarks with independent and-parallelism. As mentioned before, we
have implemented the proposed approach in Ciao [3], an efficient system designed
with extension capabilities in mind. All results were obtained by averaging ten
runs on a state-of-the-art multiprocessor, a Sun Fire T2000 with 8 cores and 8
Gb of memory. While each core is capable of running 4 threads in parallel, and in
theory up to 32 threads could run simultaneously on this machine, we only show
speedups up to 8 agents. Our experiments (see the later comments related to
Figure 10) show that speedups with more than 8 threads stop being linear even

AIAKL Simplified AKL abstract in-
terpreter.

Ann Annotator for and-paralle-
lism.

Boyer Simplified version of the
Boyer-Moore theorem pro-
ver.

Deriv Symbolic derivation.
FFT Fast Fourier transform.
Fibonacci Doubly recursive Fibonacci.
FibFun Functional Fibonacci.

Hamming Calculates Hamming num-
bers.

Hanoi Solves Hanoi puzzle.
MergeSort Sorts a 10000 element list.
MMatrix Multiplies two 50×50 matri-

ces.
Palindrome Generates a palindrome of

214 elements.
QuickSort Sorts a 10000 element list.
Takeuchi Computes Takeuchi.
WMS2 A work scheduling program.

Table 1. Benchmarks for restricted and unrestricted IAP.

for completely independent computations (i.e., 32 totally independent threads
do not really speed up as if 32 independent processors were available), as threads
in the same core compete for shared resources such as integer pipelines. Thus,
beyond 8 agents, it is hard to know whether reduced speedups are due to our
parallelization and implementation or to limitations of the machine.

Although most of the benchmarks we use are quite well-known, Table 1 pro-
vides a brief description. Speedups appear in Tables 2 (which contains only
programs parallelized using restricted [N]SIAP, as in Figure 3) and 3 (which ad-
ditionally contains unrestricted IAP programs, as in Figure 4). The speedups are
with respect to the sequential speed on one processor of the original, unparal-
lelized benchmark. Therefore, the columns tagged 1 correspond to the slowdown
coming from executing a parallel program in a single processor. Benchmarks with
a GC suffix were executed with granularity control with a suitably chosen thresh-
old and benchmarks with a DL suffix use difference lists and require NSIAP for
parallelization. All the benchmarks in the tables were automatically parallelized
using CiaoPP [18] and the annotation algorithms described in [9] (TakeuchiGC
needed however some unfolding in order to uncover and allow exploiting more
parallelism using the new operators, as discussed later).

It can be deduced from the results that in several benchmarks the natural
parallelizations produce small granularity. This, understandably, impacts our
implementation since a sizable part of it is written in Prolog, which implies
additional overhead in the preparation and execution of parallel goals. Thus,
it is not possible to perform a fair comparison of the speedups obtained with
respect to previous (lower-level) and-parallel systems. The overhead implied by
the proposed approach produces comparatively low performance on a single pro-
cessor and in some cases with very fine granularity, such as Boyer and Takeuchi,
speedups are shallow (below 2×) even over 8 processors. In these examples execu-
tion is dominated by the sequential code of the scheduler and agent management
in Prolog. However, even in these cases, setting a granularity threshold based on
a measure of the input argument size [21] much better results can be obtained.
Figure 11 depicts graphically the impact of granularity control in some bench-
marks. Annotating the parallelized program to take into account granularity
measures based on the size of the input arguments, and finding out the optimal
threshold for a given platform, can be done automatically in many cases [21, 23].

Benchmark
Number of processors

Seq. 1 2 3 4 5 6 7 8

AIAKL 1.00 0.97 1.77 1.66 1.67 1.67 1.67 1.67 1.67

Ann 1.00 0.98 1.86 2.65 3.37 4.07 4.65 5.22 5.90

Boyer 1.00 0.32 0.64 0.95 1.21 1.32 1.47 1.57 1.64

BoyerGC 1.00 0.90 1.74 2.57 3.15 3.85 4.39 4.78 5.20

Deriv 1.00 0.32 0.61 0.86 1.09 1.15 1.30 1.55 1.75

DerivGC 1.00 0.91 1.63 2.37 3.05 3.69 4.21 4.79 5.39

FFT 1.00 0.61 1.08 1.30 1.63 1.65 1.67 1.68 1.70

FFTGC 1.00 0.98 1.76 2.14 2.71 2.82 2.99 3.08 3.37

Fibonacci 1.00 0.30 0.60 0.94 1.25 1.58 1.86 2.22 2.50

FibonacciGC 1.00 0.99 1.95 2.89 3.84 4.78 5.71 6.63 7.57

Hamming 1.00 0.93 1.13 1.52 1.52 1.52 1.52 1.52 1.52

Hanoi 1.00 0.67 1.31 1.82 2.32 2.75 3.20 3.70 4.07

HanoiDL 1.00 0.47 0.98 1.51 2.19 2.62 3.06 3.54 3.95

HanoiGC 1.00 0.89 1.72 2.43 3.32 3.77 4.17 4.41 4.67

MergeSort 1.00 0.79 1.47 2.12 2.71 3.01 3.30 3.56 3.71

MergeSortGC 1.00 0.83 1.52 2.23 2.79 3.10 3.43 3.67 3.95

MMatrix 1.00 0.91 1.74 2.55 3.32 4.18 4.83 5.55 6.28

Palindrome 1.00 0.44 0.77 1.09 1.40 1.61 1.82 2.10 2.23

PalindromeGC 1.00 0.94 1.75 2.37 2.97 3.30 3.62 4.13 4.46

QuickSort 1.00 0.75 1.42 1.98 2.44 2.84 3.07 3.37 3.55

QuickSortDL 1.00 0.71 1.36 1.95 2.26 2.76 2.96 3.18 3.32

QuickSortGC 1.00 0.94 1.78 2.31 2.87 3.19 3.46 3.67 3.75

Takeuchi 1.00 0.23 0.46 0.68 0.91 1.12 1.32 1.49 1.72

TakeuchiGC 1.00 0.88 1.61 2.16 2.62 2.63 2.63 2.63 2.63

Table 2. Speedups for restricted IAP.

Benchmark Parallelism
Number of processors

Seq. 1 2 3 4 5 6 7 8

FFTGC
Restricted 1.00 0.98 1.76 2.14 2.71 2.82 2.99 3.08 3.37

Unrestricted 1.00 0.98 1.82 2.31 3.01 3.12 3.26 3.39 3.63

FibFunGC
Restricted 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Unrestricted 1.00 0.99 1.95 2.89 3.84 4.78 5.71 6.63 7.57

Hamming
Restricted 1.00 0.93 1.13 1.52 1.52 1.52 1.52 1.52 1.52

Unrestricted 1.00 0.93 1.15 1.64 1.64 1.64 1.64 1.64 1.64

TakeuchiGC
Restricted 1.00 0.88 1.61 2.16 2.62 2.63 2.63 2.63 2.63

Unrestricted 1.00 0.88 1.62 2.39 3.33 4.04 4.47 5.19 5.72

WMS2
Restricted 1.00 0.99 1.01 1.01 1.01 1.01 1.01 1.01 1.01

Unrestricted 1.00 0.99 1.10 1.10 1.10 1.10 1.10 1.10 1.10

Table 3. Speedups for both restricted and unrestricted IAP.

Table 3 shows a different comparison: some programs have traditionally been
executed under IAP using the restricted (nested fork-join) annotations, and can
be annotated for parallelism using the more flexible &>/2 and <&/1 operators,
as in Figures 3 and 4. In some cases those programs obtain little additional

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

Takeuchi, Restricted version
Takeuchi, Unrestricted version

Fig. 9. Restricted and unrestricted
IAP versions of Takeuchi.

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35

Fibonacci
Independent computation with integers

Fig. 10. Fibonacci with gran. control
vs. maximum speedup in real machine.

speedup, but, interestingly, in other cases the gains are very relevant. An inter-
esting example is the Takeuchi function which underwent a manual (but me-
chanical) transformation involving an unfolding step, which produced a clause
where non-nested fork-join [15] can be taken advantage of, producing a much
better speedup. This can be clearly seen in Figure 9. Note that the speedup
curve did not seem to stabilize even when the 8 processor mark was reached.

The FibFun benchmark is also an interesting case. A definition of Fibonacci
was written in Ciao using the functional package [8] which implements a rich func-
tional syntactic layer via compilation to the logic programming kernel. The auto-
matic translation into predicates does not produce however the same Fibonacci
program that programmers usually write (input parameters are calculated right
before making the recursive calls), and it turns out that it cannot be directly par-
allelized using existing order-preserving annotators and restricted IAP. On the
other hand it can be automatically parallelized (including the translation from
functional to logic programming notation) using the unrestricted operators.

Despite our observation that the T2000 cannot produce linear speedups be-
yond 8 processors even for independent computations, we wanted to try at least
a Prolog example using as many threads as natively available in the machine,
and compare its speedup with that of a C program generating completely in-
dependent computations. Such a C program provides us with a practical upper
bound on the attainable speedups. The results are depicted in Figure 10 which
shows both the ideally parallel C program and a parallelized Fibonacci running
on our implementation. Interestingly, the speedup obtained is only marginally
worse than the best possible one. In both curves it is possible to observe a saw-
tooth shape, presumably caused by tasks filling in a row of units in all cores and
starting to use up additional thread units in other cores, which happens at 1×8,
2×8, and 3×8 threads.

6 Conclusions

We have presented a new implementation approach for exploiting and-parallelism
in logic programs with the objectives of simpler machinery and more flexibility.
The approach is based on raising the implementation of some components to the

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

Boyer-Moore
Boyer-Moore with granularity control

(a) Boyer-Moore

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

Derivation
Derivation with granularity control

(b) Derivation

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

Fast-Fourier Transform
Fast-Fourier Transform with granularity control

(c) Fast-Fourier Transform

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

Fibonacci
Fibonacci with granularity control

(d) Fibonacci

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

Hanoi
Hanoi with difference lists

Hanoi with granularity control

(e) Hanoi

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

QuickSort
QuickSort with difference lists

QuickSort with granularity control

(f) QuickSort

Fig. 11. Speedups for some selected benchmarks with and without granularity control.

source language level by using more basic high-level primitives than the fork-join
operator and keeping only some relatively simple operations at a lower level. Our
preliminary experimental results show that reasonable speedups are achievable
with this approach, although the additional overhead, at least in the current
implementation, makes it necessary to use granularity control in many cases in
order to obtain good results. In addition, recent compilation technology and im-
plementation advances [7, 25] provide hope that it will eventually be possible to
recover a significant part of the efficiency lost due to the level at which parallel
execution is expressed. Finally, we have observed that the availability of unre-
stricted parallelism contributes in practice to better observed speedups. We are

currently working on improving the implementation both in terms of efficiency
and of improved support for backtracking. We have also developed simultane-
ously specific parallelizers for this approach, which can take advantage of the
unrestricted nature of the parallelism which it can support [9].

Acknowledgments: this work was funded in part by the IST program of the Eu-
ropean Commission, FP6 FET project IST-15905 MOBIUS, by the Ministry of
Education and Science (MEC) project TIN2005-09207-C03 MERIT-COMVERS
and by the Madrid Regional Government CAM project S-0505/TIC/0407 PROME-
SAS. Manuel Hermenegildo and Amadeo Casas were also funded in part by the
Prince of Asturias Chair in Information Science and Technology at UNM.

References

1. Hassan Ait-Kaci. Warren’s Abstract Machine, A Tutorial Reconstruction. MIT
Press, 1991.

2. K. A. M. Ali and R. Karlsson. The Muse Or-Parallel Prolog Model and its Perfor-
mance. In 1990 North American Conference on Logic Programming, pages 757–776.
MIT Press, October 1990.

3. F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-Garćıa, and G. Puebla
(Eds.). The Ciao System. Ref. Manual (v1.13). Technical report, C. S. School
(UPM), 2006. Available at http://www.ciaohome.org.

4. F. W. Burton and M. R. Sleep. Executing functional programs on a virtual tree
of processors. In Functional Programming Languages and Computer Architecture,
pages 187–195, October 1981.

5. D. Cabeza. An Extensible, Global Analysis Friendly Logic Programming Sys-
tem. PhD thesis, Universidad Politécnica de Madrid (UPM), Facultad Informatica
UPM, 28660-Boadilla del Monte, Madrid-Spain, August 2004.

6. D. Cabeza and M. Hermenegildo. Implementing Distributed Concurrent Constraint
Execution in the CIAO System. In Proc. of the AGP’96 Joint Conference on
Declarative Programming, pages 67–78, July 1996.

7. M. Carro, J. Morales, H.L. Muller, G. Puebla, and M. Hermenegildo. High-Level
Languages for Small Devices: A Case Study. In Krisztian Flautner and Taewhan
Kim, editors, Compilers, Architecture, and Synthesis for Embedded Systems, pages
271–281. ACM Press / Sheridan, October 2006.

8. A. Casas, D. Cabeza, and M. Hermenegildo. A Syntactic Approach to Combin-
ing Functional Notation, Lazy Evaluation and Higher-Order in LP Systems. In
FLOPS’06, Fuji Susono (Japan), April 2006.

9. A. Casas, M. Carro, and M. Hermenegildo. Annotation Algorithms for Unre-
stricted Independent And-Parallelism in Logic Programs. In 17th International
Symposium on Logic-based Program Synthesis and Transformation (LOPSTR’07),
The Technical University of Denmark, August 2007. Springer-Verlag.

10. M. Garćıa de la Banda, M. Hermenegildo, and K. Marriott. Independence in
CLP Languages. ACM Transactions on Programming Languages and Systems,
22(2):269–339, March 2000.

11. G. Gupta, E. Pontelli, K. Ali, M. Carlsson, and M. Hermenegildo. Parallel Execu-
tion of Prolog Programs: a Survey. ACM Transactions on Programming Languages
and Systems, 23(4):472–602, July 2001.

12. R. H. Halstead. MultiLisp: A Language for Concurrent Symbolic Computation.
ACM TOPLAS, 7(4):501–538, October 1985.

13. M. Hermenegildo. An Abstract Machine for Restricted AND-parallel Execution
of Logic Programs. In Third International Conference on Logic Programming,
number 225 in Lecture Notes in Computer Science, pages 25–40. Imperial College,
Springer-Verlag, July 1986.

14. M. Hermenegildo. Parallelizing Irregular and Pointer-Based Computations Auto-
matically: Perspectives from Logic and Constraint Programming. Parallel Com-
puting, 26(13–14):1685–1708, December 2000.

15. M. Hermenegildo and M. Carro. Relating Data–Parallelism and (And–) Parallelism
in Logic Programs. The Computer Languages Journal, 22(2/3):143–163, July 1996.

16. M. Hermenegildo and K. Greene. The &-Prolog System: Exploiting Independent
And-Parallelism. New Generation Computing, 9(3,4):233–257, 1991.

17. M. Hermenegildo and R. I. Nasr. Efficient Management of Backtracking in AND-
parallelism. In Third International Conference on Logic Programming, number 225
in LNCS, pages 40–55. Imperial College, Springer-Verlag, July 1986.

18. M. Hermenegildo, G. Puebla, F. Bueno, and P. López Garćıa. Integrated Program
Debugging, Verification, and Optimization Using Abstract Interpretation (and The
Ciao System Preprocessor). Science of Computer Programming, 58(1–2):115–140,
October 2005.

19. M. Hermenegildo and F. Rossi. Strict and Non-Strict Independent And-Parallelism
in Logic Programs: Correctness, Efficiency, and Compile-Time Conditions. Journal
of Logic Programming, 22(1):1–45, 1995.

20. Sverker Janson. AKL. A Multiparadigm Programming Language. PhD thesis,
Uppsala University, 1994.

21. P. López-Garćıa, M. Hermenegildo, and S. K. Debray. A Methodology for Granu-
larity Based Control of Parallelism in Logic Programs. Journal of Symbolic Com-
putation, Special Issue on Parallel Symbolic Computation, 21(4–6):715–734, 1996.

22. E. Lusk et al. The Aurora Or-Parallel Prolog System. New Generation Computing,
7(2,3), 1990.

23. E. Mera, P. López-Garćıa, G. Puebla, M. Carro, and M. Hermenegildo. Combining
Static Analysis and Profiling for Estimating Execution Times. In Ninth Interna-
tional Symposium on Practical Aspects of Declarative Languages, number 4354 in
LNCS, pages 140–154. Springer-Verlag, January 2007.

24. E. Pontelli, G. Gupta, and M. Hermenegildo. &ACE: A High-Performance Parallel
Prolog System. In International Parallel Processing Symposium, pages 564–572.
IEEE Computer Society Technical Committee on Parallel Processing, IEEE Com-
puter Society, April 1995.

25. Vı́tor Santos-Costa. Optimising Bytecode Emulation for Prolog. In International
Conference on Principles and Practice of Declarative Programming (PPDP’99),
volume 1702 of LNCS, pages 261–277. Springer-Verlag, 1999.

26. Vı́tor Manuel de Morais Santos-Costa. Compile-Time Analysis for the Parallel Ex-
ecution of Logic Programs in Andorra-I. PhD thesis, University of Bristol, August
1993.

27. K. Shen. Overview of DASWAM: Exploitation of Dependent And-parallelism.
Journal of Logic Programming, 29(1–3):245–293, November 1996.

28. K. Shen and M. Hermenegildo. Flexible Scheduling for Non-Deterministic, And-
parallel Execution of Logic Programs. In Proceedings of EuroPar’96, number 1124
in LNCS, pages 635–640. Springer-Verlag, August 1996.

29. D.H.D. Warren. An Abstract Prolog Instruction Set. TR 309, SRI International,
1983.

