Recalling Our Intro to the Course
The Program Correctness Problem

- Conventional models of using computers – not easy to determine correctness!
 - Has become a very important issue, not just in safety-critical apps.
 - Components with assured quality, being able to give a warranty, ...
 - Being able to run untrusted code, certificate carrying code, ...
A Simple Imperative Program

- Example:

```c
#include <stdio.h>
main() {
    int Number, Square;
    Number = 0;
    while(Number <= 5)
    {
        Square = Number * Number;
        printf("%d\n",Square);
        Number = Number + 1;
    }
}
```

- Is it correct? With respect to what?

- A suitable formalism:
 - to provide *specifications* (describe problems), and
 - to reason about the *correctness of programs* (their *implementation*).

is needed.
“Compute the squares of the natural numbers which are less or equal than 5.”

Ideal at first sight, but:

- verbose
- vague
- ambiguous
- needs context (assumed information)
- ...

Philosophers and Mathematicians already pointed this out a long time ago...
Logic

- A means of clarifying / formalizing the human thought process
- Logic for example tells us that (classical logic)
 Aristotle likes cookies, and
 Plato is a friend of anyone who likes cookies
 imply that
 Plato is a friend of Aristotle
- Symbolic logic:
 A shorthand for classical logic – plus many useful results:
 \(a_1 : \text{likes}(\text{aristotle, cookies}) \)
 \(a_2 : \forall X \text{ likes}(X, \text{cookies}) \rightarrow \text{friend}(\text{plato, X}) \)
 \(t_1 : \text{friend}(\text{plato, aristotle}) \)
 \(T[a_1, a_2] \vdash t_1 \)
- But, can logic be used:
 - To represent the problem (specifications)?
 - Even perhaps to solve the problem?
For expressing specifications and reasoning about the correctness of programs we need:

- Specification languages (assertions), modeling, ...
- Program semantics (models, axiomatic, fixpoint, ...).
- Proofs: program *verification* (and debugging, equivalence, ...).
Generating Squares: A Specification (I)

Numbers—we will use “Peano” representation for simplicity:
0 → 0 1 → s(0) 2 → s(s(0)) 3 → s(s(s(0))) ...

- Defining the natural numbers:
 \(\text{nat}(0) \land \text{nat}(s(0)) \land \text{nat}(s(s(0))) \land \ldots \)

- A better solution:
 \(\text{nat}(0) \land \forall X (\text{nat}(X) \rightarrow \text{nat}(s(X))) \)

- Order on the naturals:
 \(\forall X (\text{le}(0, X)) \land \)
 \(\forall X \forall Y (\text{le}(X, Y) \rightarrow \text{le}(s(X), s(Y))) \)

- Addition of naturals:
 \(\forall X (\text{nat}(X) \rightarrow \text{add}(0, X, X)) \land \)
 \(\forall X \forall Y \forall Z (\text{add}(X, Y, Z) \rightarrow \text{add}(s(X), Y, s(Z))) \)
Generating Squares: A Specification (II)

• Multiplication of naturals:
 \[\forall X \ (\text{nat}(X) \rightarrow \text{mult}(0, X, 0)) \land \]
 \[\forall X \forall Y \forall Z \forall W \ (\text{mult}(X, Y, W) \land \text{add}(W, Y, Z) \rightarrow \text{mult}(s(X), Y, Z))\]

• Squares of the naturals:
 \[\forall X \forall Y \ (\text{nat}(X) \land \text{nat}(Y) \land \text{mult}(X, X, Y) \rightarrow \text{nat}_\text{square}(X, Y))\]

We can now write a specification of the (imperative) program, i.e., conditions that we want the program to meet:

• **Precondition:**
 empty.

• **Postcondition:**
 \[\forall X (\text{output}(X) \leftarrow (\exists Y \ \text{nat}(Y) \land \text{le}(Y, s(s(s(s(0))))) \land \text{nat}_\text{square}(Y, X)))\]
For expressing specifications and reasoning about the correctness of programs we need:

- Specification languages (assertions), modeling, ...
- Program semantics (models, axiomatic, fixpoint, ...).
- Proofs: program verification (and debugging, equivalence, ...).
• Semantics:
 ◦ A *semantics* associates a meaning (a mathematical object) to a program or program sentence.

• Semantic tasks:
 ◦ Verification: proving that a program meets its specification.
 ◦ Static debugging: finding where a program does not meet specifications.
 ◦ Program equivalence: proving that two programs have the same semantics.
 ◦ etc.
Styles of Semantics

- **Operational:**
 The meaning of program sentences is defined in terms of the steps (transformations from state to state) that computations may take during execution (derivations). Proofs by induction on derivations.

- **Axiomatic:**
 The meaning of program sentences is defined indirectly in terms of some axioms and rules of a *logic* of program properties.

- **Denotational (fixpoint):**
 The meaning of program sentences is given abstractly as *functions* on an appropriate *domain* (which is often a lattice). E.g., λ-calculus for functional programming. C.f., lattice / fixpoint theory.

- Also, **model (declarative) semantics:** (For (Constraint) Logic Programs:) The meaning of programs is given as a minimal model (“logical meaning”) of the logic that the program is written in.
Operational Semantics
Traditional Operational Semantics

- Meaning of program sentences defined in terms of the steps (state transitions, transformations from state to state) that computations may take during executions (derivations).
- Proofs by induction on derivations.
- Examples of concrete operational semantics:
 - Semantics modeling memory for imperative programs.
 - Interpreters and meta-interpreters (self-interpreters).
 - Resolution and CLP(\(\mathcal{X}\)) resolution, for (constraint) logic programs.
 - ...
- Examples of generic / standard methodologies:
 - *Structural operational semantics*.
 - Vienna definition language (VDL).
 - SECD machine.
 - ...

A Simple Imperative Language

Program ::= Statement
Statement ::= Statement ; Statement
| noop
| Id := Expression
| if Expression then Statement else Statement
| while Expression do Statement
Expression ::= Numeral
| Id
| Expression + Expression

- Only integer data types.
- Variables do not need to be declared.
Operational Semantics

- States: memory configurations – values of variables.
- $s[X]$ denotes the value of the variable X in state s.
- $<\text{statement}, s> \Rightarrow s'$ denotes that if statement is executed in state s the resulting state is s'.
- $<\text{expression}, s> \Rightarrow \text{value}$ denotes that if expression is executed in state s it returns value.

Expressions:
- If n is a number $<n, s> \Rightarrow n$
- If X is a variable $<X, s> \Rightarrow s[X]$
- If expression is of the form $\text{exp}_1 + \text{exp}_2$ we write:
 \[
 \frac{<\text{exp}_1, s> \Rightarrow v_1 \quad <\text{exp}_2, s> \Rightarrow v_2}{<\text{exp}_1 + \text{exp}_2, s> \Rightarrow v_1 + v_2}
 \]
Operational Semantics

- **Statements:**
 \(s[X/v] \) denotes a new state, identical to \(s \) but where variable \(X \) has value \(v \).

 - **Noop:** \(\langle \text{noop}, s \rangle \Rightarrow s \)

 - **Assignment:**

 \[
 \frac{< \text{exp}, s > \Rightarrow v}{< X := \text{exp}, s > \Rightarrow s[X/v]}
 \]

 - **Conditional:**

 \[
 \frac{< \text{exp}, s > \Rightarrow 0 \quad < \text{stmt}_2, s > \Rightarrow s'}{< \text{if } \text{exp then } \text{stmt}_1 \text{ else } \text{stmt}_2, s > \Rightarrow s'}
 \]

 \[
 \frac{< \text{exp}, s > \Rightarrow v, v \neq 0 \quad < \text{stmt}_1, s > \Rightarrow s'}{< \text{if } \text{exp then } \text{stmt}_1 \text{ else } \text{stmt}_2, s > \Rightarrow s'}
 \]
Operational Semantics

- **Statements (Contd.):**

 ◦ **Sequencing:**

 \[
 \begin{align*}
 <stmt_1, s> &\Rightarrow s_1 \\
 <stmt_2, s_1> &\Rightarrow s_2 \\
 <stmt_1; stmt_2, s> &\Rightarrow s_2 \\
 \end{align*}
 \]

 ◦ **Loops:**

 \[
 \begin{align*}
 <exp, s> &\Rightarrow 0 \\
 <\textbf{while} \ exp \ \textbf{do} \ stmt, s> &\Rightarrow s \\
 \end{align*}
 \]

 \[
 \begin{align*}
 <exp, s> &\Rightarrow v, v \neq 0 \\
 <stmt, s> &\Rightarrow s' \\
 <\textbf{while} \ exp \ \textbf{do} \ stmt, s'> &\Rightarrow s'' \\
 \end{align*}
 \]

 \[
 <\textbf{while} \ exp \ \textbf{do} \ stmt, s> &\Rightarrow s''
 \]
Example

- Program:
 \[
 \begin{align*}
 x & := 5; \\
 y & := -6; \\
 \text{if } (x+y) \text{ then } z & := x \text{ else } z := y
 \end{align*}
 \]

- Semantics:

 \[
 \begin{align*}
 < x := 5, s_0 > & \Rightarrow s_1 \\
 < y := -6, s_1 > & \Rightarrow s_2 \\
 < x+y, s_2 > & \Rightarrow -1 \\
 < z := x, s_2 > & \Rightarrow s_3 \\
 < S_3, s_2 > & \Rightarrow s_3 \\
 < S_3, s_0 > & \Rightarrow s_3
 \end{align*}
 \]

 where \(S_3 = \text{if } (x+y) \text{ then } z := x \text{ else } z := y \).

 And:

 \[
 \begin{align*}
 s_1 & = s_0[x/5] \\
 s_2 & = s_1[y/-6] \\
 s_3 & = s_2[z/5]
 \end{align*}
 \]
Axiomatic Semantics
Axiomatic Semantics

- **Characteristics:**
 - Based on techniques from predicate logic.
 - There is no concept of *state of the machine* (as in operational or denotational semantics).
 - More abstract than, e.g., denotational semantics.
 - Semantic meaning of a program is based on assertions about relationships that remain the same each time the program executes.

- **Classical application:**
 - Proving programs to be correct w.r.t. specifications.

- **(Typical, classical) limitations:**
 - Side-effects disallowed in expressions.
 - `goto` command difficult to treat.
 - Aliasing not allowed.
 - Scope rules difficult to describe \(\Rightarrow\) require all identifier names to be unique.
History and References

- Main original papers:

- Many textbooks available.
Assertions and Correctness

- **Assertion**: a logical formula, say

 \[(m \neq 0 \land (\sqrt{m})^2 = m) \]

 that is true when a point in the program is reached.

- **Precondition**: Assertion before a command \(\leftarrow \) includes a whole program.

- **Postcondition**: Assertion after a command.

 \[
 \{\text{PRE}\} \text{ C } \{\text{POST}\} \leftarrow \text{ a \text{ “Hoare triple”}}
 \]

- **Partial Correctness**: If the initial assertion (the precondition) is true and if the program terminates, then the final assertion (the postcondition) must be true.

 \[\text{Precondition + Termination} \implies \text{Postcondition} \]

- **Total Correctness**: Given that the precondition for the program is true, the program must terminate and the postcondition must be true.

 \[\text{Total Correctness} = \text{Partial Correctness} + \text{Termination} \]
Hoare Calculus: The Assignment Axiom

- **Examples:**
 - $\{\text{true}\} \; m := 13 \; \{m = 13\}$
 - $\{n = 3 \land c = 2\} \; n := c \cdot n \; \{n = 6 \land c = 2\}$
 - $\{k \geq 0\} \; k := k + 1 \; \{k > 0\}$

- **Notation:**
 - $\{\text{Precondition}\} \; \text{command} \; \{\text{Postcondition}\}$
 - $P[V \rightarrow E]$ denotes substitution: putting E in place of V in P

- **Axiom for assignment command:**
 \[
 \{P[V \rightarrow E]\} \; V := E \; \{P\}
 \]

Work backwards:
- **Postcondition:** $P \equiv (n = 6 \land c = 2)$
- **Command:** $n := c \cdot n$
- **Precondition:**
 \[
 P[V \rightarrow E] \equiv (c \cdot n = 6 \land c = 2) \\
 \equiv (n = 3 \land c = 2)
 \]
Hoare Calculus: Read and Write Commands

- **Notation:**
 - Use "\(IN = [1, 2, 3] \)" and "\(OUT = [4, 5] \)" to represent input and output files.
 - \([M|L]\) denotes list whose head is \(M \) and tail is \(L \).
 - \(K, M, N, \ldots \) represent arbitrary numerals.

- **Axiom for read command:**
 - \(\{ IN = [K|L] \land P[V \rightarrow K] \} \text{ read } V \{ IN = L \land P \} \)

- **Axiom for write command:**
 - \(\{ OUT = L \land E = K \land P \} \text{ write } E \{ OUT = L :: [K] \land E = K \land P \} \)

- **Note:** \(L :: [K] \) is the list whose last element is \(K \) (\(:: \) represents concatenation).
Hoare Calculus: Rules of Inference

- **Format** (c.f. structural operational semantics):

 \[
 H_1, H_2, H_n, ... \\
 \hline
 H
 \]

- **Axiom for Command Sequencing:**

 \[
 \{P\} C_1\{Q\}, \{Q\} C_2\{R\} \\
 \hline
 \{P\} C_1; C_2\{R\}
 \]

- **Axioms for If Commands:**

 \[
 \{P \land b\} C_1\{Q\}, \{P \land \neg b\} C_2\{Q\} \\
 \hline
 \{P\} \text{ if } b \text{ then } C_1 \text{ else } C_2 \text{ endif } \{Q\}
 \]

 \[
 \{P \land b\} C\{Q\}, (P \land \neg b) \rightarrow Q \\
 \hline
 \{P\} \text{ if } b \text{ then } C \text{ endif } \{Q\}
 \]
Hoare Calculus: Rules of Inference (Contd.)

- **Weaken Postcondition:**

\[
\frac{\{P\}C\{Q\}, \ Q \to \ R}{\{P\}C\{R\}}
\]

- **Strengthen Precondition:**

\[
\frac{P \to Q, \ \{Q\}C\{R\}}{\{P\}C\{R\}}
\]

- **And and Or Rules:**

\[
\frac{\{P\}C\{Q\}, \ \{P'\}C\{Q'\}}{\{P \land P'\}C\{Q \land Q'\}}
\]

\[
\frac{\{P\}C\{Q\}, \ \{P'\}C\{Q'\}}{\{P \lor P'\}C\{Q \lor Q'\}}
\]

- **Observation:**

\[
\{\text{false}\} \ any-command \ \{\text{any-postcondition}\}
\]
Example (I)

\{IN = [4, 9, 16] \land OUT = [0, 1, 2]\}
read m; read n;
if m \geq n then
 a := 2*m
else
 a := 2*n
endif;
write a
\{IN = [16] \land OUT = [0, 1, 2, 18]\}

\{IN = [4, 9, 16] \land OUT = [0, 1, 2]\} \rightarrow \{IN = [4][9, 16] \land OUT = [0, 1, 2] \land 4 = 4\}
read m;
\{IN = [9, 16] \land OUT = [0, 1, 2] \land m = 4\} \rightarrow
\{IN = [9][16] \land OUT = [0, 1, 2] \land m = 4 \land 9 = 9\}
read n;
\{IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9\}

Recall:
\{IN = [K|L] \land P[V \rightarrow K]\}
read V
\{IN = L \land P\}
Example (II)

We have \(P = \{ IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \} \)

read \(m \); read \(n \);
if \(m \geq n \) then
\[
\text{a := 2} \ast m
\]
else
\[
\text{a := 2} \ast n
\]
endif;
write \(a \)

So, \(b \equiv m \geq n = \text{false} \) and \(\neg b = \text{true} \); thus \(\{ P \land b \} = \text{false} \) and \(\{ P \land \neg b \} = P \).

So, for \(C_2 \) we have:
\[
\{ P \land \neg b \} = \{ P \} = \\
\{ IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \} \rightarrow \\
\{ IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \land 2 \ast n = 18 \}
\]
\[
\text{a := 2} \ast n
\]
\[
\{ IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \land a = 18 \}
\]
and for \(C_1 \) we can have anything since the premise is false:
\[
\{ P \land b \} = \text{false}
\]
\[
\text{a := 2} \ast m
\]
\[
\{ IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \land a = 18 \}
Example (III)

\[
\{IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9\}
\]

\[
\text{if } m \geq n \text{ then}
\]

\[
a := 2 \times m
\]

\[
\text{else}
\]

\[
a := 2 \times n
\]

\[
\text{endif;}
\]

\[
\{IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \land a = 18\}
\]

and

\[
\{IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \land a = 18\}
\]

write \(a\)

\[
\{IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \land a = 18\}
\]

which implies

\[
\{IN = [16] \land OUT = [0, 1, 2, 18]\}
\]
While Command

\[
\begin{align*}
\{P \land b\} C \{P\} \\
\{P\} \textbf{ while } b \textbf{ do } C \textbf{ endwhile } \{P \land \lnot b\}
\end{align*}
\]

- **Loop Invariant:** P
 - Preserved during execution of the loop.
- **Loop steps:**
 - *Initialization:* show that the loop invariant $\{P\}$ is initially true.
 - *Preservation:* show the loop invariant remains true when the loop executes ($\{P \land b\}$).
 - *Completion:* show that the loop invariant and the exit condition produce the final assertion ($\{P \land \lnot b\}$).
- **Main Problem:**
 - Constructing the loop invariant.
Loop Invariant

- A relationship among the variables that does not change as the loop is executed.
- “Inspiration” tips:
 - Look for some expression that can be combined with $\neg b$ to produce part of the postcondition.
 - Construct a table of values to see what stays constant.
 - Combine what has already been computed at some stage in the loop with what has yet to be computed to yield a constant of some sort.

Study carefully many examples!
Example (exponent)

\{ N \geq 0 \land A \geq 0 \}

\begin{align*}
 k & := N; \\
 s & := 1; \\
 \textbf{while} & \quad k > 0 \textbf{ do} \\
 & \quad s := A \times s; \\
 & \quad k := k - 1 \\
 \textbf{endwhile}
\end{align*}

\{ s = A^N \}

We follow the “tips:”

- Trace algorithm with small numbers \(A = 2, \ N = 5 \).
- Build a table of values to find loop invariant.
- Notice that \(k \) is decreasing and that \(2^k \) represents the computation that still needs to be done.
- Add a column to the table for the value of \(2^k \).
- The value \(s \times 2^k = 32 \) remains constant throughout the execution of the loop.
Example (Exponent)

\[
\{ N \geq 0 \land A \geq 0 \}
\]

\[
k := N; \quad s := 1;
\]

\[\text{while } k > 0 \text{ do }
\]

\[
s := A \times s;
\]

\[
k := k - 1
\]

\[\text{ endwhile}
\]

\[
\{ s = A^N \}
\]

\[\begin{array}{cccc}
 k & s & 2^k & s \times 2^k \\
 5 & 1 & 32 & 32 \\
 4 & 2 & 16 & 32 \\
 3 & 4 & 8 & 32 \\
 2 & 8 & 4 & 32 \\
 1 & 16 & 2 & 32 \\
 0 & 32 & 1 & 32 \\
\end{array}
\]

- Observe that \(s \) and \(2^k \) change when \(k \) changes.

- Their product is constant, namely \(32 = 2^5 = A^N \).

- This suggests that \(s \times A^k = A^N \) is part of the invariant.

- The relation \(k \geq 0 \) seems to be invariant, and when combined with ”\(-b\)”, which is \(k \leq 0 \), establishes \(k = 0 \) at the end of the loop.

- When \(k = 0 \) is joined with \(s \times A^k = A^N \), we get the postcondition \(s = A^N \).

Loop Invariant: \(\{ k \geq 0 \land s \times A^k = A^N \} \).
Verification of the Program

Initialization:
\[
\{N \geq 0 \land A \geq 0\} \rightarrow \{N = N \land N \geq 0 \land A \geq 0 \land 1 = 1\}
\]
\[
k := N; \ s := 1;
\]
\[
\{k = N \land N \geq 0 \land A \geq 0 \land s = 1\} \rightarrow \{k \geq 0 \land s \ast A^k = A^N\}
\]

Preservation:
\[
\{k \geq 0 \land s \ast A^k = A^N \land k > 0\} \rightarrow \{k > 0 \land s \ast A^k = A^N\} \rightarrow
\]
\[
\{k > 0 \land s \ast A \ast A^{k-1} = A^N\} \rightarrow \{k > 0 \land A \ast s \ast A^{k-1} = A^N\}
\]
\[
s := A \ast s;
\]
\[
\{k > 0 \land s \ast A^{k-1} = A^N\} \rightarrow \{k - 1 \geq 0 \land s \ast A^{k-1} = A^N\}
\]
\[
k := k - 1
\]
\[
\{k \geq 0 \land s \ast A^k = A^N\}
\]

Completion:
\[
\{k \geq 0 \land s \ast 2^k = A^N \land k \leq 0\} \rightarrow \{k = 0 \land s \ast 2^k = A^N\} \rightarrow \{s = A^N\}
Further Topics

- Dealing with other language features:
 - Nested loops.
 - Procedure calls.
 - Recursive procedures.
 - ...

- Proving termination / total correctness.
 - Well founded orderings.
Acknowledgments

- Some slides and examples taken from:
 - Enrico Pontelli
 - Jim Lipton
 - Ken Slonneger and Barry L. Kurtz.
 Formal Syntax and Semantics of Programming Languages: A Laboratory-Based Approach.
 Addison-Wesley, Reading, Massachusetts.