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Abstract. The relationship between abstract interpretation and partial de-
duction has received considerable attention and (partial) integrations have
been proposed starting from both the partial deduction and abstract interpre-
tation perspectives. In this work we present what we argue is the first fully
described generic algorithm for efficient and precise integration of abstract in-
terpretation and partial deduction. Taking as starting point state-of-the-art
algorithms for context-sensitive, polyvariant abstract interpretation and (ab-
stract) partial deduction, we present an algorithm which combines the best
of both worlds. Key ingredients include the accurate success propagation in-
herent to abstract interpretation and the powerful program transformations
achievable by partial deduction. In our algorithm, the calls which appear in
the analysis graph are not analyzed w.r.t. the original definition of the pro-
cedure but w.r.t. specialized definitions of these procedures. Such specialized
definitions are obtained by applying both unfolding and abstract executability.
Our framework is parametric w.r.t. different control strategies and abstract do-
mains. Different combinations of such parameters correspond to existing algo-
rithms for program analysis and specialization. Simultaneously, our approach
opens the door to the efficient computation of strictly more precise results than
those achievable by each of the individual techniques. The algorithm is now
one of the key components of the CiaoPP analysis and specialization system.

1 Introduction and Motivation

The relationship between abstract interpretation [3] and partial evaluation [11] has
received considerable attention (see for example [5,7,2,17,10,12,21,24,6, 15,4, 23,
13] and their references). In order to motivate and illustrate our proposal for an inte-
gration of abstract interpretation and partial evaluation, we use the running example
of Fig. 1. It is a simple Ciao program which uses Peano’s arithmetic.! We use the
Ciao assertion language in order to provide precise descriptions on the initial call
patterns. In our case, the entry declaration is used to inform that all calls to the only
exported predicate (i.e., main/2) will always be of the form <« main(s(s(s(L))),R)
with L ground and R a variable. The predicate main/2 performs two calls to predicate
formula/2, which contains mode tests ground (X) and var (W) on its input arguments.
A call formula(X,W) returns W = (X — 2) x 2. Predicate two/1 returns the natural
number 2 in Peano’s arithmetic. A call minus(A,B,C) returns C = B — A. However,
if the result becomes a negative number, C' is left as a free variable. This indicates
that the result is not valid. In turn, a call twice(A,B) returns B = A x 2. Prior to
computing the result, this predicate checks whether A is valid, i.e., not a variable,
and simply returns a variable otherwise.

! Rules are written with a unique subscript attached to the head atom (the rule number),
and a dual subscript (rule number, body position) attached to each body literal. We
sometimes use this notation for denoting calls to atoms as well.



:- module(_, [main/1], [assertions]).
;- entry main(s(s(s(L))),R) : (ground(L),var(R)).
maing (X,X2) :- formula;;(X,X1), formula;o(X1,X2).
formulas (X,W) : - grounds i (X),vars s (W) ,twos 3(T) ,minuss 4 (T,X,X2) ,twices 5 (X2,W).
twoz (s(s(0))).
minus4 (0,X,X).
minuss (s(X),s(Y),R):- minuss;(X,Y,R).
minusg (s(X),0,R).
twicer (X,.Y):- vary (X).
twiceg(X,Y):~ grounds(X), tws2(X,Y).
twg (0,0).
twig (s(X),s(s(NX))) :- twio,1 (X,NX).
Fig. 1. Running Example

By observing the behaviour of the program it can be seen that for initial queries
satisfying the entry declaration, all calls to the tests grounds ; (X) and vars o (W) will
definitely succeed, even if we do not know the concrete values of variable L at compile
time. Also, the calls to groundsg ; (X) will succeed, while the calls to vary ; (X) will fail.
This shows the benefits of (1) ezploiting abstract information in order to abstractly ex-
ecute certain atoms, which in turn may allow unfolding of other atoms. However, the
use of an abstract domain which captures groundness and freeness information will
in general not be sufficient to determine that in the second execution of formula/2
the tests grounds ; (X) and vars o (W) will also succeed. The reason is that, on success
of minusy 4 (T,X,X2), X2 cannot be guaranteed to be ground since minusg/3 succeeds
with a free variable on its third argument position. It can be observed, however,
that for all calls to minus/3 in executions described by the entry declaration, such
third clause for minus/3 is useless. It will never contribute to a success of minus/3
since such predicate is always called with a value greater than zero on its second
argument. Unfolding can make this explicit by fully unfolding calls to minus/3 since
they are sufficiently instantiated (and as a result the “dangerous” third clause is dis-
regarded). It allows concluding that in our particular context, all calls to minus/3
succeed with a ground third argument. This shows the importance of (2) performing
unfolding steps in order to prune away useless branches, which will result in tmproved
success information. By the time execution reaches twiceg s (X2,W), we hopefully
know that X2 is ground. In order to determine that, upon success of twiceg 5 (X2,W)
(and thus on success of formula; ;(X,W)), W is ground, we need to perform a fix-
point computation. Since, for example, the success substitution for formula, ; (X,X1)
is indeed the call substitution for formula; »(X1,X2), the success of the second test
grounds 1 (X) (i.e., the one reachable from formula; 5 (X1,X2)) cannot be established
unless we propagate success substitutions. This illustrates the importance of (3) prop-
agating (abstract) success information, performing fixpoint computations when needed,
which simultaneously will result in an improved unfolding. Finally, whenever we call
formula(X,W), W is a variable, a property which cannot be captured if we restrict
ourselves to downwards-closed domains. This indicates (4) the usefulness of having
information on non downwards-closed properties.

Throughout the paper we show that the framework we propose is able to elimi-
nate all calls to mode tests ground/1 and var/1, and predicates two/1 and minus/3
are both fully unfolded and no longer appear in the residual code. We have used
sharing—freeness as abstract domain instead of one based on, say regular types, for
two reasons.? First, to illustrate how non-downwards closed information, including

2 The values for the rest of parameters are: AGeneralize and AUnfold rules based on home-
omorphic embedding [14], and the identity function as Widen_Call function.



freeness and definite independence, can be correctly exploited by our algorithm in or-
der to optimize the program, and second, to show how unfolding can be of great use in
order to improve the accuracy of analyses apparently unrelated to partial deduction,
such as the classical sharing—freeness.

Ezample 1. The results obtained by CiaoPP—which implements abstract interpre-
tation with specialized definitions—are both the following specialized code and an
accurate analysis for such program (rules are renamed using the prefix sp).

sp-main; (s(s(s(0))),0).

spmainy (s(s(s(s(B)))),A) :- sp_tws;1(B,C), sp_-formulas>(C,A).
sp-tw2(0,0) .

sp-twz(s(4),s(s(B))) :- sp-tws,(A,B).

sp_formula, (0,s(s(s(s(0))))).
sp-formulas(s(A),s(s(s(s(s(s(B))))))) :- sp-tws1(A,B).

In this case, the success information for sp_main(X,X2) guarantees that X2 is definitely
ground on success. Note that this is equivalent to proving VX > 3, main(X, X2) —
X2 > 0. Furthermore, our system is able to get to that conclusion even if the entry
only informs about X being any possible ground term and X2 a free variable.

The above results cannot be achieved unless all four points mentioned before are avail-
able in a program analysis/specialization system. For example, if we use traditional
partial deduction [19,8] (PD) with the corresponding Generalize and Unfold rules
followed by abstract interpretation and abstract specialization as described in [22, 23]
we only obtain a comparable program after four iterations of the: “PD + abstract
interpretation + abstract specialization” cycle. If we keep on adding more calls to
formula, every time more iterations are necessary to obtain results comparable to
ours. This shows the importance of achieving an algorithm which is able to interleave
PD, with abstract interpretation, extended with abstract specialization, in order to
communicate the accuracy gains achieved from one to the other as soon as possible.
In any case, iterating over “PD + analysis” is not a good idea from the efficiency
point of view. Also, sometimes partially evaluating a partially evaluated program can
degrade the quality of the residual program.

The remaining of the paper is organized as follows. Sect. 2 recalls some prelim-
inary concepts. In Sect. 3, we present abstract unfolding which already integrates
abstract executability. Section 4 introduces our notion of specialized definition and
embeds it within an abstract partial deducer. In Sect. 5, we propose our scheme for
abstract interpretation with specialized definitions. Section 6 discusses how use in-
terpret the results or our algorithm. Finally, Sect. 7 compares to related work and
Sect. 8 concludes.

2 Preliminaries

Very briefly (see for example [18] for details), an atom A is a syntactic construction
of the form p(ty,...,t,), where p/n, with n > 0, is a predicate symbol and ¢1,...,t,
are terms. A clause is of the form H < B where its head H is an atom and its body
B is a conjunction of atoms. A definite program is a finite set of clauses. A goal (or
query) is a conjunction of atoms.

Let G be a goal of the form «— Ay,..., Ag,..., A, k > 1. The concept of com-
putation rule, denoted by R, is used to select an atom within a goal for its evalua-
tion. The operational semantics of definite programs is based on derivations [18]. Let
C =H « By,...,B,, be arenamed apart clause in P such that 30 = mgu(Ag, H).
Then «— 6(Ay,...,Ar—1,B1,...,Bm, Agt1,..., Ag) is derived from G and C via R.



As customary, given a program P and a goal G, an SLD derivation for P U {G} con-
sists of a possibly infinite sequence G = G, G1, Ga, . .. of goals, a sequence C1,Cs, . ..
of properly renamed apart clauses of P, and a sequence 61,05, ... of mgus such that
each G;41 is derived from G; and C;y; using 6,41. A derivation step can be non-
deterministic when Ap unifies with several clauses in P, giving rise to several possible
SLD derivations for a given goal. Such SLD derivations can be organized in SLD trees.
A finite derivation G = Gy, G1,Go, ..., G, is called successful if G,, is empty. In that
case 0 = 01605 ...6, is called the computed answer for goal G. Such a derivation is
called failed if it is not possible to perform a derivation step with G,,. Given an atom
A, an unfolding rule [19, 8] computes a set of finite SLD derivations Dy, ..., D, (ie.,
a possibly incomplete SLD tree) of the form D, = A, ..., G; with computed answer
substitution 6; for ¢ = 1,...,n whose associated resultants (or residual rules) are
0:(A) — G;.

The following standard operations are used in the paper to handle keyed-tables:
Create_Table(T) initializes a table T'. Insert(T, Key, Info) adds Info associated to Key
to T and deletes previous information associated to Key, if any. IsIn(T, Key) returns
true iff Key is currently stored in the table. Finally, Look_up(T, Key) returns the
information associated to Key in T. For simplicity, we sometimes consider tables as
sets and we use the notation (Key ~ Info) € T to denote that there is an entry in
the table T with the corresponding Key and associated Info.

2.1 Abstract Interpretation

Abstract interpretation [3] provides a general formal framework for computing safe
approximations of programs behaviour. Programs are interpreted using values in an
abstract domain (D,,) instead of the concrete domain (D). The set of all possible
abstract values which represents D, is usually a complete lattice or cpo which is
ascending chain finite. Values in the abstract domain (D,,C) and sets of values in
the concrete domain (2P, C) are related via a pair of monotonic mappings {«,7): the
abstraction function o : 2P — D, which assigns to each (possibly infinite) set of
concrete values an abstract value, and the concretization function v : D, — 2P which
assigns to each abstract value the (possibly infinite) set of concrete values it represents.
The operations on the abstract domain D, that we will use in our algorithms are:

— Arestrict(\, E) performs the abstract restriction (or projection) of a substitution

A to the set of variables in the expression E, denoted vars(FE);

Aextend (A, E) extends the substitution A to the variables in the set vars(E);

— Aunif(ty, t2, A) obtains the description which results from adding the abstraction
of the unification ¢t; = t5 to the substitution A;

— Aconj(A1, \2) performs the abstract conjunction (M) of two substitutions;

Alub(A1, A2) performs the abstract disjunction (L) of two substitutions.

In our algorithms we also use Atranslate(A : CP, H <« B) which adapts and projects
the information in an abstract atom A : C'P to the variables in the clause C = H + B.
This operation can be defined in terms of the operations above as: Atranslate(A :
CP,H «— B) = Arestrict(Aunif(A, H, Aextend(C'P,C)), C). Finally, the most general
substitution is represented as T, and the least general (empty) substitution as L.

3 Unfolding with Abstract Substitutions

We now present an extension of SLD semantics which exploits abstract information.
This will provide the means to overcome difficulties (1) and (2) introduced in Section 1.
The extended semantics handles abstract goals of the form G : C'P, i.e., a concrete goal
G comes equipped with an abstract substitution C'P which is defined over vars(G)
and provides additional information on the context in which the goal will be executed
at run-time. The first rule corresponds to a derivation step.



Definition 1 (derivation step). Let G : CP be an abstract goal where G =«
Ai1,...,AR,..., Ag. Let R be a computation rule and let R(G) =Ag. Let C = H «—
Bi,..., By, be a renamed apart clause in P. Then the abstract goal G’ : CP' is derived
from G : CP and C via R if 30 = mgu(Ag,H) AN CP, # L, where:
CP, = Aunif(Ag, HO, Aextend(C P, C6))
G' = G(Al,.. .,ARfl,Bl, .. .,Bm7AR+1, .. .,Ak)
CP' = Arestrict(CP,,vars(G"))

An important difference between the above definition and the standard derivation
step is that the use of abstract (call) substitutions allows imposing further conditions
for performing derivation steps, in particular, C'P, cannot be L. This is because if
CP # 1 and CP, = L then the head of the clause C' is incompatible with C'P and
the unification Ar = H will definitely fail at run-time. Thus, abstract information
allows us to remove useless clauses from the residual program. This produces more
efficient resultants and increases the accuracy of analysis for the residual code.

Ezample 2. Consider the abstract atom formula(s*(X),X2) : {X/G,X2/V}, which ap-
pears in the analysis of our running example (c.f. Fig. 2). We abbreviate as s™(X)
the successive application of n functors s to variable X. The notation X/G (resp. X/V)
indicates that variable X is ground (resp. a free variable). After applying a derivation
step, we obtain the derived abstract goal:

ground(s*(X)), var(X2), two(T), minus(T, s*(X), X2'), twice(X2',X2) : {X/G,X2/V,T/V,X2'/V}
where the abstract description has been extended with updated information about
the freeness of the newly introduced variables. In particular, both T and X2’ are V.

The second rule we present makes use of the availability of abstract substitutions
to perform abstract executability [22] during resolution. This allows replacing some
atoms with simpler ones, and, in particular, with the predefined atoms true and false,
provided certain conditions hold. We assume the existence of a predefined abstract
exzecutability table which contains entries of the form T : CP ~» T’ which specify
the behaviour of external procedures: builtins, libraries, and other user modules. For
instance, for predicate ground contains the information ground(X) : {X/G} ~ true.
For var, it contains var(X) : {X/V} ~ true.?

Definition 2 (abstract execution). Let G : CP be an abstract goal where G =«
Ay, .., AR, ..., Ak. Let R be a computation rule and let R(G) =Ag. Let (T : CPr ~
T’) be a renamed apart entry in the abstract exzecutability table. Then, the goal G' : CP’
is abstractly executed from G : CP and (T : CPr ~ T') via R if Agp = 6(T) and
CP4,CCP h
A= T Hhere G'=A1,...,Ap—1,0(T"), Art1,- .., Ay
CP' = Arestrict(CP,G")
CPy = Atranslate(Ag : CP,T « true)

Ezample 3. From the derived goal in Ex. 2, we can apply twice the above rule to
abstractly execute the calls to ground and var and obtain:

two(T), minus(T, s*(X),X2'), twice(X2',X2) : {X/G,X2/V,T/V,X2'/V}
since both calls succeed by using the abstract executability table described above and
the information in the abstract substitution.

Definition 3 (AUnfold). Let A : CP be an abstract atom and P a program. We
define AUnfold(P,A : CP) as the set of resultants associated to a finite (possibly
incomplete) SLD tree computed by applying the rules of Definitions 1 and 2to A : CP.

3 In CiaoPP we use assertions to express such information in a domain-independent manner.



The so-called local control of PD ensures the termination of the above process. For this
purpose, the unfolding rule must incorporate some mechanism to stop the construction
of SLD derivations (we refer to [14] for details).

Ezample 4. Consider an unfolding rule A Unfold based on homeomorphic embedding
[14] to ensure termination and the initial goal in Ex. 2. The derivation continuing
from Ex. 3 performs several additional derivation steps and abstract executions and
branches (we do not include them due to space limitations and also because it is well
understood). The following resultants are obtained from the resulting tree:

formula(s(s(s(s(0),s(s(s(s(0))))).
formula(s(s(s(s(s(A))))),s(s(s(s(s(s(B))))))) :- tw(A,B)

which will later be filtered and renamed resulting in rules 4 and 5 of Ex. 1.

It is important to note that SLD resolution with abstract substitutions is not restricted
to the left-to-right computation rule. However, it is well-known that non-leftmost
derivation steps can produce incorrect results if the goal contains impure atoms to
the left of Ar. More details can be found, e.g., in [16]. Also, abstract execution of
non-leftmost atoms can be incorrect if the abstract domain used captures properties
which are not downwards closed. A simple solution is to only allow leftmost abstract
execution for non-downwards closed domains (and non-leftmost for derivation steps).

4 Specialized Definitions

We now define an Abstract Partial Deduction (APD) algorithm whose execution can
later be interleaved in a seamless way with a state-of-the-art abstract interpreter. For
this it is essential that the APD process can generate residual code online. Thus, we
need to produce a residual, specialized definition for a call pattern as soon as we finish
processing it. This will make it possible for the analysis algorithm to have access to
the improved definition. This may increase the accuracy of the analyzer and addresses
the difficulty (2) described in Sect. 1.

Typically, PD is presented as an iterative process in which partial evaluations are
computed for the new generated atoms until they cover all calls which can appear
in the execution of the residual program. This is formally known as the closedness
condition of PD [19]. In order to ensure termination of this global process, the so-
called global control defines a AGeneralize operator (see [14]) which guarantees that
the number of SLD trees computed is kept finite, i.e., it ensures the finiteness of the
set of atoms for which partial evaluation is produced. However, the residual program
is not generated until such iterative process terminates.

Algorithm 1 presents an APD algorithm. The main difference with standard algo-
rithms is that the resultants computed by AUnfold (1.26) are added to the program
during execution of the algorithm (L30) rather than in a later code generation phase.
In order to avoid conflicts among the new clauses and the original ones, clauses for
specialized definitions are renamed with a fresh predicate name (L29) prior to adding
them to the program (L30). The algorithm uses two global data structures. The spe-
cialization table contains entries of the form A : CP~+ A’. The atom A’ provides the
link with the clauses of the specialized definition for A : C'P. The generalization table
stores the results of the AGeneralize function and contains entries A : CP ~ A’ : CP
where A’ : CP' is a generalization of A : CP.

Computation is initiated by procedure PARTIAL_EVALUATION_WITH_SPECS_DEFS
(L1-4) which initializes the tables and calls PROCESS_CALL_PATTERN for each ab-
stract atom A; : C'P; in the initial set to be partially evaluated. The task of PRO-
CESS_CALL_PATTERN is, if the atom has not been processed yet (L6), to compute a



Algorithm 1 Abstract Partial Deduction with Specialized Definitions

1: procedure PARTIAL_EVALUATION_WITH_SPEC_DEFS(P, {A; : CPy,..., A, : CP.})
Create_Table(GT); Create_Table(ST)
for j =1..n do
PROCESS_CALL_PATTERN(A; : C'P;)

2
3
4
5: procedure PROCESS_CALL_PATTERN(A : C'P)
6: if not IsIn(G7, A : CP) then
7
8
9

(A1, A}) < SPECIALIZED _DEFINITION(P, A : CP)
A1 : CPy «— Look_up(GT,A: CP)
: for all ren. apart clause Cy = Hy < By € P s.t. Hy, unifies with A} do
10: CPy «+ Atranslate(A] : CPy, Ck)
11: PROCESS_CLAUSE(C Py, Bi)

12: procedure PROCESS_CLAUSE(C'P, B)
13:  if B=(L,R) then

14: CPr, — Arestrict(CP, L)

15: PROCESS_CALL_PATTERN(L : C'Pr)
16: PROCESS_CLAUSE(C'P, R)

17: else

18: CPp « Arestrict(CP, B)

19: PROCESS_CALL_PATTERN(C Pz, B)

20: function SPECIALIZED_DEFINITION(P, A : C'P)
21: A" : OP' — AGeneralize(ST, A : CP)

22: Insert(GT,A: CP, A" : CP')

23: if IsIn(S7, A’ : CP') then

24: A" «—Look_up(ST,A" : CP')

25: else

26: Def «— AUnfold(P, A’ : CP")

27: A" — new-filter(A")

28: Insert(S7,A" : CP', A")

29: Def' «— {(H' < B) | (H < B) € Def NH' =ren(H,{A"/A"})}
30: P« PDef'

31: return (A’ A")

specialized definition for it (L7) and then process all clauses in its specialized def-
inition by means of calls to PROCESS_CLAUSE (L9-11). Procedure PROCESS_CLAUSE
traverses clause bodies, processing their corresponding atoms by means of calls to
PROCESS_CALL_PATTERN, in a depth-first, left-to-right fashion. The order in which
pending call patterns (atoms) are handled by the algorithm is usually not fixed in PD
algorithms. They are often all put together in a set. The reason for this presentation
is to be as close as possible to our analysis algorithm which enforces a depth-first,
left-to-right traversal of program clauses. In this regard, the relevant point to note is
that this algorithm does not perform success propagation yet (difficulty 3). In L16, it
becomes apparent that the atom(s) in R will be analyzed with the same call pattern
CP than L, which is to their left in the clause. This, on one hand, may clearly lead to
substantial precision loss. For instance, the abstract pattern £(C, A) : {C/G, C/V} which
is necessary to obtain the last two resultants of Ex. 1 cannot be obtained with this
algorithm. In particular, we cannot infer the groundness of C which, in turn, prevents
us from abstractly executing the next call to ground and, thus, from obtaining this
optimal specialization. On the other hand, this lack of success propagation makes it
difficult or even impossible to work with non downwards closed domains, since C'P
may contain information which holds before execution of the leftmost atom L but
which can be uncertain or even false after that. In fact, in our example C' P contains
the info C/V, which becomes false after execution of tw(B,C), since now C is ground.



This problem is solved in the algorithm we present in the next section, where analysis
information flows from left to right, adding more precise information and eliminating
information which is no longer safe or even definitely wrong.

For the integration we propose, the most relevant part of the algorithm comprises
L20-31, as it is the code fragment which is directly executed from our abstract in-
terpreter. The remaining procedures (L1-L19) will be overridden by more accurate
ones later. The procedure of interest is SPECIALIZED _DEFINITION. As it is customary,
it performs (L21) a generalization of the call A : C'P using the abstract counterpart
of the Generalize operator, denoted by AGeneralize, and which is in charge of en-
suring termination at the global level. The result of the generalization, A’ : CP’, is
inserted in the generalization table G7 (L22). Correctness of the algorithm requires
that A: CPC A" : CP'. If A’ : CP’ has been previously treated (L23), then its spe-
cialized definition A” is looked up in 87 (L.24) and returned. Otherwise, a specialized
definition Def is computed for it by using the AUnfold operator of Def. 3 (1.26). As
already mentioned, the specialized definition Def for the abstract atom A : CP is used
to extend the original program P. First, the atom A’ is renamed by using new_filter
which returns an atom with a fresh predicate name, A”, and optionally filters con-
stants out (L27). Then, function ren is applied to rename the clause heads using atom
A’ (L29). The function ren(A, {B/B’}) returns 6(B’) where § = mgu(A, B). Finally,
the program P is extended with the new, renamed specialized definition, Def’.

Ezample 5. Three calls to SPECIALIZED_DEFINITION appear (within an oval box)
during the analysis of our running example in Fig. 2 from the following abstract
atoms, first main(s3(X),X2) : {X/G,X2/V}, then tw(B,C) : {B/G,C/V} and finally
£(C,A) : {C/G,C/V}. The output of such executions is used later (with the proper
renaming) to produce the resultants in Ex. 1. For instance, the second clause ob-
tained from the first call to SPECIALIZED_DEFINITION is
spmainy (s(s(s(s(B)))),A) :- twa(B,C),formulas,(C,A).

where only the head is renamed. The renaming of the body literals is done in a later
code generation phase (see Section 6.1). As already mentioned, Alg. 1 is not able to
obtain such abstract atoms due to the absence of success propagation.

5 Abstract Interpretation with Specialized Definitions

We now present our final algorithm for abstract interpretation with specialized defi-
nitions. This algorithm extends both the APD Algorithm 1 and the abstract interpre-
tation algorithms in [20, 9]. W.r.t. Algorithm 1, the main improvement is the addition
of success propagation. Unfortunately, this requires computing a global fixpoint. It
is an important objective for us to be able to compute an accurate fixpoint in an
efficient way. W.r.t the algorithms in [20, 9], the main improvements are the follow-
ing. (1) It deals directly with non-normalized programs. This point, which does not
seem very relevant in a pure analysis system, becomes crucial when combined with a
specialization system in order to profit from constants propagated by unfolding. (2) It
incorporates a hardwired efficient graph traversal strategy which eliminates the need
for maintaining priority queues explicitly [9]. (3) The algorithm includes a widening
operation for calls, Widen_Call, which limits the amount of multivariance in order to
keep finite the number of call patterns analyzed. This is required in order to be able
to use abstract domains which are infinite, such as regular types. (4) It also includes
a number of simplifications to facilitate understanding, such as the use of the keyed-
table ADT, which we assume encapsulates proper renaming apart of variables and
the application of renaming transformations when needed.

In order to compute and propagate success substitutions, Algorithm 2 computes
a program analysis graph in a similar fashion as state of the art analyzers such as
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Fig. 2. Analysis Graph computed by ABS_INT_WITH_SPEC_DEF

the CiaoPP analyzer [20,9]. For instance, the analysis graph computed by Algo-
rithm 2 for our running example is depicted in Fig. 2. The graph has two sorts of
nodes. Those which correspond to atoms are called “OR-nodes”. For instance, the
node */6X2/Vnain(s3(X), x2){¥/6X2/6} indicates that when the atom main(s®(X),X2)
is called with description {X/G,X2/V} the answer (or success) substitution computed
is {X/G,X2/G}. Those nodes which correspond to rules are called “AND-nodes”. In
Fig. 2, they appear within a dashed box and contain the head of the corresponding
clause. Each AND-node has as children as many OR-nodes as literals there are in the
body. If a child OR-node is already in the tree, it is no further expanded and the cur-
rently available answer is used. For instance, the analysis graph in Figure 2 contains
three occurrences of the abstract atom tw(B,C) : {B/G,C/V} (modulo renaming), but
only one of them has been expanded. This is depicted by arrows from the two non-
expanded occurrences of tw(B,C) : {B/G,C/V} to the expanded one. More information
on the efficient construction of the analysis graph can be found in [20,9, 1].

The program analysis graph is implicitly represented in the algorithm by means
of two data structures, the answer table (AT) and the dependency table (DT). The
answer table contains entries of the form A : CP ~» AP which are interpreted as the
answer (success) pattern for A : CP is AP. For instance, there exists an entry of the
form main(s3(X),X2) : {X/G,X2/V} ~ {X/G,X2/G} associated to the atom discussed
above. Dependencies indicate direct relations among OR-nodes. An OR-node Ap :
CPr depends on another OR-node Ar : CPr iff in the body of some clause for
Ap : CPp there appears the OR-node Ar : C'Pr. The intuition is that in computing
the answer for Ar : CPr we have used the answer pattern for Ar : CPr. In our
algorithm we store backwards dependencies,® i.e., for each OR-node Ay : CPr we
keep track of the set of OR-nodes which depend on it. That is to say, the keys in the
dependency table are OR-nodes and the information associated to each node is the set
of other nodes which depend on it, together with some additional information required
to iterate when an answer is modified (updated). Each element of a dependency set for
an atom B : C'P; is of the form (H : CP = [Hy, : CP1] k,i). It should be interpreted as
follows: the OR-node H : CP through the literal at position k,7 depends on the OR-
node B : C'P,. Also, the remaining information [Hj, : CP;] informs that the head of
this clause is Hy and the substitution (in terms of all variables of clause k) just before

4 In the implementation, for efficiency, both forward and backward dependencies are stored.
We do not include them in the algorithm for simplicity of the presentation.



Algorithm 2 Abstract Interpretation with Specialized Definitions

1: procedure ABS_INT_WITH_SPEC_DEFS(P,{A; : CP1,..., A, : CP,})
2 Create_Table(AT); Create_Table(DT)
3 Create_Table(GT); Create_Table(ST)
4 for j=1..ndo
5 PROCESS_CALL_PATTERN(A; : CP;, (A; : CP; = [A; : CPj], j, entry))
6: function PROCESS_CALL_PATTERN(A : C'P, Parent)
T CP, — Widen_-Call(AT, A : CP)
8 if not IsIn(A7,A: CP;) then
9: Insert(A7,A: CPy, 1)
10: Insert(DT,A: CPy,0)

11: (A’, A]) < SPECIALIZED_DEFINITION(P, A : CPy)

12: A" —ren(A, {A'/A})

13: for all ren. apart clause Cy = Hy < By € P s.t. Hy, unifies with A” do
14: CPy « Atranslate(A” : CPy, Cy)

15: PROCESS_CLAUSE(A : CPy = [Hy, : CPy] By, k, 1)

16: Deps — Look_up(DT, A : CPy)|J{Parent}
17: Insert(D7T, A : CPy, Deps)
18: return Look_up(A7,A: CPy)

19: procedure PROCESS_CLAUSE(H :CP = [Hy : CP1] B, k,1)
20: if CP; # 1 then

21: if B = (L, R) then

22: CP, — Arestrict(C Py, L)

23: APy < PROCESS_CALL_PATTERN(L : CP,,(H :CP = [H}, : CP1], k, 1))
24: CPs; — Aconj(CPy, Aextend(APy, CPy))

25: PROCESS_CLAUSE(H : CP = [Hy, : CP3] R, k,i+ 1)

26: else

27: CP, «— Arestrict(C Py, B)

28: APy < PROCESS_CALL_PATTERN(B : CP>,(H : CP = [Hy : CP1), k, 1))
29: CPs; — Aconj(C Py, Aextend(APy, CPy))

30: APy, «— Atranslate(Hy, : CPs, H <« true)

31: AP, — Look_up(AT,H : CP)

32: AP3 — A|ub(AP1, APQ)

33: if AP, # APs then

34: Insert(AT,H : CP, APs)

35: Deps «— Look_up(DT,H : CP)

36: PROCESS_UPDATE(Deps)

37: procedure PROCESS_UPDATE(Updates)
38: if Updates = {A1,...,An} with n > 0 then

39: A1:<HZCP:>[H1CZCP1L]€,7:>

40: if i # entry then

41: B «— get_body(P, k, 1)

42: REMOVE_PREVIOUS_DEPS(H :CP = [Hy : CP1] B, k,1)
43: PROCESS_CLAUSE(H :CP = [Hy : CP1] B, k,1)

44: PROCESS_UPDATE(Updates — {A1})

the call to B : C'P, is C'P;. Such information avoids reprocessing atoms in the clause
k to the left of position . For instance, the dependency set for £(C,A) : {A/V,C/G} is
{(main(s3(X),X2) : {X/G,X2/V} = [main(s*(B),A) : {B/G,A/V,C/G}]2,2)}. It indicates
that the OR-node £(C,A) : {A/V,C/G} is only used in the OR-node main(s3(X),X2) :
{X/G,X2/V} via literal 2,2 (see Example 1). Thus, if the answer pattern for £(C,4) :
{A/V,C/G} is ever updated, then we must reprocess the OR-node {main(s®(X),X2) :
{X/G,X2/V} from position 2,2.

Algorithm 2 proceeds as follows. The procedure ABS_INT_WITH_SPEC_DEFS ini-
tializes the four tables used by the algorithm and calls PROCESS_CALL_PATTERN for
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each abstract atom in the initial set. The function PROCESS_CALL_PATTERN applies,
first of all (L7), the Widen_Call function to A : C'P taking into account the set of
entries already in A7 . This returns a substitution CP; s.t. CP C CP;. The most
precise Widen_Call function possible is the identity function, but it can only be used
with abstract domains with a finite number of abstract values. This is the case with
sharing—freeness and thus we will use the identity function in our example. If the call
pattern A : C'P; has not been processed before, it places (19) L as initial answer
in AT for A : CP and sets to empty (L10) the set of OR-nodes in the graph which
depend on A : CP;. It then computes (L11) a specialized definition for A : CPy.
We do not show in Algorithm 2 the definition of SPECIALIZED _DEFINITION, since it is
identical to that in Algorithm 1. In the graph, we show within an oval box the calls to
SPECIALIZED_DEFINITION which appear during the execution of the running example
(see the details in Sect. 4). The clauses in the specialized definition are linked to the
box with a dotted arc. Then it launches (L13-15) calls to PROCESS_CLAUSE for the
clauses in the specialized definition w.r.t. which A : C'P; is to be analyzed. Only after
this, the Parent OR-node is added (L16-17) to the dependency set for A : C'P;.

The function PROCESS_CLAUSE performs the success propagation and constitutes
the core of the analysis. First, the current answer (APy) for the call to the literal
at position k,i of the form B : CPy is (.24 and L29) conjoined (Aconj), after being
extended (Aextend) to all variables in the clause, with the description CP; from the
program point immediately before B in order to obtain the description CP3 for the
program point after B. If B is not the last literal, CPs is taken as the (improved)
calling pattern to process the next literal in the clause in the recursive call (L25). This
corresponds to left-to-right success propagation and is marked in Fig. 2 with a dashed
horizontal arrow. If we are actually processing the last literal, CP3 is (L30) adapted
(Atranslate) to the initial call pattern H : C'P which started PROCESS_CLAUSE, ob-
taining AP;. This value is (L32) disjoined (Alub) with the current answer, APs, for
H : CP as given by Look_up. If the answer changes, then its dependencies, which
are readily available in D7, need to be recomputed (L36) using PROCESS_UPDATE.
This procedure restarts the processing of all body postfixes which depend on the
calling pattern for which the answer has been updated by launching new calls to
PROCESS_CLAUSE. There is no need of recomputing answers in our example. The
procedure REMOVE_PREV_DEPS eliminates (L.42) entries in D7 for the clause postfix
which is about to be re-computed. We do not present its definition here due to lack
of space. Note that the new calls to PROCESS_CLAUSE may in turn launch calls to
PROCESS_UPDATE. On termination of the algorithm a global fixpoint is guaranteed to
have been reached. Note that our algorithm also stores in the dependency sets calls
from the initial entry points (marked with the value entry in L5). These do not need
to be reprocessed (L40) but are useful for determining the specialized version to use
for the initial queries after code generation.

5.1 Termination of Abstract Interpretation with Specialized Definitions

Termination of Algorithm 2 comprises several levels. First, termination of the algo-
rithm requires the local termination of the process of obtaining a specialized definition.
This corresponds to ensuring termination of function SPECIALIZED _DEFINITION in Al-
gorithm 1. Second, we need to guarantee that the number of call patterns for which
a specialized definition is computed is finite. This corresponds to global termination
of specialization algorithms. In terms of our algorithm, this is equivalent to having a
finite number of entries in S7. The AGeneralize function should be able to guarantee
it. Third, it is required that the set of call patterns for which an answer pattern is to be
computed be finite. This corresponds to control of multivariance in context-sensitive
analysis. In terms of our algorithm, this is equivalent to having a finite number of en-
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tries in A7 . The Widen_Call function should be able to guarantee it. Fourth and final,
it is required that the computation of the answer pattern for each entry in A7 needs
a finite number of iterations. This is guaranteed since we consider domains which are
ascending chain finite. Another way of looking at this problem is that, intuitively, the
combined effect of terminating AUnfold and AGeneralize operators guarantee that
the set of specialized definitions which Algorithm 2 will compute for an initial set
of atoms is finite. These two problems have received considerable attention by the
PD community (see, e.g., [14]). Since Algorithm 2 performs analysis of the program
composed of the set of specialized definitions, once we have guaranteed the finiteness
of the program to be analyzed, a terminating Widen_Call together with an abstract
domain which is ascending chain finite guarantee termination of the whole process.

6 Interpreting the Results of the Algorithm

We first discuss whether we can interpret the results of Algorithm 2 in terms of
analysis. We denote by success(A : CP, P) the set of computed answers for initial
queries described by the abstract atom A : CP in a program P, i.e., success(A :
CP,P) = {0" | 30 € v(CP) A 3¢’ s.t. 0 is a computed answer for A¢ and ¢ =
90/‘11117“3(14)}'

Theorem 1 (correctness of success substitutions). Let P be a program and let
S ={4 : CPy,..., A, : CP,} be a set of abstract atoms. After termination of
ABS_INT_WITH_SPEC_DEFS(P, S), VA, : CP, € S . 3(A; : CP] ~ AP,) € AT s.t.
CP; C CP! A success(A; : CP;, P) C v(AP;).

Intuitively, correctness holds since Algorithm 2 computes an abstract and—or graph
and, thus, we inherit a generic correctness result for success substitutions. However,
now we analyze the call patterns in S w.r.t. specialized definitions rather than their
original definition in P. Since the transformation rules in Definitions 1 and 2 are
semantics preserving, then analysis of each specialized definition is guaranteed to
produce a safe approximation of its success set, which is also a safe approximation of
the success of the original definition.

6.1 The Framework as a Specializer

We now discuss whether the set of specialized definitions can be used as a specialized
program. Algorithm 2 differs from Algorithm 1 in several ways. First, the specialized
definition for A : CP (L11) is not computed w.r.t the original call pattern A : CP
but rather w.r.t. A: CPy, where CP; = Widen_Call(AT, A : CP). This is required in
order to guarantee termination of the analysis side of the algorithm since, as we discuss
below, analysis is multivariant in nature and the same specialized definition can be
analyzed for (a possibly infinite) number of different abstract atoms. Second, the
abstract substitution C' Py, used to process clause k (L14) is not induced by the abstract
atom returned from AGeneralize(ST, A : CP), as in Algorithm 1 (which would limit
the analysis side to be monovariant on each specialized definition), but rather it is
induced by A : CP;. This on one hand enables a higher degree of multivariance in
analysis, and thus more accurate results, and on the other hand poses more difficulties
in interpreting the results of the algorithm as a specialized program.

Let us now formulate the conditions under which it is feasible to perform code gen-
eration on the results of Algorithm 2. We use (P, AT, D7,G7T,8T) = AISP(P,S)
to denote that on termination of Algorithm 2 for a program P and a set of atoms
S we have obtained a program P’ and tables A7, DT, G7, and ST. We denote
by spec_defs(P,ST) the subset of clauses in P which correspond to specialized def-
initions, as stored in S7 and we define it as spec_defs(P,ST) = {(H «— B) €
P|3(:_.~ A € 8T s.t. H unifies with A’}. Each non-root OR-node in the
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analysis graph has been generated by a call of the form PROCESS_CALL_PATTERN(DB :
CPy,(H : CP = [Hy : CPy],k,i)) (L23 or L28 in Algorithm 2). Thus, each non-root
OR-node is uniquely identified by a pair of the form (B : CPy, (H : CP = [_: ], k,i)).
We can classify the OR-nodes in an analysis graph according to the program point
they correspond to, i.e., k,i. We denote by OR_nodes(k, i) the set of OR~nodes of the
form (- : ,{-:_-=[-: ], k,%)). Also, we denote by SD((B : CP»,Id),DT,GT) the
abstract atom B’ : C' Py which has been used for generating the specialized definition
w.r.t. which the atom (B : C' Py, Id) has been analyzed, and it is defined as SD((B :
CPy,(H:CP=|[.:],k4)),DT,GT) =B :CPjs.t. (B : CP; ~ Deps) € DT s.t.
(H:CP=[.:],k,i) € Deps N I(B:CP,~ B':CPj) € GT

Definition 4 (feasible specialized program). Let P be a program and S a set of
atoms. Let (P', AT, DT,GT,S8T) = AISP(P,S). The program spec_defs(P',ST) is
feasible iff Vk,i € spec_defs(P',ST) .¥(B : CPs,1d"), (B : CPj,1d*) € OR_nodes(k,1)

SD((B:CP},1d"),DT,GT) = B" : CP}" A

SD((B: CP2,1d*),DT,GT) = B¥ : CP? A
B:CP}CBY :CP} A
B:CP?C B':CP}

Correctness of Widen_Call and AGeneralize guarantee than any call pattern B : C P,
is analyzed w.r.t. a specialized definition which is correct, i.e., for any possible D7 and
GT, B :CP, C SD((B : CP,,1Id),DT,GT). This condition is indeed sufficient for
correctness of the analysis. However, Definition 4 requires that whenever more than
one OR-node correspond to the same program point k., the specialized definition
w.r.t which each OR-node has been analyzed is a safe approximation not only of itself
but also of all the OR-nodes for k,i. In spite of the complexity of the formulation,
it is relatively easy to find AGeneralize functions which guarantee that the resulting
specialized program will be feasible.

Example 6. We present two AGeneralize functions which can be used in Alg. 2 to
ensure a feasible specialized program. In both of them, the decision on whether to
lose information in a call AGeneralize(ST,A : CP) is based on the concrete part
of the atom, A. This allows easily defining AGeneralize operators in terms of ex-
isting Generalize operators. Let Generalize be a (concrete) generalization function.
Let AGeneralize,(ST,A : CP) = (A',CP’) where A’ = Generalize(ST, A) and
CP’ = Atranslate(A : CP, A’ « true). Function AGeneralize, always produces fea-
sible programs since it only assigns the same specialized definition for different ab-
stract atoms when we know that after adapting the analysis info of both A; : CP;
and As : CP; to the new atom A’ the same entry substitution C' P’ will be obtained
in either case. Similarly, we define AGeneralize,(ST,A : CP) = (A’,CP’) where
A" = Generalize(ST, A) and CP’ = T. The function AGeneralize, is also correct
since it assigns generalizations taking into account the concrete part of the abstract
atom only, which is the same for all OR-nodes which correspond to a literal k, 7. These
functions are in fact two extremes. In AGeneralize, we try to keep as much abstract
information as possible, whereas in AGeneralize, we lose all abstract information.
The latter is useful when we do not have an unfolding system which can exploit ab-
stract information or when we do not want the specialized program to have different
implemented specialized definitions for atoms with the same concrete part (modulo
renaming) but different abstract substitution.

Now, code generation for a feasible program is done by simply traversing the
bodies of the specialized definitions and for each literal L at position k,¢ we find out,

13



using function SD, an atom A’ : C'P’ whose specialized definition we can use at k, 1.
Then, we look up in ST the atom A’ w.r.t. which to rename the body literal L. A
code generation algorithm can be found in the appendix (Algorithm 3).

Finally, since Algorithm 2 computes a fixpoint, the answer and specialization ta-
bles may contain entries which correspond to spurious call patterns. It is however
straightforward to remove them.

7 Discussion and Related Work

We have presented a generic framework for the analysis and specialization of logic
programs which is currently the basis of the analysis/specialization system imple-
mented in the CiaoPP preprocessor. We argue that, in contrast to other approaches,
the fact that our method can be used both as a specializer and analyzer gives us
more accuracy and efficiency than the individual techniques. Indeed, the versatility
of our framework (and of our implementation) can be seen by recasting well-known
specialization and analysis frameworks as instances in which the different parameters:
unfolding rule, widen call rule, abstraction operator, and analysis domain, take the
following values.

Polyvariant Abstract Interpretation: Our algorithm can behave as the analysis algo-
rithm described in [9, 20] for polyvariant static analysis by defining a AGeneralize op-
erator which returns always the base form of an expression (i.e., it loses all constants)
and an A Unfold operator which performs a single derivation step (i.e., it returns the
original definition). Thus, the resulting framework would always produce a residual
program which coincides with the original one and can be analyzed with any abstract
domain of interest.

Multivariant Abstract Specialization: The specialization power of the framework de-
scribed in [23,22] can be obtained by using the same AGeneralize described in the
above point plus an A Unfold operator which always performs a derive step followed
by zero or more abstract execution steps. It is interesting to note that in the original
framework abstract executability is performed as an offline optimization phase while
it is performed online in our framework.

Classical Partial Deduction: Our method can be used to perform classical PD in the
style of [19, 8] by using an abstract domain with the single abstract value T and the
identity function as Widen_Call rule. This corresponds to the PD domain of [13] in
which an atom with variables represents all its instances. Let us note that, in spite
of the fact that the algorithm follows a left-to-right computation flow, the process of
generating specialized definitions (as discussed in Section 3) can perform non-leftmost
unfolding steps and achieve optimizations as powerful as in PD.

Abstract Partial Deduction: Several approaches have been proposed which extend
PD by using abstract substitutions [12, 6,15, 13]. In essence, such approaches are very
similar to the abstract partial deduction with call propagation shown in Algorithm 1.
Though all those proposals identify the need of propagating success substitutions,
they either fail to do so or propose means for propagating success information which
are not fully integrated with the APD algorithm and, in our opinion, do not fit in
as nicely as the use of and—or trees. Also, these proposals are either strongly coupled
to a particular (downward closed) abstract domain, i.e., regular types, as in [6, 15] or
do not provide the exact description of operations on the abstract domain which are
needed by the framework, other than general correctness criteria [12,13]. However,
the latter allow conjunctive PD, which is not available in our framework.
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The approach in [24]: was a starting step towards our current framework. There, the
introduction of unfolding steps directly in the and—or graph was proposed in order to
achieve transformations as powerful as those of PD while at the same time propagating
abstract information. In contrast, we now resort to augmented SLD semantics for the
specialization side of the framework while using AND-OR semantics for the analysis
side of the framework. This has both conceptual, the hybrid approach we propose
provides satisfactory answers to the four issues raised in Section 1, and practical
advantages, since the important body of work in control of PD is directly applicable
to the specialization side of our framework.

8 Conclusions

We have proposed a novel scheme for a seamless integration of the techniques of
abstract interpretation and partial deduction. Our scheme is parametric w.r.t. the
abstract domain and the control issues which guide the partial deduction process.
Existing proposals for the integration use abstract interpretation as a means for im-
proving partial evaluation rather than as a goal, at the same level as producing a
specialized program. This implies that, as a result, their objective is to yield a set
of atoms which determines a partial evaluation rather than to compute a safe ap-
proximation of its success. Unlike them, a main objective of our work is to improve
success information by analyzing the specialized code, rather than the original one.
We achieve this objective by smoothly interleaving both techniques which, on one
hand, improves success information—even for abstract domains which are not related
directly to partial evaluation. On the other hand, with more accurate success informa-
tion, we can improve further the quality of partial evaluation. The overall method thus
yields not only a specialized program but also a safe approximation of its behaviour.
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A Algorithm for Code Generation

Algorithm 3 presents the code generation phase. Since the specialized definitions gen-
erated already have different predicate names, the heads of the new clauses do not

A

Igorithm 3 Code Generation

1

2:

10:

11

12:
13:

: function CODEGEN(P, D7 ,GT,S7)
return {(Hy < By,) | 3(Hyx < Bx) € spec_defs(P,S8T) A
Bj, =RENAME_BODY (B, k,1,D7,GT,87)
: function RENAME_BODY (B, k,1,D7,G7T,87)
if B= (L, R) then
L' «— RENAME_ATOM(L, k,i,DT,G7T,ST)
R’ «+ RENAME_BODY(R, k,i + 1,D7,GT,87)
B (L/7 R/)
else
B’ « RENAME_ATOM(B, k,1,DT,G7T,S8T)
return B’
: function RENAME_ATOM(L, k,4, D7 ,G7T,S7)
L':CP «— SD((L:_{-:-=1[-:],k)),DT,GT)
return Look up(S7,L’' : CP')
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need to be renamed. Function RENAME_BODY simply traverses the body of the clauses
in the specialized definitions and replaces atoms for predicates in the original program
with atoms for predicates in the specialized definitions. Deciding which predicate to
use is done by function RENAME_ATOM. Note that since (optionally) constants are fil-
tered out by function new_filter, this renaming can remove constants from the original
program.
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