Recalling Our Intro to the Course
The Program Correctness Problem

- Conventional models of using computers – not easy to determine correctness!
 - Has become a very important issue, not just in safety-critical apps.
 - Components with assured quality, being able to give a warranty, ...
 - Being able to run untrusted code, certificate carrying code, ...
A Simple Imperative Program

• Example:

```c
#include <stdio.h>
main() {
    int Number, Square;
    Number = 0;
    while(Number <= 5) {
        Square = Number * Number;
        printf("%d\n",Square);
        Number = Number + 1; }
}
```

• Is it correct? With respect to what?

• A suitable formalism:
 ◦ to provide specifications (describe problems), and
 ◦ to reason about the correctness of programs (their implementation).

is needed.
“Compute the squares of the natural numbers which are less or equal than 5.”

Ideal at first sight, but:

- verbose
- vague
- ambiguous
- needs context (assumed information)
- ...

Philosophers and Mathematicians already pointed this out a long time ago...
Logic

- A means of clarifying / formalizing the human thought process

- Logic for example tells us that (classical logic)
 * Aristotle likes cookies, and *
 * Plato is a friend of anyone who likes cookies *
 imply that
 * Plato is a friend of Aristotle *

- Symbolic logic:
 A shorthand for classical logic – plus many useful results:
 \[a_1 : \text{likes}(\text{aristotle}, \text{cookies}) \]
 \[a_2 : \forall X \text{ likes}(X, \text{cookies}) \rightarrow \text{friend}(\text{plato}, X) \]
 \[t_1 : \text{friend}(\text{plato}, \text{aristotle}) \]
 \[T[a_1, a_2] \vdash t_1 \]

- But, can logic be used:
 ◇ To represent the problem (specifications)?
 ◇ *Even perhaps to solve the problem?*
For expressing specifications and reasoning about the correctness of programs we need:

- Specification languages (assertions), modeling, ...
- Program semantics (models, axiomatic, fixpoint, ...).
- Proofs: program verification (and debugging, equivalence, ...).
Generating Squares: A Specification (I)

Numbers — we will use “Peano” representation for simplicity:

\[0 \rightarrow 0 \quad 1 \rightarrow s(0) \quad 2 \rightarrow s(s(0)) \quad 3 \rightarrow s(s(s(0))) \ldots \]

- Defining the natural numbers:
 \[\text{nat}(0) \land \text{nat}(s(0)) \land \text{nat}(s(s(0))) \land \ldots \]

- A better solution:
 \[\text{nat}(0) \land \forall X (\text{nat}(X) \rightarrow \text{nat}(s(X))) \]

- Order on the naturals:
 \[\forall X (\text{le}(0, X)) \land \]
 \[\forall X \forall Y (\text{le}(X, Y) \rightarrow \text{le}(s(X), s(Y))) \]

- Addition of naturals:
 \[\forall X (\text{nat}(X) \rightarrow \text{add}(0, X, X)) \land \]
 \[\forall X \forall Y \forall Z (\text{add}(X, Y, Z) \rightarrow \text{add}(s(X), Y, s(Z))) \]
Generating Squares: A Specification (II)

- **Multiplication of naturals:**
 \[
 \forall X \ (\text{nat}(X) \rightarrow \text{mult}(0, X, 0)) \land
 \forall X \forall Y \forall Z \forall W \ (\text{mult}(X, Y, W) \land \text{add}(W, Y, Z) \rightarrow \text{mult}(s(X), Y, Z))
 \]

- **Squares of the naturals:**
 \[
 \forall X \forall Y \ (\text{nat}(X) \land \text{nat}(Y) \land \text{mult}(X, X, Y) \rightarrow \text{nat} _ \text{square}(X, Y))
 \]

We can now write a *specification* of the (imperative) program, i.e., conditions that we want the program to meet:

- **Precondition:**
 empty.

- **Postcondition:**
 \[
 \forall X \ (\text{output}(X) \leftrightarrow (\exists Y \ \text{nat}(Y) \land \text{le}(Y, s(s(s(s(0))))) \land \text{nat}__\text{square}(Y, X)))
 \]
For expressing specifications and reasoning about the correctness of programs we need:

- Specification languages (assertions), modeling, ...
- **Program semantics** (models, axiomatic, fixpoint, ...).
- **Proofs**: program *verification* (and debugging, equivalence, ...).
Semantic Tasks

- Semantics:
 - A *semantics* associates a meaning (a mathematical object) to a program or program sentence.

- Semantic tasks:
 - Verification: proving that a program meets its specification.
 - Static debugging: finding where a program does not meet specifications.
 - Program equivalence: proving that two programs have the same semantics.
 - etc.
Styles of Semantics

- **Operational:**
 The meaning of program sentences is defined in terms of the steps (transformations from state to state) that computations may take during execution (derivations). Proofs by induction on derivations.

- **Axiomatic:**
 The meaning of program sentences is defined indirectly in terms of some axioms and rules of a *logic* of program properties.

- **Denotational (fixpoint):**
 The meaning of program sentences is given abstractly as *functions* on an appropriate *domain* (which is often a lattice). E.g., λ-calculus for functional programming. C.f., lattice / fixpoint theory.

- Also, **model (declarative) semantics:** (For (Constraint) Logic Programs:) The meaning of programs is given as a minimal model (“logical meaning”) of the logic that the program is written in.
Operational Semantics
Traditional Operational Semantics

- Meaning of program sentences defined in terms of the steps (state transitions, transformations from state to state) that computations may take during executions (derivations).
- Proofs by induction on derivations.
- Examples of concrete operational semantics:
 - Semantics modeling memory for imperative programs.
 - Interpreters and meta-interpreters (self-interpreters).
 - Resolution and CLP(\(\mathcal{X}\)) resolution, for (constraint) logic programs.
 - ...
- Examples of generic / standard methodologies:
 - Structural operational semantics.
 - Vienna definition language (VDL).
 - SECD machine.
 - ...

13
A Simple Imperative Language

Program ::= Statement
Statement ::= Statement ; Statement
 | noop
 | Id := Expression
 | if Expression then Statement else Statement
 | while Expression do Statement
Expression ::= Numeral
 | Id
 | Expression + Expression

- Only integer data types.
- Variables do not need to be declared.
Operational Semantics

- States: memory configurations – values of variables.
- \(s[X] \) denotes the value of the variable \(X \) in state \(s \).
- \(< \text{statement}, s > \Rightarrow s' \) denotes that
 if \text{statement} is executed in state \(s \) the resulting state is \(s' \).
- \(< \text{expression}, s > \Rightarrow \text{value} \) denotes that
 if \text{expression} is executed in state \(s \) it returns \text{value}.

- Expressions:
 - If \(n \) is a number \(< n, s > \Rightarrow n \)
 - If \(X \) is a variable \(< X, s > \Rightarrow s[X] \)
 - If \text{expression} is of the form \(\text{exp}_1 + \text{exp}_2 \) we write:
 \[
 \frac{< \text{exp}_1, s > \Rightarrow v_1 \quad < \text{exp}_2, s > \Rightarrow v_2}{< \text{exp}_1 + \text{exp}_2, s > \Rightarrow v_1 + v_2}
 \]
Operational Semantics

- Statements:
 \(s[X/v] \) denotes a new state, identical to \(s \) but where variable \(X \) has value \(v \).

 - Noop: \(< \text{noop}, s >\) \(\Rightarrow s\)
 - Assignment:
 \[
 \frac{< \text{exp}, s >\Rightarrow v}{< X := \text{exp}, s >\Rightarrow s[X/v]}
 \]
 - Conditional:
 \[
 \frac{< \text{exp}, s >\Rightarrow 0 \quad < \text{stmt}_2, s >\Rightarrow s'}{< \text{if} \ \text{exp} \ \text{then} \ \text{stmt}_1 \ \text{else} \ \text{stmt}_2, s >\Rightarrow s'}
 \]
 \[
 \frac{< \text{exp}, s >\Rightarrow v, v \neq 0 \quad < \text{stmt}_1, s >\Rightarrow s'}{< \text{if} \ \text{exp} \ \text{then} \ \text{stmt}_1 \ \text{else} \ \text{stmt}_2, s >\Rightarrow s'}
 \]
Operational Semantics

- Statements (Contd.):
 - Sequencing:
 \[
 < stmt_1, s > \Rightarrow s_1 \quad < stmt_2, s_1 > \Rightarrow s_2 \\
 < stmt_1 ; stmt_2, s > \Rightarrow s_2
 \]
 - Loops:
 \[
 < exp, s > \Rightarrow 0 \\
 < \textbf{while} \ exp \ \textbf{do} \ stmt, s \ > \Rightarrow s \\
 < \exp, s > \Rightarrow v, v \neq 0 \quad < stmt, s > \Rightarrow s' \quad < \textbf{while} \ exp \ \textbf{do} \ stmt, s' > \Rightarrow s'' \\
 < \textbf{while} \ exp \ \textbf{do} \ stmt, s > \Rightarrow s''
 \]
Example

- Program:

 \[
 x := 5; \\
 y := -6; \\
 \text{if} \ (x+y) \ \text{then} \ z := x \ \text{else} \ z := y
 \]

- Semantics:

 \[
 \begin{array}{c}
 \langle x := 5, \ s_0 \rangle \Rightarrow s_1 \\
 \langle y := -6, \ s_1 \rangle \Rightarrow s_2 \\
 \langle x+y, s_2 \rangle \Rightarrow -1 \\
 \langle S_3, \ s_2 \rangle \Rightarrow s_3 \\
 \langle y := -6; S_3, \ s_1 \rangle \Rightarrow s_3 \\
 \langle x := 5; y := -6; S_3, \ s_0 \rangle \Rightarrow s_3
 \end{array}
 \]

 where \(S_3 = \text{if} \ (x+y) \ \text{then} \ z := x \ \text{else} \ z := y \). And:

 \[
 s_1 = s_0[x/5] \\
 s_2 = s_1[y/6] \\
 s_3 = s_2[z/5]
 \]
Axiomatic Semantics
Axiomatic Semantics

- **Characteristics:**
 - Based on techniques from predicate logic.
 - There is no concept of *state of the machine* (as in operational or denotational semantics).
 - More abstract than, e.g., denotational semantics.
 - Semantic meaning of a program is based on assertions about relationships that remain the same each time the program executes.

- **Classical application:**
 - Proving programs to be correct w.r.t. specifications.

- **(Typical, classical) limitations:**
 - Side-effects disallowed in expressions.
 - `goto` command difficult to treat.
 - Aliasing not allowed.
 - Scope rules difficult to describe ⇒ require all identifier names to be unique.
History and References

- Main original papers:

- Many textbooks available.
Assertions and Correctness

- **Assertion:** a logical formula, say
 \[(m \neq 0 \land (\sqrt{m})^2 = m)\]
 that is true when a point in the program is reached.

- **Precondition:** Assertion before a command (\(\leftarrow\) *includes a whole program*).

- **Postcondition:** Assertion after a command.

\[
\{PRE\} \text{ C } \{POST\} \leftarrow \text{a "Hoare triple"}
\]

- **Partial Correctness:**
 If the initial assertion (the precondition) is true and if the program terminates, then the final assertion (the postcondition) must be true.
 \[\text{Precondition + Termination } \Rightarrow \text{ Postcondition}\]

- **Total Correctness:**
 Given that the precondition for the program is true, the program must terminate and the postcondition must be true.
 \[\text{Total Correctness } = \text{ Partial Correctness + Termination}\]
Hoare Calculus: The Assignment Axiom

- Examples:
 - $\{true\} \ m := 13 \ \{m = 13\}$
 - $\{n = 3 \land c = 2\} \ n := c \cdot n \ \{n = 6 \land c = 2\}$
 - $\{k \geq 0\} \ k := k + 1 \ \{k > 0\}$

- Notation:
 - $\{Precondition\} \ command \ \{Postcondition\}$
 - $P[V \rightarrow E]$ denotes substitution: putting E in place of V in P

- Axiom for assignment command:

$$\{P[V \rightarrow E]\} \ V := E \ \{P\}$$

Work backwards:

- Postcondition: $P \equiv (n = 6 \land c = 2)$
- Command: $n := c \cdot n$
- Precondition: $P[V \rightarrow E] \equiv (c \cdot n = 6 \land c = 2)$
 $$\equiv (n = 3 \land c = 2)$$
Hoare Calculus: Read and Write Commands

- **Notation:**
 - Use "\(IN = [1, 2, 3]\)" and "\(OUT = [4, 5]\)" to represent input and output files.
 - \([M|L]\) denotes list whose head is \(M\) and tail is \(L\).
 - \(K, M, N, \ldots\) represent arbitrary numerals.

- **Axiom for read command:**
 - \(\{IN = [K|L] \land P[V \rightarrow K]\} \text{ read } V \{IN = L \land P\}\)

- **Axiom for write command:**
 - \(\{OUT = L \land E = K \land P\} \text{ write } E \{OUT = L :: [K] \land E = K \land P\}\)

- **Note:** \(L :: [K]\) is the list whose last element is \(K\) (\(::\) represents concatenation).
Hoare Calculus: Rules of Inference

- **Format** (c.f. structural operational semantics):

 \[\frac{H_1, H_2, H_n, ...}{H} \]

- **Axiom for Command Sequencing:**

 \[\{P\} C_1 \{Q\}, \quad \{Q\} C_2 \{R\} \quad \frac{}{\{P\} C_1 ; C_2 \{R\}} \]

- **Axioms for If Commands:**

 \[\{P \land b\} C_1 \{Q\}, \quad \{P \land \neg b\} C_2 \{Q\} \quad \frac{}{\{P\} \text{ if } b \text{ then } C_1 \text{ else } C_2 \text{ endif } \{Q\}} \]

 \[\{P \land b\} C \{Q\}, \quad (P \land \neg b) \rightarrow Q \quad \frac{}{\{P\} \text{ if } b \text{ then } C \text{ endif } \{Q\}} \]
Hoare Calculus: Rules of Inference (Contd.)

- **Weaken Postcondition:**
 \[
 \begin{align*}
 \{P\}C\{Q\}, \ Q & \rightarrow R \\
 \{P\}C\{R\}
 \end{align*}
 \]

- **Strengthen Precondition:**
 \[
 P \rightarrow Q, \ \{Q\}C\{R\} \\
 \{P\}C\{R\}
 \]

- **And and Or Rules:**
 \[
 \begin{align*}
 \{P\}C\{Q\}, \ \{P'\}C\{Q'\} \\
 \{P \land P'\}C\{Q \land Q'\}
 \end{align*}
 \]

 \[
 \begin{align*}
 \{P\}C\{Q\}, \ \{P'\}C\{Q'\} \\
 \{P \lor P'\}C\{Q \lor Q'\}
 \end{align*}
 \]

- **Observation:**
 \[
 \{ \text{false} \} \text{ any-command } \{ \text{any-postcondition} \}
 \]
Example (I)

\{IN = [4, 9, 16] \land OUT = [0, 1, 2]\}
read \ m; \ \textbf{read} \ n;
if \ m \geq n \ \textbf{then}
\quad a := 2 \cdot m
 \\textbf{else}
\quad a := 2 \cdot n
endif;
\textbf{write} \ a
\{IN = [16] \land OUT = [0, 1, 2, 18]\}

\{IN = [4, 9, 16] \land OUT = [0, 1, 2]\} \rightarrow \{IN = [4|[9, 16]] \land OUT = [0, 1, 2] \land 4 = 4\}
\textbf{read} \ m;
\{IN = [9, 16] \land OUT = [0, 1, 2] \land m = 4\} \rightarrow
\{IN = [9||16]] \land OUT = [0, 1, 2] \land m = 4 \land 9 = 9\}
\textbf{read} \ n;
\{IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9\}

Recall:
\{IN = [K|L] \land P[V \rightarrow K]\}
\textbf{read} \ V
\{IN = L \land P\}
Example (II)

We have \(P = \{ IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \} \)

read \(m \); read \(n \);
if \(m \geq n \) then
 \[a := 2m \]
else
 \[a := 2n \]
endif;
write a

So, \(b \equiv m \geq n = false \) and \(\neg b = true \); thus \(\{ P \land b \} = false \) and \(\{ P \land \neg b \} = P \).

So, for \(C_2 \) we have:
\[
\{ P \land \neg b \} = \{ P \} = \\
\{ IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \} \rightarrow \\
\{ IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \land 2 \times n = 18 \} \\
\[a := 2n \] \\
\{ IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \land a = 18 \} \\
\]
and for \(C_1 \) we can have anything since the premise is false:
\[
\{ P \land b \} = false \\
\[a := 2m \] \\
\{ IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \land a = 18 \} \\
\]
Example (III)

\{IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9\} \leftarrow
\begin{array}{l}
\text{if } m \geq n \text{ then} \\
\quad a := 2 \times m \\
\text{else} \\
\quad a := 2 \times n
\end{array}
\text{endif};
\{IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \land a = 18\}

and
\{IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \land a = 18\}
\text{write a}
\{IN = [16] \land OUT = [0, 1, 2] :: [18] \land m = 4 \land n = 9 \land a = 18\}

which implies
\{IN = [16] \land OUT = [0, 1, 2, 18]\}
While Command

\[
\begin{align*}
\{P \land b\} C \{P\} \\
\{P\} \textbf{ while } b \textbf{ do } C \textbf{ endwhile } \{P \land \neg b\}
\end{align*}
\]

- **Loop Invariant:** \(P\)
 - Preserved during execution of the loop.

- **Loop steps:**
 - *Initialization:* show that the loop invariant \(\{P\}\) is initially true.
 - *Preservation:* show the loop invariant remains true when the loop executes (\(\{P \land b\}\)).
 - *Completion:* show that the loop invariant and the exit condition produce the final assertion (\(\{P \land \neg b\}\)).

- **Main Problem:**
 - Constructing the loop invariant.
Loop Invariant

- A relationship among the variables that does not change as the loop is executed.
- “Inspiration” tips:
 - Look for some expression that can be combined with $\neg b$ to produce part of the postcondition.
 - Construct a table of values to see what stays constant.
 - Combine what has already been computed at some stage in the loop with what has yet to be computed to yield a constant of some sort.

Study carefully many examples!
Example (exponent)

\{N \geq 0 \land A \geq 0\}

\begin{align*}
 k &:= N; \quad s := 1; \\
 \textbf{while} \quad k > 0 \textbf{ do} \\
 &\quad s := A \cdot s; \\
 &\quad k := k - 1
\end{align*}

\textbf{ endwhile}

\{s = A^N\}

We follow the “tips:”

- Trace algorithm with small numbers $A = 2$, $N = 5$.
- Build a table of values to find loop invariant.
- Notice that k is decreasing and that 2^k represents the computation that still needs to be done.
- Add a column to the table for the value of 2^k.
- The value $s \cdot 2^k = 32$ remains constant throughout the execution of the loop.
Example (Exponent)

\[\{ N \geq 0 \land A \geq 0 \} \]

\[
\begin{align*}
 k & := N; & s & := 1; \\
\text{while } & k > 0 \text{ do} & \\
 & s & := A \cdot s; \\
 & k & := k - 1 \\
\text{endwhile}
\end{align*}
\]

\[\{ s = A^N \} \]

\[
\begin{array}{cccc}
 k & s & 2^k & s \cdot 2^k \\
 5 & 1 & 32 & 32 \\
 4 & 2 & 16 & 32 \\
 3 & 4 & 8 & 32 \\
 2 & 8 & 4 & 32 \\
 1 & 16 & 2 & 32 \\
 0 & 32 & 1 & 32
\end{array}
\]

- Observe that \(s \) and \(2^k \) change when \(k \) changes.
- Their product is constant, namely \(32 = 2^5 = A^N \).
- This suggests that \(s \cdot A^k = A^N \) is part of the invariant.
- The relation \(k \geq 0 \) seems to be invariant, and when combined with "\(\neg b \)”, which is \(k \leq 0 \), establishes \(k = 0 \) at the end of the loop.
- When \(k = 0 \) is joined with \(s \cdot A^k = A^N \), we get the postcondition \(s = A^N \).

Loop Invariant: \(\{ k \geq 0 \land s \cdot A^k = A^N \} \).
Verification of the Program

Initialization:
\(\{N \geq 0 \land A \geq 0\} \rightarrow \{N = N \land N \geq 0 \land A \geq 0 \land 1 = 1\}\)
\[k := N; s := 1;\]
\(\{k = N \land N \geq 0 \land A \geq 0 \land s = 1\} \rightarrow \{k \geq 0 \land s \ast A^k = A^N\}\)

Preservation:
\(\{k \geq 0 \land s \ast A^k = A^N \land k > 0\} \rightarrow \{k > 0 \land s \ast A^k = A^N\} \rightarrow\)
\(\{k > 0 \land s \ast A \ast A^{k-1} = A^N\} \rightarrow \{k > 0 \land A \ast s \ast A^{k-1} = A^N\}\)
\[s := A \ast s;\]
\(\{k > 0 \land s \ast A^{k-1} = A^N\} \rightarrow \{k - 1 \geq 0 \land s \ast A^{k-1} = A^N\}\)
\[k := k - 1\]
\(\{k \geq 0 \land s \ast A^k = A^N\}\)

Completion:
\(\{k \geq 0 \land s \ast 2^k = A^N \land k \leq 0\} \rightarrow \{k = 0 \land s \ast 2^k = A^N\} \rightarrow \{s = A^N\}\)
Further Topics

- Dealing with other language features:
 - Nested loops.
 - Procedure calls.
 - Recursive procedures.
 - ...

- Proving termination / total correctness.
 - Well founded orderings.
Acknowledgments

- Some slides and examples taken from:
 - Enrico Pontelli
 - Jim Lipton
 - Ken Slonneger and Barry L. Kurtz.
 Formal Syntax and Semantics of Programming Languages: A Laboratory-Based Approach.
 Addison-Wesley, Reading, Massachusetts.