Recalling Our Intro to the Course
The Program Correctness Problem

- Conventional models of using computers – not easy to determine correctness!
 - Has become a very important issue, not just in safety-critical apps.
 - Components with assured quality, being able to give a warranty, ...
 - Being able to run untrusted code, certificate carrying code, ...
A Simple Imperative Program

• Example:

```c
#include <stdio.h>
main() {
    int Number, Square;
    Number = 0;
    while(Number <= 5) {
        Square = Number * Number;
        printf("%d\n", Square);
        Number = Number + 1;
    }
```

• Is it correct? With respect to what?

• A suitable formalism:
 ◦ to provide *specifications* (describe problems), and
 ◦ to reason about the *correctness of programs* (their *implementation*).

is needed.
Natural Language

“Compute the squares of the natural numbers which are less or equal than 5.”

Ideal at first sight, but:

- verbose
- vague
- ambiguous
- needs context (assumed information)
- ...

Philosophers and Mathematicians already pointed this out a long time ago...
Logic

• A means of clarifying / formalizing the human thought process

• Logic for example tells us that (classical logic)
 Aristotle likes cookies, and
 Plato is a friend of anyone who likes cookies
imply that
 Plato is a friend of Aristotle

• Symbolic logic:
 A shorthand for classical logic – plus many useful results:
 \(a_1 : \text{likes}(\text{aristotle}, \text{cookies}) \)
 \(a_2 : \forall X \text{likes}(X, \text{cookies}) \rightarrow \text{friend}(\text{plato}, X) \)
 \(t_1 : \text{friend}(\text{plato}, \text{aristotle}) \)
 \(T[a_1, a_2] \vdash t_1 \)

• But, can logic be used:
 ◦ To represent the problem (specifications)?
 ◦ Even perhaps to solve the problem?
For expressing specifications and reasoning about the correctness of programs we need:

- Specification languages (assertions), modeling, ...
- Program semantics (models, axiomatic, fixpoint, ...).
- Proofs: program *verification* (and debugging, equivalence, ...).
Generating Squares: A Specification (I)

Numbers —we will use “Peano” representation for simplicity:

\[\begin{align*}
 0 & \rightarrow 0 \\
 1 & \rightarrow s(0) \\
 2 & \rightarrow s(s(0)) \\
 3 & \rightarrow s(s(s(0))) \\
 \cdots
\end{align*}\]

- Defining the natural numbers:
 \[\begin{align*}
 nat(0) & \land nat(s(0)) \land nat(s(s(0))) \land \ldots
 \end{align*}\]

- A better solution:
 \[\begin{align*}
 nat(0) & \land \forall X \ (nat(X) \rightarrow nat(s(X)))
 \end{align*}\]

- Order on the naturals:
 \[\begin{align*}
 \forall X \ (le(0, X)) \land \\
 \forall X \forall Y \ (le(X, Y) \rightarrow le(s(X), s(Y)))
 \end{align*}\]

- Addition of naturals:
 \[\begin{align*}
 \forall X \ (nat(X) \rightarrow add(0, X, X)) \land \\
 \forall X \forall Y \forall Z \ (add(X, Y, Z) \rightarrow add(s(X), Y, s(Z)))
 \end{align*}\]
Generating Squares: A Specification (II)

• Multiplication of naturals:
 \[\forall X \ (nat(X) \rightarrow mult(0, X, 0)) \land \forall X\forall Y\forall Z\forall W \ (mult(X, Y, W) \land add(W, Y, Z) \rightarrow mult(s(X), Y, Z)) \]

• Squares of the naturals:
 \[\forall X\forall Y \ (nat(X) \land nat(Y) \land mult(X, X, Y) \rightarrow nat_square(X, Y)) \]

We can now write a specification of the (imperative) program, i.e., conditions that we want the program to meet:

• Precondition:
 empty.

• Postcondition:
 \[\forall X (output(X) \leftarrow (\exists Y \ nat(Y) \land le(Y, s(s(s(s(s(0))))))) \land nat_square(Y, X))) \]
For expressing specifications and reasoning about the correctness of programs we need:

- Specification languages (assertions), modeling, ...
- Program semantics (models, axiomatic, fixpoint, ...).
- Proofs: program verification (and debugging, equivalence, ...).
Semantics:

- A *semantics* associates a meaning (a mathematical object) to a program or program sentence.

Semantic tasks:

- Verification: proving that a program meets its specification.
- Static debugging: finding where a program does not meet specifications.
- Program equivalence: proving that two programs have the same semantics.
- etc.
Styles of Semantics

- **Operational:**
The meaning of program sentences is defined in terms of the steps (transformations from state to state) that computations may take during execution (derivations). Proofs by induction on derivations.

- **Axiomatic:**
The meaning of program sentences is defined indirectly in terms of some axioms and rules of a logic of program properties.

- **Denotational (fixpoint):**
The meaning of program sentences is given abstractly as functions on an appropriate domain (which is often a lattice). E.g., \(\lambda\)-calculus for functional programming. C.f., lattice / fixpoint theory.

- Also, **model (declarative) semantics:** (For (Constraint) Logic Programs:) The meaning of programs is given as a minimal model (“logical meaning”) of the logic that the program is written in.
Operational Semantics
Traditional Operational Semantics

- Meaning of program sentences defined in terms of the steps (*state transitions*, transformations from state to state) that computations may take during executions (derivations).
- Proofs by induction on derivations.
- Examples of concrete operational semantics:
 - Semantics modeling memory for imperative programs.
 - Interpreters and meta-interpreters (self-interpreters).
 - Resolution and CLP(\(\mathcal{X}\)) resolution, for (constraint) logic programs.
 - ...
- Examples of generic / standard methodologies:
 - *Structural operational semantics.*
 - Vienna definition language (VDL).
 - SECD machine.
 - ...

A Simple Imperative Language

Program ::= Statement
Statement ::= Statement ; Statement
| noop
| Id := Expression
| if Expression then Statement else Statement
| while Expression do Statement
Expression ::= Numeral
| Id
| Expression + Expression

• Only integer data types.

• Variables do not need to be declared.
Operational Semantics

- States: memory configurations – values of variables.
 - \(s[X] \) denotes the value of the variable \(X \) in state \(s \).
- \(<\) statement, \(s \) \(\Rightarrow \) \(s' \) \(\) denotes that
 if \(\) statement \(\) is executed in state \(s \) the resulting state is \(s' \).
- \(<\) expression, \(s \) \(\Rightarrow \) value \) denotes that
 if \(\) expression \(\) is executed in state \(s \) it returns \(\) value.\)

- Expressions:
 - ◦ If \(n \) is a number \(<n, s \Rightarrow n \)
 - ◦ If \(X \) is a variable \(<X, s \Rightarrow s[X] \)
 - ◦ If \(expression \) is of the form \(exp_1 + exp_2 \) we write:
 \[
 \begin{align*}
 \langle exp_1, s \rangle & \Rightarrow v_1 \\
 \langle exp_2, s \rangle & \Rightarrow v_2 \\
 \langle exp_1 + exp_2, s \rangle & \Rightarrow v_1 + v_2
 \end{align*}
 \]
Operational Semantics

- **Statements:**

 \(s[X/v] \) denotes a new state, identical to \(s \) but where variable \(X \) has value \(v \).

 - Noop: \(< \text{noop}, s > \Rightarrow s \)
 - Assignment:

 \[
 \frac{< \text{exp}, s > \Rightarrow v}{< X := \text{exp}, s > \Rightarrow s[X/v]}
 \]
 - Conditional:

 \[
 \frac{< \text{exp}, s > \Rightarrow 0 \quad < \text{stmt}_2, s > \Rightarrow s'}{< \text{if} \ \text{exp} \ \text{then} \ \text{stmt}_1 \ \text{else} \ \text{stmt}_2, s > \Rightarrow s'}
 \]

 \[
 \frac{< \text{exp}, s > \Rightarrow v, v \neq 0 \quad < \text{stmt}_1, s > \Rightarrow s'}{< \text{if} \ \text{exp} \ \text{then} \ \text{stmt}_1 \ \text{else} \ \text{stmt}_2, s > \Rightarrow s'}
 \]
Operational Semantics

- Statements (Contd.):
 - Sequencing:
 \[
 \begin{align*}
 \langle stmt_1, s \rangle &\Rightarrow s_1 \\
 \langle stmt_2, s_1 \rangle &\Rightarrow s_2 \\
 \langle stmt_1; stmt_2, s \rangle &\Rightarrow s_2
 \end{align*}
 \]
 - Loops:
 \[
 \begin{align*}
 \langle exp, s \rangle &\Rightarrow 0 \\
 \langle \textbf{while} exp \textbf{ do } stmt, s \rangle &\Rightarrow s \\
 \langle exp, s \rangle &\Rightarrow v, v \neq 0 \\
 \langle stmt, s \rangle &\Rightarrow s' \\
 \langle \textbf{while} exp \textbf{ do } stmt, s' \rangle &\Rightarrow s'' \\
 \langle \textbf{while} exp \textbf{ do } stmt, s \rangle &\Rightarrow s''
 \end{align*}
 \]
Example

• Program:
 \[\begin{align*}
 &x := 5; \\
 &y := -6; \\
 &\text{if } (x+y) \text{ then } z := x \text{ else } z := y
 \end{align*}\]

• Semantics:

\[
\begin{align*}
<& x := 5, s_0 \Rightarrow s_1 > &<& y := -6, s_1 \Rightarrow s_2 > &<& x+y, s_2 \Rightarrow -1 > &<& z := x, s_2 \Rightarrow s_3 > \\
<& S_3, s_2 \Rightarrow s_3 > &<& y := -6; S_3, s_1 \Rightarrow s_3 >
\end{align*}
\]

where \(S_3 = \text{if } (x+y) \text{ then } z := x \text{ else } z := y\).

And:
\[
\begin{align*}
 &s_1 = s_0[x/5] \\
 &s_2 = s_1[y/ -6] \\
 &s_3 = s_2[z/5]
\end{align*}
\]
Axiomatic Semantics
Axiomatic Semantics

- **Characteristics:**
 - Based on techniques from predicate logic.
 - There is no concept of *state of the machine* (as in operational or denotational semantics).
 - More abstract than, e.g., denotational semantics.
 - Semantic meaning of a program is based on assertions about relationships that remain the same each time the program executes.

- **Classical application:**
 - Proving programs to be correct w.r.t. specifications.

- **(Typical, classical) limitations:**
 - Side-effects disallowed in expressions.
 - `goto` command difficult to treat.
 - Aliasing not allowed.
 - Scope rules difficult to describe \(\Rightarrow\) require all identifier names to be unique.
History and References

- Main original papers:

- Many textbooks available.
Assertions and Correctness

- **Assertion**: a logical formula, say

\[(m \neq 0 \land (\sqrt{m})^2 = m)\]

that is true when a point in the program is reached.

- **Precondition**: Assertion before a command (\(\leftarrow\) includes a whole program).

- **Postcondition**: Assertion after a command.

\[\{\text{PRE}\} \text{ C } \{\text{POST}\}\]

\(\leftarrow\) a “Hoare triple”

- **Partial Correctness**:
 If the initial assertion (the precondition) is true and if the program terminates, then the final assertion (the postcondition) must be true.

 \[\text{Precondition} + \text{Termination} \Rightarrow \text{Postcondition}\]

- **Total Correctness**:
 Given that the precondition for the program is true, the program must terminate and the postcondition must be true.

 \[\text{Total Correctness} = \text{Partial Correctness} + \text{Termination}\]
Hoare Calculus: The Assignment Axiom

- **Examples:**
 - $\{true\} \ m := 13 \ {\{m = 13\}}$
 - $\{n = 3 \land c = 2\} \ n := c \times n \ {\{n = 6 \land c = 2\}}$
 - $\{k \geq 0\} \ k := k + 1 \ {\{k > 0\}}$

- **Notation:**
 - $\{\text{Precondition}\} \ \text{command} \ \{\text{Postcondition}\}$
 - $P[V \rightarrow E]$ denotes substitution: putting E in place of V in P

- **Axiom for assignment command:**

 $\{P[V \rightarrow E]\} \ V := E \ {\{P\}}$

 Work backwards:
 - Postcondition: $P \equiv (n = 6 \land c = 2)$
 - Command: $n := c \times n$
 - Precondition: $P[V \rightarrow E] \equiv (c \times n = 6 \land c = 2)$
 $\equiv (n = 3 \land c = 2)$
Hoare Calculus: Read and Write Commands

- **Notation:**
 - Use \(\text{IN} = [1, 2, 3] \) and \(\text{OUT} = [4, 5] \) to represent input and output files.
 - \([M|L]\) denotes list whose head is \(M\) and tail is \(L\).
 - \(K, M, N, \ldots\) represent arbitrary numerals.

- **Axiom for read command:**
 \[\{ \text{IN} = [K|L] \land P[V \rightarrow K] \} \text{ read } V \{ \text{IN} = L \land P \} \]

- **Axiom for write command:**
 \[\{ \text{OUT} = L \land E = K \land P \} \text{ write } E \{ \text{OUT} = L :: [K] \land E = K \land P \} \]

- **Note:** \(L :: [K]\) is the list whose last element is \(K\) (: represents concatenation).
Hoare Calculus: Rules of Inference

- **Format** (c.f. structural operational semantics):

\[
\frac{H_1, H_2, H_n, \ldots}{H}
\]

- **Axiom for Command Sequencing:**

\[
\frac{\{P\}C_1\{Q\}, \{Q\}C_2\{R\}}{\{P\}C_1;C_2\{R\}}
\]

- **Axioms for If Commands:**

\[
\frac{\{P \land b\}C_1\{Q\}, \{P \land \neg b\}C_2\{Q\}}{\{P\} \text{ if } b \text{ then } C_1 \text{ else } C_2 \text{ endif } \{Q\}}
\]

\[
\frac{\{P \land b\}C\{Q\}, (P \land \neg b) \rightarrow Q}{\{P\} \text{ if } b \text{ then } C \text{ endif } \{Q\}}
\]
Hoare Calculus: Rules of Inference (Contd.)

- **Weaken Postcondition:**

\[
\frac{\{P\}C\{Q\}, \ Q \rightarrow R}{\{P\}C\{R\}}
\]

- **Strengthen Precondition:**

\[
\frac{P \rightarrow Q, \ \{Q\}C\{R\}}{\{P\}C\{R\}}
\]

- **And and Or Rules:**

\[
\frac{\{P\}C\{Q\}, \ \{P'\}C\{Q'\}}{\{P \land P'\}C\{Q \land Q'\}}
\]

\[
\frac{\{P\}C\{Q\}, \ \{P'\}C\{Q'\}}{\{P \lor P'\}C\{Q \lor Q'\}}
\]

- **Observation:**

\[
\{ \text{false} \} \ \text{any-command} \ \{ \text{any-postcondition} \}
\]
Example (I)

\(\{IN = [4, 9, 16] \land OUT = [0, 1, 2]\}\)

read \(m\); read \(n\);
if \(m \geq n\) then
lift \(a := 2 \times m\)
else
lift \(a := 2 \times n\)
endif;
write \(a\)
\(\{IN = [16] \land OUT = [0, 1, 2, 18]\}\)

\(\{IN = [4, 9, 16] \land OUT = [0, 1, 2]\} \rightarrow \{IN = [4][9, 16] \land OUT = [0, 1, 2] \land 4 = 4\}\)

read \(m\);
\(\{IN = [9, 16] \land OUT = [0, 1, 2] \land m = 4\} \rightarrow \{IN = [9][16] \land OUT = [0, 1, 2] \land m = 4 \land 9 = 9\}\)
read \(n\);
\(\{IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9\}\)

Recall:
\(\{IN = [K|L] \land P[V \rightarrow K]\}\)

read \(V\)
\(\{IN = L \land P\}\)
Example (II)

We have \(P = \{ IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \} \)

\[
\begin{align*}
\text{read } m; & \quad \text{read } n; \\
\text{if } m \geq n & \quad \text{then} \\
& \quad \text{a := } 2 \ast m \\
\text{else} & \\
& \quad \text{a := } 2 \ast n \\
\text{endif;}
\end{align*}
\]

\[
\begin{align*}
\text{write } a \\
\text{So, } b \equiv m \geq n = \text{false} \text{ and } \neg b = \text{true}; \text{ thus } \{ P \land b \} = \text{false} \text{ and } \{ P \land \neg b \} = P.
\end{align*}
\]

So, for \(C_2 \) we have:

\[
\begin{align*}
\{ P \land \neg b \} & = \{ P \} = \\
\{ IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \} & \rightarrow \\
\{ IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \land 2 \ast n = 18 \} \\
a & := 2 \ast n \\
\end{align*}
\]

\[
\begin{align*}
\text{and for } C_1 \text{ we can have anything since the premise is false:} \\
\{ P \land b \} & = \text{false} \\
a & := 2 \ast m \\
\end{align*}
\]

\[
\begin{align*}
\{ IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \land a = 18 \}
\end{align*}
\]
Example (III)

\[
\{ \text{IN} = [16] \land \text{OUT} = [0, 1, 2] \land m = 4 \land n = 9 \} \\
\text{if } m \geq n \quad \text{then} \\
\quad a := 2m \\
\text{else} \\
\quad a := 2n \\
\text{endif;} \\
\{ \text{IN} = [16] \land \text{OUT} = [0, 1, 2] \land m = 4 \land n = 9 \land a = 18 \}
\]

and

\[
\{ \text{IN} = [16] \land \text{OUT} = [0, 1, 2] \land m = 4 \land n = 9 \land a = 18 \} \\
\text{write } a \\
\{ \text{IN} = [16] \land \text{OUT} = [0, 1, 2] :: [18] \land m = 4 \land n = 9 \land a = 18 \}
\]

which implies

\[
\{ \text{IN} = [16] \land \text{OUT} = [0, 1, 2, 18] \}
\]
While Command

\[
\begin{align*}
\{P \land b\} &\text{ } C \{P\} \\
\{P\} &\text{ while } b \text{ do } C \text{ endwhile } \{P \land \neg b\}
\end{align*}
\]

- **Loop Invariant:** \(P\)
 - Preserved during execution of the loop.

- **Loop steps:**
 - *Initialization:* show that the loop invariant \(\{P\}\) is initially true.
 - *Preservation:* show the loop invariant remains true when the loop executes (\(\{P \land b\}\)).
 - *Completion:* show that the loop invariant and the exit condition produce the final assertion (\(\{P \land \neg b\}\)).

- **Main Problem:**
 - Constructing the loop invariant.
Loop Invariant

- A relationship among the variables that does not change as the loop is executed.
- “Inspiration” tips:
 - Look for some expression that can be combined with $-b$ to produce part of the postcondition.
 - Construct a table of values to see what stays constant.
 - Combine what has already been computed at some stage in the loop with what has yet to be computed to yield a constant of some sort.

Study carefully many examples!
Example (exponent)

\(\{ N \geq 0 \land A \geq 0 \} \)

\[
\begin{align*}
k &:= N; \quad s := 1; \\
\textbf{while} & \quad k > 0 \textbf{ do} \\
& \quad s := A \times s; \\
& \quad k := k - 1 \\
\textbf{endwhile}
\end{align*}
\]

\(\{ s = A^N \} \)

We follow the “tips:”

- Trace algorithm with small numbers \(A = 2, \ N = 5. \)
- Build a table of values to find loop invariant.
- Notice that \(k \) is decreasing and that \(2^k \) represents the computation that still needs to be done.
- Add a column to the table for the value of \(2^k \).
- The value \(s \times 2^k = 32 \) remains constant throughout the execution of the loop.
Example (Exponent)

\[\{N \geq 0 \land A \geq 0\}\]

\[\begin{align*}
 &k := N; \quad s := 1; \\
 &\textbf{while} \quad k > 0 \quad \textbf{do} \\
 &\hspace{1em} s := A \cdot s; \\
 &\hspace{1em} k := k - 1 \\
 &\textbf{endwhile} \\
 &\{s = A^N\}
\end{align*}\]

<table>
<thead>
<tr>
<th>k</th>
<th>s</th>
<th>2^k</th>
<th>$s \cdot 2^k$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>4</td>
<td>32</td>
</tr>
<tr>
<td>1</td>
<td>16</td>
<td>2</td>
<td>32</td>
</tr>
<tr>
<td>0</td>
<td>32</td>
<td>1</td>
<td>32</td>
</tr>
</tbody>
</table>

- Observe that s and 2^k change when k changes.
- Their product is constant, namely $32 = 2^5 = A^N$.
- This suggests that $s \cdot A^k = A^N$ is part of the invariant.
- The relation $k \geq 0$ seems to be invariant, and when combined with "−b", which is $k \leq 0$, establishes $k = 0$ at the end of the loop.
- When $k = 0$ is joined with $s \cdot A^k = A^N$, we get the postcondition $s = A^N$.

Loop Invariant: $\{k \geq 0 \land s \cdot A^k = A^N\}$.
Verification of the Program

Initialization:
\[\{ N \geq 0 \land A \geq 0 \} \rightarrow \{ N = N \land N \geq 0 \land A \geq 0 \land 1 = 1 \} \]
\[k := N; \ s := 1; \]
\[\{ k = N \land N \geq 0 \land A \geq 0 \land s = 1 \} \rightarrow \{ k \geq 0 \land s \ast A^k = A^N \} \]

Preservation:
\[\{ k \geq 0 \land s \ast A^k = A^N \land k > 0 \} \rightarrow \{ k > 0 \land s \ast A^k = A^N \} \rightarrow \]
\[\{ k > 0 \land s \ast A \ast A^{k-1} = A^N \} \rightarrow \{ k > 0 \land A \ast s \ast A^{k-1} = A^N \} \]
\[s := A \ast s; \]
\[\{ k > 0 \land s \ast A^{k-1} = A^N \} \rightarrow \{ k - 1 \geq 0 \land s \ast A^{k-1} = A^N \} \]
\[k := k-1 \]
\[\{ k \geq 0 \land s \ast A^k = A^N \} \]

Completion:
\[\{ k \geq 0 \land s \ast 2^k = A^N \land k \leq 0 \} \rightarrow \{ k = 0 \land s \ast 2^k = A^N \} \rightarrow \{ s = A^N \} \]
Further Topics

- Dealing with other language features:
 - Nested loops.
 - Procedure calls.
 - Recursive procedures.
 - ...

- Proving termination / total correctness.
 - Well founded orderings.
Acknowledgments

- Some slides and examples taken from:
 - Enrico Pontelli
 - Jim Lipton
 - Ken Slonneger and Barry L. Kurtz.
 Formal Syntax and Semantics of Programming Languages: A Laboratory-Based Approach.
 Addison-Wesley, Reading, Massachusetts.