Recalling Our Intro to the Course
The Program Correctness Problem

- Conventional models of using computers – not easy to determine correctness!
 - Has become a very important issue, not just in safety-critical apps.
 - Components with assured quality, being able to give a warranty, ...
 - Being able to run untrusted code, certificate carrying code, ...
A Simple Imperative Program

• Example:

```c
#include <stdio.h>
main() {
    int Number, Square;
    Number = 0;
    while(Number <= 5) {
        Square = Number * Number;
        printf("%d\n",Square);
        Number = Number + 1; } }
```

• Is it correct? With respect to what?

• A suitable formalism:
 ◦ to provide *specifications* (describe problems), and
 ◦ to reason about the *correctness of programs* (their *implementation*).

is needed.
“Compute the squares of the natural numbers which are less or equal than 5.”

Ideal at first sight, but:

- verbose
- vague
- ambiguous
- needs context (assumed information)
- ...

Philosophers and Mathematicians already pointed this out a long time ago...
Logic

- A means of clarifying / formalizing the human thought process
- Logic for example tells us that (classical logic)
 \textit{Aristotle likes cookies, and}
 \textit{Plato is a friend of anyone who likes cookies}
 imply that
 \textit{Plato is a friend of Aristotle}

- Symbolic logic:
 A shorthand for classical logic – plus many useful results:
 \begin{align*}
 a_1 & : \text{likes(aristotle, cookies)} \\
 a_2 & : \forall X \text{ likes}(X, \text{cookies}) \rightarrow \text{friend(plato, X)} \\
 t_1 & : \text{friend(plato, aristotle)} \\
 T[a_1, a_2] & \vdash t_1
 \end{align*}

- But, can logic be used:
 - To represent the problem (specifications)?
 - \textit{Even perhaps to solve the problem?}
For expressing specifications and reasoning about the correctness of programs we need:

- Specification languages (assertions), modeling, ...
- Program semantics (models, axiomatic, fixpoint, ...).
- Proofs: program verification (and debugging, equivalence, ...).
Generating Squares: A Specification (I)

Numbers—we will use “Peano” representation for simplicity:
0 → 0 1 → s(0) 2 → s(s(0)) 3 → s(s(s(0))) ...

• Defining the natural numbers:
 \[\text{nat}(0) \land \text{nat}(s(0)) \land \text{nat}(s(s(0))) \land \ldots \]

• A better solution:
 \[\text{nat}(0) \land \forall X (\text{nat}(X) \rightarrow \text{nat}(s(X))) \]

• Order on the naturals:
 \[\forall X (\text{le}(0, X)) \land \\
 \forall X \forall Y (\text{le}(X, Y) \rightarrow \text{le}(s(X), s(Y))) \]

• Addition of naturals:
 \[\forall X (\text{nat}(X) \rightarrow \text{add}(0, X, X)) \land \\
 \forall X \forall Y \forall Z (\text{add}(X, Y, Z) \rightarrow \text{add}(s(X), Y, s(Z))) \]
Generating Squares: A Specification (II)

- **Multiplication of naturals:**
 \[\forall X \ (\text{nat}(X) \rightarrow \text{mult}(0, X, 0)) \land \\
 \forall X \forall Y \forall Z \forall W \ (\text{mult}(X, Y, W) \land \text{add}(W, Y, Z) \rightarrow \text{mult}(s(X), Y, Z)) \]

- **Squares of the naturals:**
 \[\forall X \forall Y \ (\text{nat}(X) \land \text{nat}(Y) \land \text{mult}(X, X, Y) \rightarrow \text{nat_square}(X, Y)) \]

We can now write a *specification* of the (imperative) program, i.e., conditions that we want the program to meet:

- **Precondition:**
 empty.

- **Postcondition:**
 \[\forall X (\text{output}(X) \leftarrow (\exists Y \ \text{nat}(Y) \land \text{le}(Y, s(s(s(s(s(0))))))) \land \text{nat_square}(Y, X))) \]
For expressing specifications and reasoning about the correctness of programs we need:

- Specification languages (assertions), modeling, ...
- Program semantics (models, axiomatic, fixpoint, ...).
- Proofs: program *verification* (and debugging, equivalence, ...).
Semantic Tasks

- Semantics:
 - A semantics associates a meaning (a mathematical object) to a program or program sentence.

- Semantic tasks:
 - Verification: proving that a program meets its specification.
 - Static debugging: finding where a program does not meet specifications.
 - Program equivalence: proving that two programs have the same semantics.
 - etc.
Styles of Semantics

- **Operational:**
 The meaning of program sentences is defined in terms of the steps (transformations from state to state) that computations may take during execution (derivations). Proofs by induction on derivations.

- **Axiomatic:**
 The meaning of program sentences is defined indirectly in terms of some axioms and rules of a logic of program properties.

- **Denotational (fixpoint):**
 The meaning of program sentences is given abstractly as functions on an appropriate domain (which is often a lattice). E.g., λ-calculus for functional programming. C.f., lattice / fixpoint theory.

- Also, **model (declarative) semantics:** (For (Constraint) Logic Programs:) The meaning of programs is given as a minimal model (“logical meaning”) of the logic that the program is written in.
Operational Semantics
Traditional Operational Semantics

- Meaning of program sentences defined in terms of the steps (*state transitions*, transformations from state to state) that computations may take during executions (derivations).

- Proofs by induction on derivations.

- Examples of concrete operational semantics:
 - Semantics modeling memory for imperative programs.
 - Interpreters and meta-interpreters (self-interpreters).
 - Resolution and CLP(\(\forall\)) resolution, for (constraint) logic programs.
 - ...

- Examples of generic / standard methodologies:
 - *Structural operational semantics*.
 - Vienna definition language (VDL).
 - SECD machine.
 - ...

A Simple Imperative Language

Program ::= Statement
Statement ::= Statement ; Statement
| noop
| Id := Expression
| if Expression then Statement else Statement
| while Expression do Statement
Expression ::= Numeral
| Id
| Expression + Expression

- Only integer data types.
- Variables do not need to be declared.
Operational Semantics

- States: memory configurations – values of variables.
- \(s[X] \) denotes the value of the variable \(X \) in state \(s \).
- \(<\text{statement},s>\Rightarrow s'\) denotes that
 if \text{statement} is executed in state \(s \) the resulting state is \(s' \).
- \(<\text{expression},s>\Rightarrow \text{value}\) denotes that
 if \text{expression} is executed in state \(s \) it returns \text{value}.

- Expressions:
 - If \(n \) is a number \(<n,s>\Rightarrow n\)
 - If \(X \) is a variable \(<X,s>\Rightarrow s[X]\)
 - If \text{expression} is of the form \(\text{exp}_1+\text{exp}_2 \) we write:
 \[
 <\text{exp}_1,s>\Rightarrow v_1 <\text{exp}_2,s>\Rightarrow v_2
 \]
 \[
 <\text{exp}_1+\text{exp}_2,s>\Rightarrow v_1 + v_2
 \]
Operational Semantics

- Statements:
 \(s[X/v] \) denotes a new state, identical to \(s \) but where variable \(X \) has value \(v \).

 ◦ Noop: \(< \text{noop}, s > \Rightarrow s\)

 ◦ Assignment:
 \[
 \begin{align*}
 &< exp, s > \Rightarrow v \\
 \Rightarrow & \frac{< X := exp, s > \Rightarrow s[X/v]}{}
 \end{align*}
 \]

 ◦ Conditional:
 \[
 \begin{align*}
 &< exp, s > \Rightarrow 0 & < stmt_2, s > \Rightarrow s' \\
 \Rightarrow & \frac{< \text{if } exp \text{ then } stmt_1 \text{ else } stmt_2, s > \Rightarrow s'}}{}
 \end{align*}
 \]
 \[
 \begin{align*}
 &< exp, s > \Rightarrow v, v \neq 0 & < stmt_1, s > \Rightarrow s' \\
 \Rightarrow & \frac{< \text{if } exp \text{ then } stmt_1 \text{ else } stmt_2, s > \Rightarrow s'}}{}
 \end{align*}
 \]
Operational Semantics

- Statements (Contd.):
 - Sequencing:
 \[
 \langle stmt_1, s \rangle \Rightarrow s_1 \quad \langle stmt_2, s_1 \rangle \Rightarrow s_2 \\
 \langle stmt_1 ; stmt_2, s \rangle \Rightarrow s_2
 \]
 - Loops:
 \[
 \langle exp, s \rangle \Rightarrow 0 \\
 \langle \textbf{while} exp \textbf{ do} stmt, s \rangle \Rightarrow s \\
 \langle exp, s \rangle \Rightarrow v, v \neq 0 \quad \langle stmt, s \rangle \Rightarrow s' \quad \langle \textbf{while} exp \textbf{ do} stmt, s' \rangle \Rightarrow s'' \\
 \langle \textbf{while} exp \textbf{ do} stmt, s \rangle \Rightarrow s''
 \]
Example

- Program:

x := 5;
y := -6;
if (x+y) then z := x else z := y

- Semantics:

\[
\begin{array}{c}
\langle x := 5, s_0 \rangle \Rightarrow s_1
\end{array}
\]
\[
\begin{array}{c}
\langle y := -6, s_1 \rangle \Rightarrow s_2
\end{array}
\]
\[
\begin{array}{c}
\langle x+y, s_2 \rangle \Rightarrow -1
\end{array}
\]
\[
\begin{array}{c}
\langle z := x, s_2 \rangle \Rightarrow s_3
\end{array}
\]
\[
\begin{array}{c}
\langle y := -6; S_3, s_1 \rangle \Rightarrow s_3
\end{array}
\]
\[
\begin{array}{c}
\langle x := 5; y := -6; S_3, s_0 \rangle \Rightarrow s_3
\end{array}
\]

where \(S_3 = \text{if (x+y) then z := x else z := y} \).

And:
\[
\begin{align*}
s_1 &= s_0[x/5] \\
s_2 &= s_1[y/ -6] \\
s_3 &= s_2[z/5]
\end{align*}
\]
Axiomatic Semantics
Axiomatic Semantics

- **Characteristics:**
 - Based on techniques from predicate logic.
 - There is no concept of *state of the machine* (as in operational or denotational semantics).
 - More abstract than, e.g., denotational semantics.
 - Semantic meaning of a program is based on assertions about relationships that remain the same each time the program executes.

- **Classical application:**
 - Proving programs to be correct w.r.t. specifications.

- **(Typical, classical) limitations:**
 - Side-effects disallowed in expressions.
 - `goto` command difficult to treat.
 - Aliasing not allowed.
 - Scope rules difficult to describe \(\Rightarrow\) require all identifier names to be unique.
History and References

- Main original papers:
 - 1967: Floyd. *Assigning Meanings to Programs*.

- Many textbooks available.
Assertions and Correctness

- **Assertion**: a logical formula, say
 \[(m \neq 0 \land (\sqrt{m})^2 = m)\]
 that is true when a point in the program is reached.

- **Precondition**: Assertion before a command (\(\leftarrow\) includes a whole program).

- **Postcondition**: Assertion after a command.

 \[\{PRE\} \ C \ \{POST\}\]
 \(\leftarrow\) a “Hoare triple”

- **Partial Correctness**: If the initial assertion (the precondition) is true and if the program terminates, then the final assertion (the postcondition) must be true.
 \[Precondition + \text{Termination} \Rightarrow \text{Postcondition}\]

- **Total Correctness**: Given that the precondition for the program is true, the program must terminate and the postcondition must be true.
 \[\text{Total Correctness} = \text{Partial Correctness} + \text{Termination}\]
Hoare Calculus: The Assignment Axiom

- Examples:
 - \{true\} m := 13 \{m = 13\}
 - \{n = 3 \land c = 2\} n := c*n \{n = 6 \land c = 2\}
 - \{k \geq 0\} k := k + 1 \{k > 0\}

- Notation:
 - \{Precondition\} command \{Postcondition\}
 - \(P[V \rightarrow E]\) denotes substitution: putting \(E\) in place of \(V\) in \(P\)

- Axiom for assignment command:
 \[
 \{P[V \rightarrow E]\} V := E \{P\}
 \]

Work backwards:
 - Postcondition: \(P \equiv (n = 6 \land c = 2)\)
 - Command: \(n := c*n\)
 - Precondition: \(P[V \rightarrow E] \equiv (c \times n = 6 \land c = 2)\)
 \[
 \equiv (n = 3 \land c = 2)\]
Hoare Calculus: Read and Write Commands

- **Notation:**
 - Use “\(IN = [1, 2, 3]\)” and “\(OUT = [4, 5]\)” to represent input and output files.
 - \([M|L]\) denotes list whose head is \(M\) and tail is \(L\).
 - \(K, M, N, \ldots\) represent arbitrary numerals.

- **Axiom for read command:**
 - \(\{IN = [K|L] \land P[V \rightarrow K]\} \text{ read } V \{IN = L \land P\}\)

- **Axiom for write command:**
 - \(\{OUT = L \land E = K \land P\} \text{ write } E \{OUT = L :: [K] \land E = K \land P\}\)

- **Note:** \(L :: [K]\) is the list whose last element is \(K\) (\(::\) represents concatenation).
Hoare Calculus: Rules of Inference

- **Format** (c.f. structural operational semantics):

\[
\begin{align*}
H_1, H_2, H_n, & \\
\hline
H
\end{align*}
\]

- **Axiom for Command Sequencing:**

\[
\begin{align*}
\{P\}C_1\{Q\}, & \quad \{Q\}C_2\{R\} \\
\hline
\{P\}C_1;C_2\{R\}
\end{align*}
\]

- **Axioms for If Commands:**

\[
\begin{align*}
\{P \land b\}C_1\{Q\}, & \quad \{P \land \neg b\}C_2\{Q\} \\
\hline
\{P\} \text{ if } b \text{ then } C_1 \text{ else } C_2 \text{ endif } \{Q\}
\end{align*}
\]

\[
\begin{align*}
\{P \land b\}C\{Q\}, & \quad (P \land \neg b) \to Q \\
\hline
\{P\} \text{ if } b \text{ then } C \text{ endif } \{Q\}
\end{align*}
\]
Hoare Calculus: Rules of Inference (Contd.)

- **Weaken Postcondition:**

 \[
 \begin{array}{c}
 \{P\}C\{Q\}, \ Q \rightarrow R \\
 \{P\}C\{R\}
 \end{array}
 \]

- **Strengthen Precondition:**

 \[
 \begin{array}{c}
 P \rightarrow Q, \ \{Q\}C\{R\} \\
 \{P\}C\{R\}
 \end{array}
 \]

- **And and Or Rules:**

 \[
 \begin{array}{c}
 \{P\}C\{Q\}, \ \{P'\}C\{Q'\} \\
 \{P \land P'\}C\{Q \land Q'\}
 \end{array}
 \]

 \[
 \begin{array}{c}
 \{P\}C\{Q\}, \ \{P'\}C\{Q'\} \\
 \{P \lor P'\}C\{Q \lor Q'\}
 \end{array}
 \]

- **Observation:**

 \[
 \{false\} \ any-command \ \{any-postcondition\}
 \]
Example (I)

\{IN = [4, 9, 16] \land OUT = [0, 1, 2]\}

read m; read n;
if m \geq n then
 a := 2*m
else
 a := 2*n
endif;
write a
\{IN = [16] \land OUT = [0, 1, 2, 18]\}

\{IN = [4, 9, 16] \land OUT = [0, 1, 2]\} \to \{IN = [4][9, 16] \land OUT = [0, 1, 2] \land 4 = 4\}
read m;
\{IN = [9, 16] \land OUT = [0, 1, 2] \land m = 4\} \to
\{IN = [9][16] \land OUT = [0, 1, 2] \land m = 4 \land 9 = 9\}
read n;
\{IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9\}

Recall:
\{IN = [K|L] \land P[V \to K]\}
read V
\{IN = L \land P\}
Example (II)

We have \(P = \{ \text{IN} = [16] \land \text{OUT} = [0, 1, 2] \land m = 4 \land n = 9 \} \)

1. **read** \(m; \) **read** \(n; \)
2. **if** \(m \geq n \) **then**
 - \(a := 2 \cdot m \)
 - **else**
 - \(a := 2 \cdot n \)
3. **endif;**
4. **write** \(a \)

So, \(b \equiv m \geq n = \text{false} \) and \(\neg b = \text{true} \); thus \(\{ P \land b \} = \text{false} \) and \(\{ P \land \neg b \} = P \).

So, for \(C_2 \) we have:

\[
\{ P \land \neg b \} = \{ P \} = \{ \text{IN} = [16] \land \text{OUT} = [0, 1, 2] \land m = 4 \land n = 9 \} \rightarrow \{ \text{IN} = [16] \land \text{OUT} = [0, 1, 2] \land m = 4 \land n = 9 \land 2 \cdot n = 18 \}
\]

\[a := 2 \cdot n \]

\[
\{ \text{IN} = [16] \land \text{OUT} = [0, 1, 2] \land m = 4 \land n = 9 \land a = 18 \}
\]

and for \(C_1 \) we can have anything since the premise is false:

\[
\{ P \land b \} = \text{false}
\]

\[a := 2 \cdot m \]

\[
\{ \text{IN} = [16] \land \text{OUT} = [0, 1, 2] \land m = 4 \land n = 9 \land a = 18 \}
\]
Example (III)

\(\{IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9\}\)

if \(m \geq n\) then

\(a := 2 \cdot m\)

else

\(a := 2 \cdot n\)

endif;

\(\{IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \land a = 18\}\)

and

\(\{IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \land a = 18\}\)

write \(a\)

\(\{IN = [16] \land OUT = [0, 1, 2] :: [18] \land m = 4 \land n = 9 \land a = 18\}\)

which implies

\(\{IN = [16] \land OUT = [0, 1, 2, 18]\}\)
While Command

\[
\begin{align*}
\{P \land b\} & \text{ } C \{P\} \\
\{P\} \text{ while } b \text{ do } C \text{ endwhile } \{P \land \neg b\}
\end{align*}
\]

- **Loop Invariant:** \(P\)
 - Preserved during execution of the loop.

- **Loop steps:**
 - *Initialization:* show that the loop invariant \(\{P\}\) is initially true.
 - *Preservation:* show the loop invariant remains true when the loop executes (\(\{P \land b\}\)).
 - *Completion:* show that the loop invariant and the exit condition produce the final assertion (\(\{P \land \neg b\}\)).

- **Main Problem:**
 - Constructing the loop invariant.
Loop Invariant

- A relationship among the variables that does not change as the loop is executed.
- “Inspiration” tips:
 - Look for some expression that can be combined with $\neg b$ to produce part of the postcondition.
 - Construct a table of values to see what stays constant.
 - Combine what has already been computed at some stage in the loop with what has yet to be computed to yield a constant of some sort.

Study carefully many examples!
Example (exponent)

\[N \geq 0 \land A \geq 0 \]

\[k := N; \quad s := 1; \]

while \[k > 0 \] **do**

\[s := A \times s; \]
\[k := k - 1 \]

endwhile

\[s = A^N \]

We follow the “tips:”

- Trace algorithm with small numbers \(A = 2, \ N = 5 \).
- Build a table of values to find loop invariant.
- Notice that \(k \) is decreasing and that \(2^k \) represents the computation that still needs to be done.
- Add a column to the table for the value of \(2^k \).
- The value \(s \times 2^k = 32 \) remains constant throughout the execution of the loop.
Example (Exponent)

\[
\begin{align*}
\{N \geq 0 \land A \geq 0\} \\
\text{k := N; s := 1;} \\
\text{while k > 0 do} \\
\quad s := A \times s; \\
\quad k := k - 1 \\
\text{endwhile} \\
\{s = A^N\}
\end{align*}
\]

- Observe that \(s\) and \(2^k\) change when \(k\) changes.
- Their product is constant, namely \(32 = 2^5 = A^N\).
- This suggests that \(s \times A^k = A^N\) is part of the invariant.
- The relation \(k \geq 0\) seems to be invariant, and when combined with “¬b”, which is \(k \leq 0\), establishes \(k = 0\) at the end of the loop.
- When \(k = 0\) is joined with \(s \times A^k = A^N\), we get the postcondition \(s = A^N\).

\textbf{Loop Invariant:} \(\{k \geq 0 \land s \times A^k = A^N\}\).
Verification of the Program

Initialization:
\[\{N \geq 0 \land A \geq 0\} \rightarrow \{N = N \land N \geq 0 \land A \geq 0 \land 1 = 1\} \]
\[k := N; \ s := 1; \]
\[\{k = N \land N \geq 0 \land A \geq 0 \land s = 1\} \rightarrow \{k \geq 0 \land s \ast A^k = A^N\} \]

Preservation:
\[\{k \geq 0 \land s \ast A^k = A^N \land k > 0\} \rightarrow \{k > 0 \land s \ast A^k = A^N\} \rightarrow \]
\[\{k > 0 \land s \ast A \ast A^{k-1} = A^N\} \rightarrow \{k > 0 \land A \ast s \ast A^{k-1} = A^N\} \]
\[s := A \ast s; \]
\[\{k > 0 \land s \ast A^{k-1} = A^N\} \rightarrow \{k - 1 \geq 0 \land s \ast A^{k-1} = A^N\} \]
\[k := k - 1 \]
\[\{k \geq 0 \land s \ast A^k = A^N\} \]

Completion:
\[\{k \geq 0 \land s \ast 2^k = A^N \land k \leq 0\} \rightarrow \{k = 0 \land s \ast 2^k = A^N\} \rightarrow \{s = A^N\} \]
Further Topics

- Dealing with other language features:
 - Nested loops.
 - Procedure calls.
 - Recursive procedures.
 - ...

- Proving termination / total correctness.
 - Well founded orderings.
Acknowledgments

- Some slides and examples taken from:
 - Enrico Pontelli
 - Jim Lipton
 - Ken Slonneger and Barry L. Kurtz.
 Formal Syntax and Semantics of Programming Languages: A Laboratory-Based Approach.
 Addison-Wesley, Reading, Massachusetts.