Recalling Our Intro to the Course
Conventional models of using computers – not easy to determine correctness!

- Has become a very important issue, not just in safety-critical apps.
- Components with assured quality, being able to give a warranty, ...
- Being able to run untrusted code, certificate carrying code, ...
A Simple Imperative Program

• Example:

#include <stdio.h>
main() {
 int Number, Square;
 Number = 0;
 while(Number <= 5)
 { Square = Number * Number;
 printf("%d\n",Square);
 Number = Number + 1; } }

• Is it correct? With respect to what?

• A suitable formalism:
 ◦ to provide *specifications* (describe problems), and
 ◦ to reason about the *correctness of programs* (their implementation).

is needed.
“Compute the squares of the natural numbers which are less or equal than 5.”

Ideal at first sight, but:

- verbose
- vague
- ambiguous
- needs context (assumed information)
- ...

Philosophers and Mathematicians already pointed this out a long time ago...
Logic

- A means of clarifying / formalizing the human thought process
- Logic for example tells us that (classical logic)
 Aristotle likes cookies, and
 Plato is a friend of anyone who likes cookies
 imply that
 Plato is a friend of Aristotle

- Symbolic logic:
 A shorthand for classical logic – plus many useful results:
 \[a_1 : \text{likes}(\text{aristotle, cookies}) \]
 \[a_2 : \forall X \text{ likes}(X, \text{cookies}) \rightarrow \text{friend}(\text{plato, X}) \]
 \[t_1 : \text{friend}(\text{plato, aristotle}) \]
 \[T[a_1, a_2] \vdash t_1 \]

- But, can logic be used:
 - To represent the problem (specifications)?
 - Even perhaps to solve the problem?
For expressing specifications and reasoning about the correctness of programs we need:

- Specification languages (assertions), modeling, ...
- Program semantics (models, axiomatic, fixpoint, ...).
- Proofs: program *verification* (and debugging, equivalence, ...).
Generating Squares: A Specification (I)

Numbers—we will use “Peano” representation for simplicity:

\[0 \rightarrow 0 \quad 1 \rightarrow s(0) \quad 2 \rightarrow s(s(0)) \quad 3 \rightarrow s(s(s(0))) \quad \ldots \]

- Defining the natural numbers:
 \[nat(0) \land nat(s(0)) \land nat(s(s(0))) \land \ldots \]

- A better solution:
 \[nat(0) \land \forall X \ (nat(X) \rightarrow nat(s(X))) \]

- Order on the naturals:
 \[\forall X \ (le(0, X)) \land \forall X \forall Y \ (le(X, Y) \rightarrow le(s(X), s(Y))) \]

- Addition of naturals:
 \[\forall X \ (nat(X) \rightarrow add(0, X, X)) \land \forall X \forall Y \forall Z \ (add(X, Y, Z) \rightarrow add(s(X), Y, s(Z))) \]
Generating Squares: A Specification (II)

- Multiplication of naturals:
 \[\forall X \ (\text{nat}(X) \rightarrow \text{mult}(0, X, 0)) \land \forall X \forall Y \forall Z \forall W \ (\text{mult}(X, Y, W) \land \text{add}(W, Y, Z) \rightarrow \text{mult}(s(X), Y, Z)) \]

- Squares of the naturals:
 \[\forall X \forall Y \ (\text{nat}(X) \land \text{nat}(Y) \land \text{mult}(X, X, Y) \rightarrow \text{nat_square}(X, Y)) \]

We can now write a specification of the (imperative) program, i.e., conditions that we want the program to meet:

- **Precondition:**
 empty.

- **Postcondition:**
 \[\forall X \ (\text{output}(X) \leftarrow (\exists Y \ \text{nat}(Y) \land \text{le}(Y, s(s(s(s(0))))) \land \text{nat_square}(Y, X))) \]
For expressing specifications and reasoning about the correctness of programs we need:

- Specification languages (assertions), modeling, ...
- Program semantics (models, axiomatic, fixpoint, ...).
- Proofs: program *verification* (and debugging, equivalence, ...).
Semantic Tasks

- Semantics:
 - A *semantics* associates a meaning (a mathematical object) to a program or program sentence.

- Semantic tasks:
 - Verification: proving that a program meets its specification.
 - Static debugging: finding where a program does not meet specifications.
 - Program equivalence: proving that two programs have the same semantics.
 - etc.
Styles of Semantics

- **Operational:**
 The meaning of program sentences is defined in terms of the steps (transformations from state to state) that computations may take during execution (derivations). Proofs by induction on derivations.

- **Axiomatic:**
 The meaning of program sentences is defined indirectly in terms of some axioms and rules of a *logic* of program properties.

- **Denotational (fixpoint):**
 The meaning of program sentences is given abstractly as *functions* on an appropriate *domain* (which is often a lattice). E.g., \(\lambda \)-calculus for functional programming. C.f., lattice / fixpoint theory.

- Also, **model (declarative) semantics:** (For (Constraint) Logic Programs:) The meaning of programs is given as a minimal model (“logical meaning”) of the logic that the program is written in.
Operational Semantics
Traditional Operational Semantics

- Meaning of program sentences defined in terms of the steps (*state transitions*, transformations from state to state) that computations may take during executions (derivations).
- Proofs by induction on derivations.
- Examples of concrete operational semantics:
 - Semantics modeling memory for imperative programs.
 - Interpreters and meta-interpreters (self-interpreters).
 - Resolution and CLP(\(\mathcal{X}\)) resolution, for (constraint) logic programs.
 - ...
- Examples of generic / standard methodologies:
 - *Structural operational semantics*.
 - Vienna definition language (VDL).
 - SECD machine.
 - ...

13
A Simple Imperative Language

Program ::= Statement
Statement ::= Statement ; Statement
 | noop
 | Id := Expression
 | if Expression then Statement else Statement
 | while Expression do Statement
Expression ::= Numeral
 | Id
 | Expression + Expression

- Only integer data types.
- Variables do not need to be declared.
Operational Semantics

- States: memory configurations – values of variables.
- $s[X]$ denotes the value of the variable X in state s.
- $<\text{statement}, s> \Rightarrow s'$ denotes that if statement is executed in state s the resulting state is s'.
- $<\text{expression}, s> \Rightarrow \text{value}$ denotes that if expression is executed in state s it returns value.

Expressions:
- If n is a number $<n, s> \Rightarrow n$
- If X is a variable $<X, s> \Rightarrow s[X]$
- If expression is of the form exp_1+exp_2 we write:
 \[
 \frac{<exp_1, s> \Rightarrow v_1 \quad <exp_2, s> \Rightarrow v_2}{<exp_1+exp_2, s> \Rightarrow v_1 + v_2}
 \]
Operational Semantics

- **Statements:**
 \(s[X/v] \) denotes a new state, identical to \(s \) but where variable \(X \) has value \(v \).

 - **Noop:** \(< \text{noop}, s >\) \(\Rightarrow s\)
 - **Assignment:**
 \[
 \frac{< \text{exp}, s >\Rightarrow v}{< X := \text{exp}, s >\Rightarrow s[X/v]}
 \]
 - **Conditional:**
 \[
 \frac{< \text{exp}, s >\Rightarrow 0 \quad < \text{stmt}_2, s >\Rightarrow s'}{< \text{if exp then stmt}_1 \text{ else stmt}_2, s >\Rightarrow s'}
 \]
 \[
 \frac{< \text{exp}, s >\Rightarrow v, v \neq 0 \quad < \text{stmt}_1, s >\Rightarrow s'}{< \text{if exp then stmt}_1 \text{ else stmt}_2, s >\Rightarrow s'}
 \]
Operational Semantics

- Statements (Contd.):
 - Sequencing:
 \[
 \begin{align*}
 < stmt_1, s > &\Rightarrow s_1 & < stmt_2, s_1 > &\Rightarrow s_2 \\
 < stmt_1 ; stmt_2, s > &\Rightarrow s_2
 \end{align*}
 \]
 - Loops:
 \[
 \begin{align*}
 < exp, s > &\Rightarrow 0 \\
 < \textbf{while} \; exp \; \textbf{do} \; stmt, s > &\Rightarrow s \\
 < exp, s > &\Rightarrow v, v \neq 0 & < stmt, s > &\Rightarrow s' & < \textbf{while} \; exp \; \textbf{do} \; stmt, s' > &\Rightarrow s'' \\
 < \textbf{while} \; exp \; \textbf{do} \; stmt, s > &\Rightarrow s''
 \end{align*}
 \]
Example

- Program:
 \[
 \begin{align*}
 x & := 5; \\
 y & := -6; \\
 \text{if } (x+y) \text{ then } z & := x \text{ else } z := y
 \end{align*}
 \]

- Semantics:

\[
\begin{array}{c}
< x := 5, \ s_0 > \Rightarrow s_1 \\
\hline
< y := -6, \ s_1 > \Rightarrow s_2 \\
\hline
< x+y, \ s_2 > \Rightarrow -1 \quad < z := x, \ s_2 > \Rightarrow s_3 \\
\hline
< S_3, \ s_2 > \Rightarrow s_3 \\
\hline
< y := -6; S_3, \ s_1 > \Rightarrow s_3 \\
\hline
< x := 5; y := -6; S_3, \ s_0 > \Rightarrow s_3
\end{array}
\]

where \(S_3 = \text{if } (x+y) \text{ then } z := x \text{ else } z := y \).

And:
\[
\begin{align*}
 s_1 &= s_0[x/5] \\
 s_2 &= s_1[y/-6] \\
 s_3 &= s_2[z/5]
\end{align*}
\]
Axiomatic Semantics
Axiomatic Semantics

- **Characteristics:**
 - Based on techniques from predicate logic.
 - There is no concept of *state of the machine* (as in operational or denotational semantics).
 - More abstract than, e.g., denotational semantics.
 - Semantic meaning of a program is based on assertions about relationships that remain the same each time the program executes.

- **Classical application:**
 - Proving programs to be correct w.r.t. specifications.

- **(Typical, classical) limitations:**
 - Side-effects disallowed in expressions.
 - `goto` command difficult to treat.
 - Aliasing not allowed.
 - Scope rules difficult to describe ⇒ require all identifier names to be unique.
History and References

- Main original papers:

- Many textbooks available.
Assertions and Correctness

- **Assertion**: a logical formula, say

\[(m \neq 0 \land (\sqrt{m})^2 = m)\]

that is true when a point in the program is reached.

- **Precondition**: Assertion before a command (\(\leftarrow\) includes a whole program).

- **Postcondition**: Assertion after a command.

\[
\{\text{PRE}\} \text{ C } \{\text{POST}\} \leftarrow \text{a “Hoare triple”}
\]

- **Partial Correctness**: If the initial assertion (the precondition) is true and if the program terminates, then the final assertion (the postcondition) must be true.

\[\text{Precondition} + \text{Termination} \Rightarrow \text{Postcondition}\]

- **Total Correctness**: Given that the precondition for the program is true, the program must terminate and the postcondition must be true.

\[\text{Total Correctness} = \text{Partial Correctness} + \text{Termination}\]
Hoare Calculus: The Assignment Axiom

- **Examples:**
 - $\{true\} \ m := 13 \ \{m = 13\}$
 - $\{n = 3 \land c = 2\} \ n := c \cdot n \ \{n = 6 \land c = 2\}$
 - $\{k \geq 0\} \ k := k + 1 \ \{k > 0\}$

- **Notation:**
 - $\{Precondition\} \ command \ \{Postcondition\}$
 - $P[V \rightarrow E]$ denotes substitution: putting E in place of V in P

- **Axiom for assignment command:**
 \[
 \{P[V \rightarrow E]\} \ V := E \ \{P\}
 \]

 Work backwards:
 - Postcondition: $P \equiv (n = 6 \land c = 2)$
 - Command: $n := c \cdot n$
 - Precondition: $P[V \rightarrow E] \equiv (c \cdot n = 6 \land c = 2)$
 \[
 \equiv (n = 3 \land c = 2)
 \]
Hoare Calculus: Read and Write Commands

- **Notation:**
 - Use “\(IN = [1, 2, 3]\)” and “\(OUT = [4, 5]\)” to represent input and output files.
 - \([M|L]\) denotes list whose head is \(M\) and tail is \(L\).
 - \(K, M, N, \ldots\) represent arbitrary numerals.

- **Axiom for read command:**
 - \(\{IN = [K|L] \land P[V \rightarrow K]\}\) read \(V\) \(\{IN = L \land P\}\)

- **Axiom for write command:**
 - \(\{OUT = L \land E = K \land P\}\) write \(E\) \(\{OUT = L :: [K] \land E = K \land P\}\)

- **Note:** \(L :: [K]\) is the list whose last element is \(K\) (\(::\) represents concatenation).
Hoare Calculus: Rules of Inference

- **Format** (c.f. structural operational semantics):

\[
\frac{H_1, H_2, H_n, \ldots}{H}
\]

- **Axiom for Command Sequencing:**

\[
\frac{\{P\} C_1 \{Q\}, \quad \{Q\} C_2 \{R\}}{\{P\} C_1 ; C_2 \{R\}}
\]

- **Axioms for If Commands:**

\[
\frac{\{P \land b\} C_1 \{Q\}, \quad \{P \land \neg b\} C_2 \{Q\}}{\{P\} \textbf{ if } b \textbf{ then } C_1 \textbf{ else } C_2 \textbf{ endif} \{Q\}}
\]

\[
\frac{\{P \land b\} C \{Q\}, \quad (P \land \neg b) \rightarrow Q}{\{P\} \textbf{ if } b \textbf{ then } C \textbf{ endif} \{Q\}}
\]
Hoare Calculus: Rules of Inference (Contd.)

- **Weaken Postcondition:**

\[
\begin{align*}
\{P\}C\{Q\}, & \quad Q \rightarrow R \\
\{P\}C\{R\}
\end{align*}
\]

- **Strengthen Precondition:**

\[
\begin{align*}
P \rightarrow Q, & \quad \{Q\}C\{R\} \\
\{P\}C\{R\}
\end{align*}
\]

- **And and Or Rules:**

\[
\begin{align*}
\{P\}C\{Q\}, & \quad \{P'\}C\{Q'\} \\
\{P \land P'\}C\{Q \land Q'\}
\end{align*}
\]

\[
\begin{align*}
\{P\}C\{Q\}, & \quad \{P'\}C\{Q'\} \\
\{P \lor P'\}C\{Q \lor Q'\}
\end{align*}
\]

- **Observation:**

\[
\{\text{false}\} \text{ any-command } \{\text{any-postcondition}\}
\]
Example (I)

\{IN = [4, 9, 16] \land OUT = [0, 1, 2]\}
read m; read n;
if m \geq n then
 a := 2*m
else
 a := 2*n
endif;
write a
\{IN = [16] \land OUT = [0, 1, 2, 18]\}

\{IN = [4, 9, 16] \land OUT = [0, 1, 2]\} \rightarrow \{IN = [4|[9, 16]] \land OUT = [0, 1, 2] \land 4 = 4\}
read m;
\{IN = [9, 16] \land OUT = [0, 1, 2] \land m = 4\} \rightarrow
\{IN = [9|[16]] \land OUT = [0, 1, 2] \land m = 4 \land 9 = 9\}
read n;
\{IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9\}

Recall:
\{IN = [K|L] \land P[V \rightarrow K]\}
read V
\{IN = L \land P\}
Example (II)

We have $P = \{ IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \}$

read m; read n;
if $m \geq n$ then
 a := 2*m
else
 a := 2*n
endif;
write a

So, $b \equiv m \geq n = false$ and $\neg b = true$; thus $\{ P \land b \} = false$ and $\{ P \land \neg b \} = P$.

So, for C_2 we have:

$\{ P \land \neg b \} = \{ P \} = \\
\{ IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \} \rightarrow \\
\{ IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \land 2 \ast n = 18 \}$

a := 2*n

$\{ IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \land a = 18 \}$

and for C_1 we can have anything since the premise is false:

$\{ P \land b \} = false$

a := 2*m

$\{ IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \land a = 18 \}$
Example (III)

\{IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9\}

if \(m \geq n \) then
 \(a := 2m \)
else
 \(a := 2n \)
endif;

\{IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \land a = 18\}

and

\{IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \land a = 18\}

write \(a \)

\{IN = [16] \land OUT = [0, 1, 2] :: [18] \land m = 4 \land n = 9 \land a = 18\}

which implies

\{IN = [16] \land OUT = [0, 1, 2, 18]\}
While Command

\[
\frac{\{P \land b\} C \{P\} }{\{P\} \text{ while } b \text{ do } C \text{ endwhile } \{P \land \neg b\}}
\]

- **Loop Invariant:** P
 - Preserved during execution of the loop.

- **Loop steps:**
 - *Initialization:* show that the loop invariant \{P\} is initially true.
 - *Preservation:* show the loop invariant remains true when the loop executes (\{P \land b\}).
 - *Completion:* show that the loop invariant and the exit condition produce the final assertion (\{P \land \neg b\}).

- **Main Problem:**
 - Constructing the loop invariant.
Loop Invariant

- A relationship among the variables that does not change as the loop is executed.

- “Inspiration” tips:
 - Look for some expression that can be combined with $\neg b$ to produce part of the postcondition.
 - Construct a table of values to see what stays constant.
 - Combine what has already been computed at some stage in the loop with what has yet to be computed to yield a constant of some sort.

Study carefully many examples!
Example (exponent)

\(\{ N \geq 0 \land A \geq 0 \} \)

\[k := N; \quad s := 1; \]

\[\textbf{while} \quad k > 0 \textbf{ do} \]

\[s := A \times s; \]

\[k := k - 1 \]

\[\textbf{endwhile} \]

\[\{ s = A^N \} \]

We follow the “tips:”

- Trace algorithm with small numbers \(A = 2, \ N = 5 \).
- Build a table of values to find loop invariant.
- Notice that \(k \) is decreasing and that \(2^k \) represents the computation that still needs to be done.
- Add a column to the table for the value of \(2^k \).
- The value \(s \times 2^k = 32 \) remains constant throughout the execution of the loop.
Example (Exponent)

\[
\begin{align*}
\{ N \geq 0 \land A \geq 0 \} \\
k := N; \quad s := 1; \\
\textbf{while} \quad k>0 \textbf{ do} \\
\quad s := A \ast s; \\
\quad k := k-1 \\
\textbf{endwhile} \\
\{ s = A^N \}
\end{align*}
\]

<table>
<thead>
<tr>
<th>k</th>
<th>s</th>
<th>2^k</th>
<th>$s \ast 2^k$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>4</td>
<td>32</td>
</tr>
<tr>
<td>1</td>
<td>16</td>
<td>2</td>
<td>32</td>
</tr>
<tr>
<td>0</td>
<td>32</td>
<td>1</td>
<td>32</td>
</tr>
</tbody>
</table>

- Observe that s and 2^k change when k changes.
- Their product is constant, namely $32 = 2^5 = A^N$.
- This suggests that $s \ast A^k = A^N$ is part of the invariant.
- The relation $k \geq 0$ seems to be invariant, and when combined with "−b", which is $k \leq 0$, establishes $k = 0$ at the end of the loop.
- When $k = 0$ is joined with $s \ast A^k = A^N$, we get the postcondition $s = A^N$.

Loop Invariant: $\{ k \geq 0 \land s \ast A^k = A^N \}$.
Verification of the Program

Initialization:
\[\{ N \geq 0 \land A \geq 0 \} \rightarrow \{ N = N \land N \geq 0 \land A \geq 0 \land 1 = 1 \} \]
\[k := N; \ s := 1; \]
\[\{ k = N \land N \geq 0 \land A \geq 0 \land s = 1 \} \rightarrow \{ k \geq 0 \land s \cdot A^k = A^N \} \]

Preservation:
\[\{ k \geq 0 \land s \cdot A^k = A^N \land k > 0 \} \rightarrow \{ k > 0 \land s \cdot A^k = A^N \} \rightarrow \]
\[\{ k > 0 \land s \cdot A \cdot A^{k-1} = A^N \} \rightarrow \{ k > 0 \land A \cdot s \cdot A^{k-1} = A^N \} \]
\[s := A \cdot s; \]
\[\{ k > 0 \land s \cdot A^{k-1} = A^N \} \rightarrow \{ k - 1 \geq 0 \land s \cdot A^{k-1} = A^N \} \]
\[k := k-1 \]
\[\{ k \geq 0 \land s \cdot A^k = A^N \} \]

Completion:
\[\{ k \geq 0 \land s \cdot 2^k = A^N \land k \leq 0 \} \rightarrow \{ k = 0 \land s \cdot 2^k = A^N \} \rightarrow \{ s = A^N \} \]
Further Topics

- Dealing with other language features:
 - Nested loops.
 - Procedure calls.
 - Recursive procedures.
 - ...

- Proving termination / total correctness.
 - Well founded orderings.
Acknowledgments

• Some slides and examples taken from:
 ◇ Enrico Pontelli
 ◇ Jim Lipton
 ◇ Ken Slonneger and Barry L. Kurtz.
 Formal Syntax and Semantics of Programming Languages: A Laboratory-Based Approach.
 Addison-Wesley, Reading, Massachusetts.