Recalling Our Intro to the Course
The Program Correctness Problem

- Conventional models of using computers – not easy to determine correctness!
 - Has become a very important issue, not just in safety-critical apps.
 - Components with assured quality, being able to give a warranty, ...
 - Being able to run untrusted code, certificate carrying code, ...
A Simple Imperative Program

- Example:

```c
#include <stdio.h>
main() {
    int Number, Square;
    Number = 0;
    while(Number <= 5)
        { Square = Number * Number;
          printf("%d\n",Square);
          Number = Number + 1; } }
```

- Is it correct? With respect to what?

- A suitable formalism:
 - to provide *specifications* (describe problems), and
 - to reason about the *correctness of programs* (their *implementation*).

is needed.
Natural Language

“Compute the squares of the natural numbers which are less or equal than 5.”

Ideal at first sight, but:

- verbose
- vague
- ambiguous
- needs context (assumed information)
- ...

Philosophers and Mathematicians already pointed this out a long time ago...
Logic

• A means of clarifying / formalizing the human thought process

• Logic for example tells us that (classical logic)
 Aristotle likes cookies, and
 Plato is a friend of anyone who likes cookies
 imply that
 Plato is a friend of Aristotle

• Symbolic logic:
 A shorthand for classical logic – plus many useful results:
 \[a_1 : \text{likes}(\text{aristotle, cookies}) \]
 \[a_2 : \forall X \, \text{likes}(X, \text{cookies}) \rightarrow \text{friend}(\text{plato, X}) \]
 \[t_1 : \text{friend}(\text{plato, aristotle}) \]
 \[T[a_1, a_2] \vdash t_1 \]

• But, can logic be used:
 ◦ To represent the problem (specifications)?
 ◦ Even perhaps to solve the problem?
For expressing specifications and reasoning about the correctness of programs we need:

- Specification languages (assertions), modeling, ...
- Program semantics (models, axiomatic, fixpoint, ...).
- Proofs: program verification (and debugging, equivalence, ...).
Generating Squares: A Specification (I)

Numbers—we will use “Peano” representation for simplicity:

\[0 \rightarrow 0 \quad 1 \rightarrow s(0) \quad 2 \rightarrow s(s(0)) \quad 3 \rightarrow s(s(s(0))) \ldots \]

- Defining the natural numbers:
 \[\text{nat}(0) \land \text{nat}(s(0)) \land \text{nat}(s(s(0))) \land \ldots \]

- A better solution:
 \[\text{nat}(0) \land \forall X \ (\text{nat}(X) \rightarrow \text{nat}(s(X))) \]

- Order on the naturals:
 \[\forall X \ (\text{le}(0, X)) \land \]
 \[\forall X \forall Y \ (\text{le}(X, Y) \rightarrow \text{le}(s(X), s(Y))) \]

- Addition of naturals:
 \[\forall X \ (\text{nat}(X) \rightarrow \text{add}(0, X, X)) \land \]
 \[\forall X \forall Y \forall Z \ (\text{add}(X, Y, Z) \rightarrow \text{add}(s(X), Y, s(Z))) \]
Generating Squares: A Specification (II)

- **Multiplication of naturals:**
 \[\forall X \ (\text{nat}(X) \rightarrow mult(0, X, 0)) \land \]
 \[\forall X \forall Y \forall Z \forall W \ (\text{mult}(X, Y, W) \land \text{add}(W, Y, Z) \rightarrow \text{mult}(s(X), Y, Z)) \]

- **Squares of the naturals:**
 \[\forall X \forall Y \ (\text{nat}(X) \land \text{nat}(Y) \land \text{mult}(X, X, Y) \rightarrow \text{nat} _ \text{square}(X, Y)) \]

We can now write a *specification* of the (imperative) program, i.e., conditions that we want the program to meet:

- **Precondition:**
 empty.

- **Postcondition:**
 \[\forall X \ (\text{output}(X) \leftarrow (\exists Y \ \text{nat}(Y) \land \text{le}(Y, s(s(s(s(0)))))) \land \text{nat} _ \text{square}(Y, X))) \]
For expressing specifications and reasoning about the correctness of programs we need:

- Specification languages (assertions), modeling, ...
- Program semantics (models, axiomatic, fixpoint, ...).
- Proofs: program verification (and debugging, equivalence, ...).
Semantic Tasks

- Semantics:
 - A *semantics* associates a meaning (a mathematical object) to a program or program sentence.

- Semantic tasks:
 - Verification: proving that a program meets its specification.
 - Static debugging: finding where a program does not meet specifications.
 - Program equivalence: proving that two programs have the same semantics.
 - etc.
Styles of Semantics

- **Operational:**
The meaning of program sentences is defined in terms of the steps (transformations from state to state) that computations may take during execution (derivations). Proofs by induction on derivations.

- **Axiomatic:**
The meaning of program sentences is defined indirectly in terms of some axioms and rules of a logic of program properties.

- **Denotational (fixpoint):**
The meaning of program sentences is given abstractly as functions on an appropriate domain (which is often a lattice). E.g., λ-calculus for functional programming. C.f., lattice / fixpoint theory.

- Also, **model (declarative) semantics:** (For (Constraint) Logic Programs:) The meaning of programs is given as a minimal model (“logical meaning”) of the logic that the program is written in.
Operational Semantics
Traditional Operational Semantics

- Meaning of program sentences defined in terms of the steps (state transitions, transformations from state to state) that computations may take during executions (derivations).
- Proofs by induction on derivations.
- Examples of concrete operational semantics:
 - Semantics modeling memory for imperative programs.
 - Interpreters and meta-interpreters (self-interpreters).
 - Resolution and CLP(∀) resolution, for (constraint) logic programs.
 - ...
- Examples of generic / standard methodologies:
 - Structural operational semantics.
 - Vienna definition language (VDL).
 - SECD machine.
 - ...
A Simple Imperative Language

Program ::= Statement
Statement ::= Statement ; Statement
 | noop
 | Id := Expression
 | if Expression then Statement else Statement
 | while Expression do Statement
Expression ::= Numeral
 | Id
 | Expression + Expression

• Only integer data types.

• Variables do not need to be declared.
Operational Semantics

- States: memory configurations – values of variables.
- $s[X]$ denotes the value of the variable X in state s.
- $<\text{statement}, s> \Rightarrow s'$ denotes that if statement is executed in state s the resulting state is s'.
- $<\text{expression}, s> \Rightarrow \text{value}$ denotes that if expression is executed in state s it returns value.

Expressions:
- If n is a number $<n,s> \Rightarrow n$
- If X is a variable $<X,s> \Rightarrow s[X]$
- If expression is of the form $\text{exp}_1 + \text{exp}_2$ we write:
 $<\text{exp}_1, s> \Rightarrow v_1 \quad <\text{exp}_2, s> \Rightarrow v_2$
 $<\text{exp}_1 + \text{exp}_2, s> \Rightarrow v_1 + v_2$
Operational Semantics

- **Statements:**

 $s[X/v]$ denotes a new state, identical to s but where variable X has value v.

 - Noop: $<\text{noop}, s> \Rightarrow s$

 - Assignment:

 \[
 \frac{<\text{exp}, s> \Rightarrow \text{v}}{<X := \text{exp}, s> \Rightarrow s[X/v]}
 \]

 - Conditional:

 \[
 \frac{<\text{exp}, s> \Rightarrow 0 \quad <\text{stmt}_2, s> \Rightarrow s'}{<\text{if exp then stmt}_1 \text{ else stmt}_2, s> \Rightarrow s'}
 \]

 \[
 \frac{<\text{exp}, s> \Rightarrow \text{v, v} \neq 0 \quad <\text{stmt}_1, s> \Rightarrow s'}{<\text{if exp then stmt}_1 \text{ else stmt}_2, s> \Rightarrow s'}
 \]
Operational Semantics

- Statements (Contd.):
 - Sequencing:
 \[
 \begin{align*}
 \langle stmt_1, s \rangle & \Rightarrow s_1 & \langle stmt_2, s_1 \rangle & \Rightarrow s_2 \\
 \langle stmt_1 ; stmt_2, s \rangle & \Rightarrow s_2
 \end{align*}
 \]
 - Loops:
 \[
 \begin{align*}
 \langle exp, s \rangle & \Rightarrow 0 \\
 \langle while \ exp \ do \ stmt, s \rangle & \Rightarrow s \\
 \langle exp, s \rangle & \Rightarrow v, v \neq 0 & \langle stmt, s \rangle & \Rightarrow s' & \langle while \ exp \ do \ stmt, s' \rangle & \Rightarrow s'' \\
 \langle while \ exp \ do \ stmt, s \rangle & \Rightarrow s''
 \end{align*}
 \]
Example

- Program:

  ```
  x := 5;
y := -6;
if (x+y) then z := x else z := y
  ```

- Semantics:

 <x := 5, s_0> ⇒ s_1

 <y := -6, s_1> ⇒ s_2

 <x+y, s_2> ⇒ -1

 <z := x, s_2> ⇒ s_3

 <y := -6, s_3> ⇒ s_3

 <S_3, s_1> ⇒ s_3

 <x := 5; y := -6; S_3, s_0> ⇒ s_3

 where \(S_3 = \text{if } (x+y) \text{ then } z := x \text{ else } z := y \).

 And:

 \(s_1 = s_0[x/5] \)

 \(s_2 = s_1[y/-6] \)

 \(s_3 = s_2[z/5] \)
Axiomatic Semantics
Axiomatic Semantics

- **Characteristics:**
 - Based on techniques from predicate logic.
 - There is no concept of *state of the machine* (as in operational or denotational semantics).
 - More abstract than, e.g., denotational semantics.
 - Semantic meaning of a program is based on assertions about relationships that remain the same each time the program executes.

- **Classical application:**
 - Proving programs to be correct w.r.t. specifications.

- **(Typical, classical) limitations:**
 - Side-effects disallowed in expressions.
 - `goto` command difficult to treat.
 - Aliasing not allowed.
 - Scope rules difficult to describe \(\Rightarrow\) require all identifier names to be unique.
History and References

- Main original papers:

- Many textbooks available.
Assertions and Correctness

- **Assertion**: a logical formula, say

 \[(m \neq 0 \land (\sqrt{m})^2 = m)\]

 that is true when a point in the program is reached.

- **Precondition**: Assertion before a command (← includes a whole program).

- **Postcondition**: Assertion after a command.

 \{\textit{PRE}\} \textbf{C} \{\textit{POST}\} ← a “Hoare triple”

- **Partial Correctness**:
 If the initial assertion (the precondition) is true and if the program terminates, then the final assertion (the postcondition) must be true.

 \textit{Precondition} + \textit{Termination} \implies \textit{Postcondition}

- **Total Correctness**:
 Given that the precondition for the program is true, the program must terminate and the postcondition must be true.

 \textit{Total Correctness} = \textit{Partial Correctness} + \textit{Termination}
Hoare Calculus: The Assignment Axiom

- **Examples:**
 - \(\{true\} \ m := 13 \ {m = 13}\)
 - \(\{n = 3 \land c = 2\} \ n := c \ast n \ {n = 6 \land c = 2}\)
 - \(\{k \geq 0\} \ k := k + 1 \ {k > 0}\)

- **Notation:**
 - \(\{\text{Precondition}\} \ \text{command} \ \{\text{Postcondition}\}\)
 - \(P[V \rightarrow E]\) denotes substitution: putting \(E\) in place of \(V\) in \(P\)

- **Axiom for assignment command:**
 \[
 \{P[V \rightarrow E]\} \ V := E \ \{P\}
 \]

Work backwards:

- **Postcondition:** \(P \equiv (n = 6 \land c = 2)\)
- **Command:** \(n := c \ast n\)
- **Precondition:**
 \[
 P[V \rightarrow E] \equiv (c \ast n = 6 \land c = 2) \\
 \equiv (n = 3 \land c = 2)
 \]
Hoare Calculus: Read and Write Commands

- **Notation:**
 - Use “\(\text{IN} = [1, 2, 3] \)” and “\(\text{OUT} = [4, 5] \)” to represent input and output files.
 - \([M|L]\) denotes list whose head is \(M \) and tail is \(L \).
 - \(K, M, N, \ldots \) represent arbitrary numerals.

- **Axiom for read command:**
 - \(\{ \text{IN} = [K|L] \land P[V \rightarrow K] \} \text{ read } V \{ \text{IN} = L \land P \} \)

- **Axiom for write command:**
 - \(\{ \text{OUT} = L \land E = K \land P \} \text{ write } E \{ \text{OUT} = L :: [K] \land E = K \land P \} \)

- **Note:** \(L :: [K] \) is the list whose last element is \(K \) (:: represents concatenation).
Hoare Calculus: Rules of Inference

- **Format** (c.f. structural operational semantics):

 \[
 \frac{H_1, H_2, H_n, \ldots}{H}
 \]

- **Axiom for Command Sequencing:**

 \[
 \frac{\{P\}C_1\{Q\}, \{Q\}C_2\{R\}}{\{P\}C_1; C_2\{R\}}
 \]

- **Axioms for If Commands:**

 \[
 \frac{\{P \land b\}C_1\{Q\}, \{P \land \neg b\}C_2\{Q\}}{\{P\} \text{ if } b \text{ then } C_1 \text{ else } C_2 \text{ endif } \{Q\}}
 \]

 \[
 \frac{\{P \land b\}C\{Q\}, (P \land \neg b) \rightarrow Q}{\{P\} \text{ if } b \text{ then } C \text{ endif } \{Q\}}
 \]
Hoare Calculus: Rules of Inference (Contd.)

- **Weaken Postcondition:**

 \[\{ \mathbf{P} \} C \{ \mathbf{Q} \}, \quad \mathbf{Q} \rightarrow \mathbf{R} \]

 \[\{ \mathbf{P} \} C \{ \mathbf{R} \} \]

- **Strengthen Precondition:**

 \[\mathbf{P} \rightarrow \mathbf{Q}, \quad \{ \mathbf{Q} \} C \{ \mathbf{R} \} \]

 \[\{ \mathbf{P} \} C \{ \mathbf{R} \} \]

- **And and Or Rules:**

 \[\{ \mathbf{P} \} C \{ \mathbf{Q} \}, \quad \{ \mathbf{P'} \} C \{ \mathbf{Q'} \} \]

 \[\{ \mathbf{P \land P'} \} C \{ \mathbf{Q \land Q'} \} \]

 \[\{ \mathbf{P} \} C \{ \mathbf{Q} \}, \quad \{ \mathbf{P'} \} C \{ \mathbf{Q'} \} \]

 \[\{ \mathbf{P \lor P'} \} C \{ \mathbf{Q \lor Q'} \} \]

- **Observation:**

 \[\{ \text{false} \} \text{ any-command } \{ \text{any-postcondition} \} \]
Example (I)

\{IN = [4, 9, 16] \land OUT = [0, 1, 2]\}
read m; read n;
if m \geq n then
 a := 2 \times m
else
 a := 2 \times n
endif;
write a
\{IN = [16] \land OUT = [0, 1, 2, 18]\}

\{IN = [4, 9, 16] \land OUT = [0, 1, 2]\} \rightarrow \{IN = [4] | [9, 16] \land OUT = [0, 1, 2] \land 4 = 4\}
read m;
\{IN = [9, 16] \land OUT = [0, 1, 2] \land m = 4\} \rightarrow
\{IN = [9] | [16] \land OUT = [0, 1, 2] \land m = 4 \land 9 = 9\}
read n;
\{IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9\}

Recall:
\{IN = [K | L] \land P[V \rightarrow K]\}
read V
\{IN = L \land P\}
Example (II)

We have \(P = \{ IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \} \)

```
read m;  read n;
if m \geq n then
    a := 2*m
else
    a := 2*n
endif;
write a
```

So, \(b \equiv m \geq n = \text{false} \) and \(\neg b = \text{true} \); thus \(\{ P \land b \} = \text{false} \) and \(\{ P \land \neg b \} = P \).

So, for \(C_2 \) we have:

\[
\begin{align*}
\{ P \land \neg b \} &= \{ P \} = \\
\{ IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \} & \rightarrow \\
\{ IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \land 2 \ast n = 18 \}
\end{align*}
\]

```
a := 2*n
```

\[
\begin{align*}
\{ P \land \neg b \} C_1 \{ Q \}, \quad \{ P \land \neg b \} C_2 \{ Q \} \\
\{ P \} \text{ if } b \text{ then } C_1 \text{ else } C_2 \text{ endif } \{ Q \}
\end{align*}
\]

and for \(C_1 \) we can have anything since the premise is false:

\[
\begin{align*}
\{ P \land b \} &= \text{false} \\
a &= 2*m \\
\{ IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \land a = 18 \}
\end{align*}
\]
Example (III)

\[\{ \text{IN} = [16] \land \text{OUT} = [0, 1, 2] \land m = 4 \land n = 9 \} \]

\textbf{if} \ m \geq \ n \ \textbf{then}

\[
\text{a} := 2 \times m
\]

\textbf{else}

\[
\text{a} := 2 \times n
\]

\textbf{endif};

\{ \text{IN} = [16] \land \text{OUT} = [0, 1, 2] \land m = 4 \land n = 9 \land a = 18 \}

\text{and}

\{ \text{IN} = [16] \land \text{OUT} = [0, 1, 2] \land m = 4 \land n = 9 \land a = 18 \}

\text{write} \ a

\{ \text{IN} = [16] \land \text{OUT} = [0, 1, 2] :: [18] \land m = 4 \land n = 9 \land a = 18 \}

\text{which implies}

\{ \text{IN} = [16] \land \text{OUT} = [0, 1, 2, 18] \}
While Command

\[
\begin{align*}
\{ P \land b \} C \{ P \} \\
\{ P \} \textbf{ while } b \textbf{ do } C \textbf{ endwhile } \{ P \land \neg b \}
\end{align*}
\]

- **Loop Invariant:** \(P\)
 - Preserved during execution of the loop.

- **Loop steps:**
 - *Initialization:* show that the loop invariant \(\{P\}\) is initially true.
 - *Preservation:*
 - show the loop invariant remains true when the loop executes (\(\{P \land b\}\)).
 - *Completion:* show that the loop invariant and the exit condition produce the final assertion (\(\{P \land \neg b\}\)).

- **Main Problem:**
 - Constructing the loop invariant.
Loop Invariant

- A relationship among the variables that does not change as the loop is executed.

- “Inspiration” tips:
 - Look for some expression that can be combined with $\neg b$ to produce part of the postcondition.
 - Construct a table of values to see what stays constant.
 - Combine what has already been computed at some stage in the loop with what has yet to be computed to yield a constant of some sort.

Study carefully many examples!
Example (exponent)

\{N \geq 0 \land A \geq 0\}

k := N; \quad s := 1;

while \quad k > 0 \quad do
 s := A \times s;
 k := k - 1
endwhile

\{s = A^N\}

We follow the “tips:”

- Trace algorithm with small numbers $A = 2$, $N = 5$.
- Build a table of values to find loop invariant.
- Notice that k is decreasing and that 2^k represents the computation that still needs to be done.
- Add a column to the table for the value of 2^k.
- The value $s \times 2^k = 32$ remains constant throughout the execution of the loop.
Example (Exponent)

\[
\{ N \geq 0 \land A \geq 0 \}
\]

\[
\begin{align*}
&k := N; \\
&s := 1; \\
&\textbf{while } k > 0 \textbf{ do} \\
&\quad s := A^*s; \\
&\quad k := k-1 \\
\textbf{endwhile}
\end{align*}
\]

\[
\{ s = A^N \}
\]

<table>
<thead>
<tr>
<th>k</th>
<th>s</th>
<th>(2^k)</th>
<th>(s \cdot 2^k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>4</td>
<td>32</td>
</tr>
<tr>
<td>1</td>
<td>16</td>
<td>2</td>
<td>32</td>
</tr>
<tr>
<td>0</td>
<td>32</td>
<td>1</td>
<td>32</td>
</tr>
</tbody>
</table>

- Observe that \(s\) and \(2^k\) change when \(k\) changes.
- Their product is constant, namely \(32 = 2^5 = A^N\).
- This suggests that \(s \cdot A^k = A^N\) is part of the invariant.
- The relation \(k \geq 0\) seems to be invariant, and when combined with "\(-b\)”, which is \(k \leq 0\), establishes \(k = 0\) at the end of the loop.
- When \(k = 0\) is joined with \(s \cdot A^k = A^N\), we get the postcondition \(s = A^N\).

Loop Invariant: \(\{ k \geq 0 \land s \cdot A^k = A^N \} \).
Verification of the Program

Initialization:
\[\{N \geq 0 \land A \geq 0\} \rightarrow \{N = N \land N \geq 0 \land A \geq 0 \land 1 = 1\}\]
\[k := N; s := 1;\]
\[\{k = N \land N \geq 0 \land A \geq 0 \land s = 1\} \rightarrow \{k \geq 0 \land s \ast A^k = A^N\}\]

Preservation:
\[\{k \geq 0 \land s \ast A^k = A^N \land k > 0\} \rightarrow \{k > 0 \land s \ast A^k = A^N\}\]
\[\{k > 0 \land s \ast A \ast A^{k-1} = A^N\} \rightarrow \{k > 0 \land A \ast s \ast A^{k-1} = A^N\}\]
\[s := A^s;\]
\[\{k > 0 \land s \ast A^{k-1} = A^N\} \rightarrow \{k - 1 \geq 0 \land s \ast A^{k-1} = A^N\}\]
\[k := k - 1\]
\[\{k \geq 0 \land s \ast A^k = A^N\}\]

Completion:
\[\{k \geq 0 \land s \ast 2^k = A^N \land k \leq 0\} \rightarrow \{k = 0 \land s \ast 2^k = A^N\} \rightarrow \{s = A^N\}\]
Further Topics

- Dealing with other language features:
 - Nested loops.
 - Procedure calls.
 - Recursive procedures.
 - ...

- Proving termination / total correctness.
 - Well founded orderings.
Acknowledgments

- Some slides and examples taken from:
 - Enrico Pontelli
 - Jim Lipton
 - Ken Slonneger and Barry L. Kurtz.
 Formal Syntax and Semantics of Programming Languages: A Laboratory-Based Approach.
 Addison-Wesley, Reading, Massachusetts.