Recalling Our Intro to the Course
The Program Correctness Problem

- Conventional models of using computers – not easy to determine correctness!
 - Has become a very important issue, not just in safety-critical apps.
 - Components with assured quality, being able to give a warranty, ...
 - Being able to run untrusted code, certificate carrying code, ...
A Simple Imperative Program

- Example:

```c
#include <stdio.h>
main() {
    int Number, Square;
    Number = 0;
    while(Number <= 5)
    {
        Square = Number * Number;
        printf("%d\n",Square);
        Number = Number + 1; }
}
```

- Is it correct? With respect to what?

- A suitable formalism:
 - to provide *specifications* (describe problems), and
 - to reason about the *correctness of programs* (their *implementation*).

is needed.
“Compute the squares of the natural numbers which are less or equal than 5.”

Ideal at first sight, but:

- verbose
- vague
- ambiguous
- needs context (assumed information)
- ...

Philosophers and Mathematicians already pointed this out a long time ago...
Logic

- A means of clarifying / formalizing the human thought process
- Logic for example tells us that (classical logic)
 Aristotle likes cookies, and
 Plato is a friend of anyone who likes cookies
 imply that
 Plato is a friend of Aristotle
- Symbolic logic:
 A shorthand for classical logic – plus many useful results:
 \[a_1 : \text{likes}(\text{aristotle}, \text{cookies}) \]
 \[a_2 : \forall X \text{ likes}(X, \text{cookies}) \rightarrow \text{friend}(\text{plato}, X) \]
 \[t_1 : \text{friend}(\text{plato}, \text{aristotle}) \]
 \[T[a_1, a_2] \vdash t_1 \]
- But, can logic be used:
 - To represent the problem (specifications)?
 - *Even perhaps to solve the problem?*
For expressing specifications and reasoning about the correctness of programs we need:

- Specification languages (assertions), modeling, ...
- Program semantics (models, axiomatic, fixpoint, ...).
- Proofs: program *verification* (and debugging, equivalence, ...).
Generating Squares: A Specification (I)

Numbers — we will use “Peano” representation for simplicity:
0 \rightarrow 0 \quad 1 \rightarrow s(0) \quad 2 \rightarrow s(s(0)) \quad 3 \rightarrow s(s(s(0))) \quad \ldots

- Defining the natural numbers:
 \begin{align*}
 nat(0) \land nat(s(0)) \land nat(s(s(0))) \land \ldots
 \end{align*}

- A better solution:
 \begin{align*}
 nat(0) \land \forall X (nat(X) \rightarrow nat(s(X)))
 \end{align*}

- Order on the naturals:
 \begin{align*}
 \forall X (le(0, X)) \land \\
 \forall X \forall Y (le(X, Y) \rightarrow le(s(X), s(Y))
 \end{align*}

- Addition of naturals:
 \begin{align*}
 \forall X (nat(X) \rightarrow add(0, X, X)) \land \\
 \forall X \forall Y \forall Z (add(X, Y, Z) \rightarrow add(s(X), Y, s(Z)))
 \end{align*}
Generating Squares: A Specification (II)

- Multiplication of naturals:
 \[\forall X \ (nat(X) \Rightarrow mult(0, X, 0)) \land \forall X \forall Y \forall Z \forall W \ (mult(X, Y, W) \land add(W, Y, Z) \Rightarrow mult(s(X), Y, Z)) \]

- Squares of the naturals:
 \[\forall X \forall Y \ (nat(X) \land nat(Y) \land mult(X, X, Y) \Rightarrow nat_square(X, Y)) \]

We can now write a specification of the (imperative) program, i.e., conditions that we want the program to meet:

- **Precondition:**
 empty.

- **Postcondition:**
 \[\forall X \ (output(X) \leftarrow (\exists Y \ nat(Y) \land le(Y, s(s(s(s(0)))))) \land nat_square(Y, X)) \]
• For expressing specifications and reasoning about the correctness of programs we need:
 ◦ Specification languages (assertions), modeling, ...
 ◦ Program semantics (models, axiomatic, fixpoint, ...).
 ◦ Proofs: program *verification* (and debugging, equivalence, ...).
Semantic Tasks

- Semantics:
 - A *semantics* associates a meaning (a mathematical object) to a program or program sentence.

- Semantic tasks:
 - Verification: proving that a program meets its specification.
 - Static debugging: finding where a program does not meet specifications.
 - Program equivalence: proving that two programs have the same semantics.
 - etc.
Styles of Semantics

- **Operational:**
 The meaning of program sentences is defined in terms of the steps (transformations from state to state) that computations may take during execution (derivations). Proofs by induction on derivations.

- **Axiomatic:**
 The meaning of program sentences is defined indirectly in terms of some axioms and rules of a *logic* of program properties.

- **Denotational (fixpoint):**
 The meaning of program sentences is given abstractly as *functions* on an appropriate *domain* (which is often a lattice). E.g., λ-calculus for functional programming. C.f., lattice / fixpoint theory.

- Also, **model (declarative) semantics:** (For (Constraint) Logic Programs:) The meaning of programs is given as a minimal model (“logical meaning”) of the logic that the program is written in.
Operational Semantics
Traditional Operational Semantics

- Meaning of program sentences defined in terms of the steps (*state transitions*, transformations from state to state) that computations may take during executions (derivations).
- Proofs by induction on derivations.
- Examples of concrete operational semantics:
 - Semantics modeling memory for imperative programs.
 - Interpreters and meta-interpreters (self-interpreters).
 - Resolution and CLP(\(\lambda\)) resolution, for (constraint) logic programs.
 - ...
- Examples of generic / standard methodologies:
 - *Structural operational semantics*.
 - Vienna definition language (VDL).
 - SECD machine.
 - ...
A Simple Imperative Language

Program ::= Statement
Statement ::= Statement ; Statement
| noop
| Id := Expression
| if Expression then Statement else Statement
| while Expression do Statement
Expression ::= Numeral
| Id
| Expression + Expression

- Only integer data types.
- Variables do not need to be declared.
Operational Semantics

- States: memory configurations – values of variables.
- $s[X]$ denotes the value of the variable X in state s.
- $<\text{statement}, s> \Rightarrow s'$ denotes that if statement is executed in state s the resulting state is s'.
- $<\text{expression}, s> \Rightarrow \text{value}$ denotes that if expression is executed in state s it returns value.
- Expressions:
 - If n is a number $<n, s> \Rightarrow n$
 - If X is a variable $<X, s> \Rightarrow s[X]$
 - If expression is of the form $\text{exp}_1 + \text{exp}_2$ we write:
 $$<\text{exp}_1, s> \Rightarrow v_1 \quad <\text{exp}_2, s> \Rightarrow v_2$$
 $$<\text{exp}_1 + \text{exp}_2, s> \Rightarrow v_1 + v_2$$
Operational Semantics

- Statements:
 \[s[X/v]\] denotes a new state, identical to \(s\) but where variable \(X\) has value \(v\).

 ◦ Noop: \(<\text{noop}, s>\Rightarrow s\)
 ◦ Assignment:
 \[
 \frac{<\text{exp}, s>\Rightarrow v}{<X := \text{exp}, s>\Rightarrow s[X/v]}
 \]
 ◦ Conditional:
 \[
 \frac{<\text{exp}, s>\Rightarrow 0 \quad <\text{stmt}_2, s>\Rightarrow s'}{<\text{if \ exp \ then \ stmt}_1 \ \text{else \ stmt}_2, s>\Rightarrow s'}
 \]
 \[
 \frac{<\text{exp}, s>\Rightarrow v, v \neq 0 \quad <\text{stmt}_1, s>\Rightarrow s'}{<\text{if \ exp \ then \ stmt}_1 \ \text{else \ stmt}_2, s>\Rightarrow s'}
 \]
Operational Semantics

- Statements (Contd.):
 - Sequencing:
 \[<stmt_1, s> \Rightarrow s_1 \quad <stmt_2, s_1> \Rightarrow s_2 \]
 \[<stmt_1; stmt_2, s> \Rightarrow s_2 \]
 - Loops:
 \[<exp, s> \Rightarrow 0 \]
 \[<\textbf{while} \ exp \ \textbf{do} \ stmt, s> \Rightarrow s \]
 \[<exp, s> \Rightarrow v, v \neq 0 \quad <stmt, s> \Rightarrow s' \quad <\textbf{while} \ exp \ \textbf{do} \ stmt, s' >\Rightarrow s'' \]
 \[<\textbf{while} \ exp \ \textbf{do} \ stmt, s >\Rightarrow s'' \]
Example

- Program:

 \[
 \begin{align*}
 x &:= 5; \\
 y &:= -6; \\
 \text{if } (x+y) \text{ then } z &:= x \text{ else } z := y
 \end{align*}
 \]

- Semantics:

\[
\begin{array}{c}
< x := 5, \ s_0 > \Rightarrow s_1 \\
< y := -6, \ s_1 > \Rightarrow s_2 \\
< S_3, \ s_2 > \Rightarrow s_3 \\
< y := -6; S_3, \ s_1 > \Rightarrow s_3 \\
< x := 5; y := -6; S_3, \ s_0 > \Rightarrow s_3
\end{array}
\]

where \(S_3 = \text{if } (x+y) \text{ then } z := x \text{ else } z := y \).

And:

\[
\begin{align*}
 s_1 &= s_0[x/5] \\
 s_2 &= s_1[y/-6] \\
 s_3 &= s_2[z/5]
\end{align*}
\]
Axiomatic Semantics
Axiomatic Semantics

- **Characteristics:**
 - Based on techniques from predicate logic.
 - There is no concept of *state of the machine* (as in operational or denotational semantics).
 - More abstract than, e.g., denotational semantics.
 - Semantic meaning of a program is based on assertions about relationships that remain the same each time the program executes.

- **Classical application:**
 - Proving programs to be correct w.r.t. specifications.

- **(Typical, classical) limitations:**
 - Side-effects disallowed in expressions.
 - `goto` command difficult to treat.
 - Aliasing not allowed.
 - Scope rules difficult to describe ⇒ require all identifier names to be unique.
History and References

- Main original papers:

- Many textbooks available.
Assertions and Correctness

- **Assertion**: a logical formula, say

 \[(m \neq 0 \land (\sqrt{m})^2 = m)\]

 that is true when a point in the program is reached.

- **Precondition**: Assertion before a command (\(\leftarrow\) includes a whole program).

- **Postcondition**: Assertion after a command.

\[
\{PRE\} \ C \ \{POST\}
\]

\(\leftarrow\) a “Hoare triple”

- **Partial Correctness**:
 If the initial assertion (the precondition) is true and if the program terminates, then the final assertion (the postcondition) must be true.
 \[\text{Precondition} + \text{Termination} \Rightarrow \text{Postcondition}\]

- **Total Correctness**:
 Given that the precondition for the program is true, the program must terminate and the postcondition must be true.
 \[\text{Total Correctness} = \text{Partial Correctness} + \text{Termination}\]
Hoare Calculus: The Assignment Axiom

- Examples:
 - $\{\text{true}\} \ m := 13 \ {\{m = 13}\}$
 - $\{n = 3 \land c = 2\} \ n := c \ast n \ {\{n = 6 \land c = 2\}}$
 - $\{k \geq 0\} \ k := k + 1 \ {\{k > 0\}}$

- Notation:
 - $\{\text{Precondition}\} \ \text{command} \ \{\text{Postcondition}\}$
 - $P[V \rightarrow E]$ denotes substitution: putting E in place of V in P

- Axiom for assignment command:
 $$\{P[V \rightarrow E]\} \ V := E \ \{P\}$$

Work backwards:
 - Postcondition: $P \equiv (n = 6 \land c = 2)$
 - Command: $n := c \ast n$
 - Precondition: $P[V \rightarrow E] \equiv (c \ast n = 6 \land c = 2)$
 $$\equiv (n = 3 \land c = 2)$$
• **Notation:**
 ◦ Use “$IN = [1, 2, 3]$” and “$OUT = [4, 5]$” to represent input and output files.
 ◦ $[M|L]$ denotes list whose head is M and tail is L.
 ◦ K, M, N, \ldots represent arbitrary numerals.

• **Axiom for read command:**
 ◦ $\{IN = [K|L] \land P[V \rightarrow K]\} \text{ read } V \{IN = L \land P\}$

• **Axiom for write command:**
 ◦ $\{OUT = L \land E = K \land P\} \text{ write } E \{OUT = L :: [K] \land E = K \land P\}$

• **Note:** $L :: [K]$ is the list whose last element is K ($::$ represents concatenation).
Hoare Calculus: Rules of Inference

- **Format** (c.f. structural operational semantics):

\[
\frac{H_1, H_2, H_n, \ldots}{H}
\]

- **Axiom for Command Sequencing:**

\[
\frac{\{P\}C_1\{Q\}, \{Q\}C_2\{R\}}{\{P\}C_1;C_2\{R\}}
\]

- **Axioms for If Commands:**

\[
\frac{\{P \land b\}C_1\{Q\}, \{P \land \neg b\}C_2\{Q\}}{\{P\} \text{ if } b \text{ then } C_1 \text{ else } C_2 \text{ endif } \{Q\}}
\]

\[
\frac{\{P \land b\}C\{Q\}, (P \land \neg b) \rightarrow Q}{\{P\} \text{ if } b \text{ then } C \text{ endif } \{Q\}}
\]
Hoare Calculus: Rules of Inference (Contd.)

- **Weaken Postcondition:**
 \[
 \{P\}C\{Q\}, \ Q \rightarrow R
 \]
 \[
 \{ P \} C \{ R \}
 \]

- **Strengthen Precondition:**
 \[
 P \rightarrow Q, \{Q\}C\{R\}
 \]
 \[
 \{ P \} C \{ R \}
 \]

- **And and Or Rules:**
 \[
 \{P\}C\{Q\}, \{P'\}C\{Q'\}
 \]
 \[
 \{P \land P'\}C\{Q \land Q'\}
 \]
 \[
 \{P\}C\{Q\}, \{P'\}C\{Q'\}
 \]
 \[
 \{P \lor P'\}C\{Q \lor Q'\}
 \]

- **Observation:**
 \[
 \{ \text{false} \} \text{ any-command } \{ \text{any-postcondition} \} \]
Example (I)

\{IN = [4, 9, 16] \land OUT = [0, 1, 2]\}
read m; read n;
if m \geq n then
 a := 2*m
else
 a := 2*n
endif;
write a
\{IN = [16] \land OUT = [0, 1, 2, 18]\}

\{IN = [4, 9, 16] \land OUT = [0, 1, 2]\} \rightarrow \{IN = [4][9, 16] \land OUT = [0, 1, 2] \land 4 = 4\}
read m;
\{IN = [9, 16] \land OUT = [0, 1, 2] \land m = 4\} \rightarrow
\{IN = [9][16] \land OUT = [0, 1, 2] \land m = 4 \land 9 = 9\}
read n;
\{IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9\}

Recall:
\{IN = [K|L] \land P[V \rightarrow K]\}
read V
\{IN = L \land P\}
Example (II)

We have $P = \{\text{IN} = [16] \land \text{OUT} = [0, 1, 2] \land m = 4 \land n = 9\}$

read m; read n;
if $m \geq n$ then
 a := 2*m
else
 a := 2*n
endif;
write a

So, $b \equiv m \geq n = \text{false}$ and $\neg b = \text{true}$; thus $\{P \land b\} = \text{false}$ and $\{P \land \neg b\} = P$.

So, for C_2 we have:

$\{P \land \neg b\} = \{P\} =$
$\{\text{IN} = [16] \land \text{OUT} = [0, 1, 2] \land m = 4 \land n = 9\} \rightarrow$
$\{\text{IN} = [16] \land \text{OUT} = [0, 1, 2] \land m = 4 \land n = 9 \land 2 \times n = 18\}$

$\{P[V \rightarrow E]\} V := E \{P\}$

and for C_1 we can have anything since the premise is false:

$\{P \land b\} = \text{false}$

a := 2*m

$\{\text{IN} = [16] \land \text{OUT} = [0, 1, 2] \land m = 4 \land n = 9 \land a = 18\}$
Example (III)

\{IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9\}

if \(m \geq n \) then
 a := 2^m
else
 a := 2^n
endif;

\{IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \land a = 18\}

and

\{IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \land a = 18\}

write a

\{IN = [16] \land OUT = [0, 1, 2] :: [18] \land m = 4 \land n = 9 \land a = 18\}

which implies

\{IN = [16] \land OUT = [0, 1, 2, 18]\}
While Command

\[
\frac{\{ P \land b \} C \{ P \}}{\{ P \} \textbf{ while } b \textbf{ do } C \textbf{ endwhile } \{ P \land \neg b \}}
\]

- **Loop Invariant:** \(P \)
 - Preserved during execution of the loop.

- **Loop steps:**
 - *Initialization:* show that the loop invariant \(\{ P \} \) is initially true.
 - *Preservation:* show the loop invariant remains true when the loop executes (\(\{ P \land b \} \)).
 - *Completion:* show that the loop invariant and the exit condition produce the final assertion (\(\{ P \land \neg b \} \)).

- **Main Problem:**
 - Constructing the loop invariant.
Loop Invariant

• A relationship among the variables that does not change as the loop is executed.

• “Inspiration” tips:
 ◦ Look for some expression that can be combined with \(\neg b \) to produce part of the postcondition.
 ◦ Construct a table of values to see what stays constant.
 ◦ Combine what has already been computed at some stage in the loop with what has yet to be computed to yield a constant of some sort.

Study carefully many examples!
Example (exponent)

\[N \geq 0 \land A \geq 0 \]

\[k := N; \quad s := 1; \quad \textbf{while} \quad k > 0 \quad \textbf{do} \]
\[\quad s := A \times s; \]
\[\quad k := k - 1 \]
\[\textbf{endwhile} \]

\[s = A^N \]

We follow the “tips:”

- Trace algorithm with small numbers \(A = 2, \ N = 5 \).
- Build a table of values to find loop invariant.
- Notice that \(k \) is decreasing and that \(2^k \) represents the computation that still needs to be done.
- Add a column to the table for the value of \(2^k \).
- The value \(s \times 2^k = 32 \) remains constant throughout the execution of the loop.
Example (Exponent)

\[\{N \geq 0 \land A \geq 0\} \]

\[
\begin{align*}
k &:= N; \\
s &:= 1; \\
\text{while } & k > 0 \text{ do} \\
& s := A \ast s; \\
& k := k-1
\end{align*}
\]

\[
\text{endwhile}
\]

\[\{s = A^N\} \]

<table>
<thead>
<tr>
<th>k</th>
<th>s</th>
<th>(2^k)</th>
<th>(s \ast 2^k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>4</td>
<td>32</td>
</tr>
<tr>
<td>1</td>
<td>16</td>
<td>2</td>
<td>32</td>
</tr>
<tr>
<td>0</td>
<td>32</td>
<td>1</td>
<td>32</td>
</tr>
</tbody>
</table>

- Observe that \(s\) and \(2^k\) change when \(k\) changes.

- Their product is constant, namely \(32 = 2^5 = A^N\).

- This suggests that \(s \ast A^k = A^N\) is part of the invariant.

- The relation \(k \geq 0\) seems to be invariant, and when combined with “\(\neg b\)”, which is \(k \leq 0\), establishes \(k = 0\) at the end of the loop.

- When \(k = 0\) is joined with \(s \ast A^k = A^N\), we get the postcondition \(s = A^N\).

Loop Invariant: \(\{k \geq 0 \land s \ast A^k = A^N\}\).
Verification of the Program

Initialization:
\[\{N \geq 0 \land A \geq 0\} \rightarrow \{N = N \land N \geq 0 \land A \geq 0 \land 1 = 1\} \]
 \[k := N; s := 1;\]
\[\{k = N \land N \geq 0 \land A \geq 0 \land s = 1\} \rightarrow \{k \geq 0 \land s \cdot A^k = A^N\}\]

Preservation:
\[\{k \geq 0 \land s \cdot A^k = A^N \land k > 0\} \rightarrow \{k > 0 \land s \cdot A^k = A^N\}\]
\[\{k > 0 \land s \cdot A \cdot A^{k-1} = A^N\} \rightarrow \{k > 0 \land A \cdot s \cdot A^{k-1} = A^N\}\]
 \[s := A^s;\]
\[\{k > 0 \land s \cdot A^{k-1} = A^N\} \rightarrow \{k - 1 \geq 0 \land s \cdot A^{k-1} = A^N\}\]
 \[k := k - 1\]
\[\{k \geq 0 \land s \cdot A^k = A^N\}\]

Completion:
\[\{k \geq 0 \land s \cdot 2^k = A^N \land k \leq 0\} \rightarrow \{k = 0 \land s \cdot 2^k = A^N\} \rightarrow \{s = A^N\}\]
Further Topics

- Dealing with other language features:
 - Nested loops.
 - Procedure calls.
 - Recursive procedures.
 - ...

- Proving termination / total correctness.
 - Well founded orderings.
Acknowledgments

- Some slides and examples taken from:
 - Enrico Pontelli
 - Jim Lipton
 - Ken Slonneger and Barry L. Kurtz.
 Formal Syntax and Semantics of Programming Languages: A Laboratory-Based Approach.
 Addison-Wesley, Reading, Massachusetts.