Recalling Our Intro to the Course
The Program Correctness Problem

- Conventional models of using computers – not easy to determine correctness!
 - Has become a very important issue, not just in safety-critical apps.
 - Components with assured quality, being able to give a warranty, ...
 - Being able to run untrusted code, certificate carrying code, ...
A Simple Imperative Program

- Example:

```c
#include <stdio.h>
maint() {
    int Number, Square;
    Number = 0;
    while(Number <= 5) {
        Square = Number * Number;
        printf("%d\n",Square);
        Number = Number + 1; }
}
```

- Is it correct? With respect to what?

- A suitable formalism:
 - to provide *specifications* (describe problems), and
 - to reason about the *correctness of programs* (their *implementation*).

is needed.
Natural Language

“Compute the squares of the natural numbers which are less or equal than 5.”

Ideal at first sight, but:

◊ verbose
◊ vague
◊ ambiguous
◊ needs context (assumed information)
◊ ...

Philosophers and Mathematicians already pointed this out a long time ago...
Logic

- A means of clarifying / formalizing the human thought process
- Logic for example tells us that (classical logic)
 *Aristotle likes cookies, and
 *Plato is a friend of anyone who likes cookies
 imply that
 Plato is a friend of Aristotle

- Symbolic logic:
 A shorthand for classical logic – plus many useful results:
 \[a_1 : \text{likes}(\text{aristotle}, \text{cookies}) \]
 \[a_2 : \forall X \text{likes}(X, \text{cookies}) \rightarrow \text{friend}(\text{plato}, X) \]
 \[t_1 : \text{friend}(\text{plato}, \text{aristotle}) \]
 \[T[a_1, a_2] \vdash t_1 \]

- But, can logic be used:
 - To represent the problem (specifications)?
 - *Even perhaps to solve the problem?*
For expressing specifications and reasoning about the correctness of programs we need:

- Specification languages (assertions), modeling, ...
- Program semantics (models, axiomatic, fixpoint, ...).
- Proofs: program verification (and debugging, equivalence, ...).
Generating Squares: A Specification (I)

Numbers—we will use “Peano” representation for simplicity:

\[0 \rightarrow 0 \quad 1 \rightarrow s(0) \quad 2 \rightarrow s(s(0)) \quad 3 \rightarrow s(s(s(0))) \quad \ldots \]

- Defining the natural numbers:
 \[nat(0) \land nat(s(0)) \land nat(s(s(0))) \land \ldots \]

- A better solution:
 \[nat(0) \land \forall X \ (nat(X) \rightarrow nat(s(X))) \]

- Order on the naturals:
 \[\forall X \ (le(0, X)) \land \forall X \forall Y \ (le(X, Y) \rightarrow le(s(X), s(Y))) \]

- Addition of naturals:
 \[\forall X \ (nat(X) \rightarrow add(0, X, X)) \land \forall X \forall Y \forall Z \ (add(X, Y, Z) \rightarrow add(s(X), Y, s(Z))) \]
Generating Squares: A Specification (II)

- Multiplication of naturals:
 \[\forall X \ (nat(X) \rightarrow mult(0, X, 0)) \land \forall X \forall Y \forall Z \forall W \ (mult(X, Y, W) \land add(W, Y, Z) \rightarrow mult(s(X), Y, Z)) \]

- Squares of the naturals:
 \[\forall X \forall Y \ (nat(X) \land nat(Y) \land mult(X, X, Y) \rightarrow nat_square(X, Y)) \]

We can now write a *specification* of the (imperative) program, i.e., conditions that we want the program to meet:

- **Precondition:**
 empty.

- **Postcondition:**
 \[\forall X (output(X) \leftarrow (\exists Y \ nat(Y) \land le(Y, s(s(s(s(0)))))) \land nat_square(Y, X)) \]
For expressing specifications and reasoning about the correctness of programs we need:

- Specification languages (assertions), modeling, ...
- Program semantics (models, axiomatic, fixpoint, ...).
- Proofs: program *verification* (and debugging, equivalence, ...).
Semantic Tasks

- Semantics:
 - A *semantics* associates a meaning (a mathematical object) to a program or program sentence.

- Semantic tasks:
 - Verification: proving that a program meets its specification.
 - Static debugging: finding where a program does not meet specifications.
 - Program equivalence: proving that two programs have the same semantics.
 - etc.
Styles of Semantics

- **Operational:**
The meaning of program sentences is defined in terms of the steps (transformations from state to state) that computations may take during execution (derivations). Proofs by induction on derivations.

- **Axiomatic:**
The meaning of program sentences is defined indirectly in terms of some axioms and rules of a *logic* of program properties.

- **Denotational (fixpoint):**
The meaning of program sentences is given abstractly as *functions* on an appropriate *domain* (which is often a lattice). E.g., λ-calculus for functional programming. C.f., lattice / fixpoint theory.

- Also, **model (declarative) semantics:** (For (Constraint) Logic Programs:) The meaning of programs is given as a minimal model (“logical meaning”) of the logic that the program is written in.
Operational Semantics
Traditional Operational Semantics

- Meaning of program sentences defined in terms of the steps (state transitions, transformations from state to state) that computations may take during executions (derivations).
- Proofs by induction on derivations.
- Examples of concrete operational semantics:
 - Semantics modeling memory for imperative programs.
 - Interpreters and meta-interpreters (self-interpreters).
 - Resolution and CLP(∀) resolution, for (constraint) logic programs.
 - ...
- Examples of generic / standard methodologies:
 - Structural operational semantics.
 - Vienna definition language (VDL).
 - SECD machine.
 - ...

A Simple Imperative Language

Program ::= Statement
Statement ::= Statement ; Statement
 | noop
 | Id := Expression
 | if Expression then Statement else Statement
 | while Expression do Statement
Expression ::= Numeral
 | Id
 | Expression + Expression

- Only integer data types.
- Variables do not need to be declared.
Operational Semantics

- States: memory configurations – values of variables.
- $s[X]$ denotes the value of the variable X in state s.
- $<\text{statement}, s > \Rightarrow s'$ denotes that if statement is executed in state s the resulting state is s'.
- $<\text{expression}, s > \Rightarrow value$ denotes that if expression is executed in state s it returns value.

- Expressions:
 - If n is a number $<n, s > \Rightarrow n$
 - If X is a variable $<X, s > \Rightarrow s[X]$
 - If expression is of the form $exp_1 + exp_2$ we write:
 $$<exp_1, s > \Rightarrow v_1 <exp_2, s > \Rightarrow v_2$$
 $$<exp_1 + exp_2, s > \Rightarrow v_1 + v_2$$
Operational Semantics

- Statements:
 \(s[X/v] \) denotes a new state, identical to \(s \) but where variable \(X \) has value \(v \).

 - Noop: \(< \text{noop}, s > \Rightarrow s \)

 - Assignment:
 \[
 \frac{< \text{exp}, s > \Rightarrow v}{< X := \text{exp}, s > \Rightarrow s[X/v]}
 \]

 - Conditional:
 \[
 \frac{< \text{exp}, s > \Rightarrow 0 \quad < \text{stmt}_2, s > \Rightarrow s'}{< \text{if exp then stmt}_1 \text{ else stmt}_2, s > \Rightarrow s'}
 \]

 \[
 \frac{< \text{exp}, s > \Rightarrow v, v \neq 0 \quad < \text{stmt}_1, s > \Rightarrow s'}{< \text{if exp then stmt}_1 \text{ else stmt}_2, s > \Rightarrow s'}
 \]
Operational Semantics

- Statements (Contd.):
 - Sequencing:
 \[
 \begin{align*}
 \langle stmt_1, s \rangle \Rightarrow s_1 & \quad \langle stmt_2, s_1 \rangle \Rightarrow s_2 \\
 \langle stmt_1 ; stmt_2, s \rangle & \Rightarrow s_2
 \end{align*}
 \]
 - Loops:
 \[
 \begin{align*}
 \langle exp, s \rangle \Rightarrow 0 & \quad \langle while \, exp \, do \, stmt, s \rangle \Rightarrow s \\
 \langle exp, s \rangle \Rightarrow v, v \neq 0 & \quad \langle stmt, s \rangle \Rightarrow s' \quad \langle while \, exp \, do \, stmt, s' \rangle \Rightarrow s'' \\
 \langle while \, exp \, do \, stmt, s \rangle & \Rightarrow s''
 \end{align*}
 \]
Example

- **Program:**

  ```
  x := 5;
  y := -6;
  if (x+y) then z := x else z := y
  ```

- **Semantics:**

 \[
 \begin{align*}
 &\langle x := 5, \ s_0 \rangle \Rightarrow s_1 \\
 &\langle y := -6, \ s_1 \rangle \Rightarrow s_2 \\
 &\langle x+y, \ s_2 \rangle \Rightarrow -1 \\
 &\langle z := x, \ s_2 \rangle \Rightarrow s_3 \\
 &\langle S_3, \ s_2 \rangle \Rightarrow s_3 \\
 &\langle y := -6 ; S_3, \ s_1 \rangle \Rightarrow s_3 \\
 &\langle x := 5 ; y := -6 ; S_3, \ s_0 \rangle \Rightarrow s_3
 \end{align*}
 \]

 where \(S_3 = \text{if (x+y) then z := x else z := y} \).

 And:

 \[
 \begin{align*}
 s_1 &= s_0[x/5] \\
 s_2 &= s_1[y/-6] \\
 s_3 &= s_2[z/5]
 \end{align*}
 \]
Axiomatic Semantics
Axiomatic Semantics

- **Characteristics:**
 - Based on techniques from predicate logic.
 - There is no concept of *state of the machine* (as in operational or denotational semantics).
 - More abstract than, e.g., denotational semantics.
 - Semantic meaning of a program is based on assertions about relationships that remain the same each time the program executes.

- **Classical application:**
 - Proving programs to be correct w.r.t. specifications.

- **(Typical, classical) limitations:**
 - Side-effects disallowed in expressions.
 - `goto` command difficult to treat.
 - Aliasing not allowed.
 - Scope rules difficult to describe ⇒ require all identifier names to be unique.
History and References

- Main original papers:

- Many textbooks available.
Assertions and Correctness

- **Assertion**: a logical formula, say
 \[(m \neq 0 \land (\sqrt{m})^2 = m) \]
 that is true when a point in the program is reached.

- **Precondition**: Assertion before a command (\(\leftarrow \) includes a whole program).

- **Postcondition**: Assertion after a command.

 \[\{PRE\} C \{POST\} \leftarrow \text{a “Hoare triple”} \]

- **Partial Correctness**:
 If the initial assertion (the precondition) is true and if the program terminates, then the final assertion (the postcondition) must be true.
 \[\text{Precondition} + \text{Termination} \Rightarrow \text{Postcondition} \]

- **Total Correctness**:
 Given that the precondition for the program is true, the program must terminate and the postcondition must be true.
 \[\text{Total Correctness} = \text{Partial Correctness} + \text{Termination} \]
Hoare Calculus: The Assignment Axiom

- **Examples:**
 - \(\{\text{true}\} \ m := 13 \ \{m = 13\}\)
 - \(\{n = 3 \land c = 2\} \ n := c \ast n \ \{n = 6 \land c = 2\}\)
 - \(\{k \geq 0\} \ k := k + 1 \ \{k > 0\}\)

- **Notation:**
 - \(\{\text{Precondition}\} \ command \ \{\text{Postcondition}\}\)
 - \(P[V \rightarrow E]\) denotes substitution: putting \(E\) in place of \(V\) in \(P\)

- **Axiom for assignment command:**

\[
\{P[V \rightarrow E]\} \ V := E \ \{P\}
\]

Work backwards:

- **Postcondition:** \(P \equiv (n = 6 \land c = 2)\)
- **Command:** \(n := c \ast n\)
- **Precondition:** \(P[V \rightarrow E] \equiv (c \ast n = 6 \land c = 2)\)
 \[\equiv (n = 3 \land c = 2)\]
Hoare Calculus: Read and Write Commands

- **Notation:**
 - Use "\(IN = [1, 2, 3]\)" and "\(OUT = [4, 5]\)" to represent input and output files.
 - \([M|L]\) denotes list whose head is \(M\) and tail is \(L\).
 - \(K, M, N, \ldots\) represent arbitrary numerals.

- **Axiom for read command:**
 - \(\{IN = [K|L] \land P[V \rightarrow K]\}\) read \(V\) \(\{IN = L \land P\}\)

- **Axiom for write command:**
 - \(\{OUT = L \land E = K \land P\}\) write \(E\) \(\{OUT = L :: [K] \land E = K \land P\}\)

- **Note:** \(L :: [K]\) is the list whose last element is \(K\) (\(::\) represents concatenation).
Hoare Calculus: Rules of Inference

- **Format** (c.f. structural operational semantics):
 \[
 H_1, H_2, H_n, ... \quad \frac{}{H}
 \]

- **Axiom for Command Sequencing:**
 \[
 \{P\} C_1 \{Q\}, \quad \{Q\} C_2 \{R\} \quad \frac{}{\{P\} C_1 ; C_2 \{R\}}
 \]

- **Axioms for If Commands:**
 \[
 \{P \land b\} C_1 \{Q\}, \quad \{P \land \neg b\} C_2 \{Q\} \quad \frac{}{\{P\} \text{ if } b \text{ then } C_1 \text{ else } C_2 \text{ endif } \{Q\}}
 \]
 \[
 \{P \land b\} C \{Q\}, \quad (P \land \neg b) \rightarrow Q \quad \frac{}{\{P\} \text{ if } b \text{ then } C \text{ endif } \{Q\}}
 \]
Hoare Calculus: Rules of Inference (Contd.)

- **Weaken Postcondition:**

\[
\begin{align*}
\{P\} C\{Q\}, & \quad Q \rightarrow R \\
\{P\} C\{R\}
\end{align*}
\]

- **Strengthen Precondition:**

\[
\begin{align*}
P \rightarrow Q, & \quad \{Q\} C\{R\} \\
\{P\} C\{R\}
\end{align*}
\]

- **And and Or Rules:**

\[
\begin{align*}
\{P\} C\{Q\}, & \quad \{P'\} C\{Q'\} \\
\{P \land P'\} C\{Q \land Q'\}
\end{align*}
\]

\[
\begin{align*}
\{P\} C\{Q\}, & \quad \{P'\} C\{Q'\} \\
\{P \lor P'\} C\{Q \lor Q'\}
\end{align*}
\]

- **Observation:**

\[
\{\text{false}\} \text{ any-command } \{\text{any-postcondition}\}
\]
Example (I)

\{IN = [4, 9, 16] \land OUT = [0, 1, 2]\}
read m; read n;
if m \geq n then
 a := 2 \times m
else
 a := 2 \times n
endif;
write a
\{IN = [16] \land OUT = [0, 1, 2, 18]\}

\{IN = [4, 9, 16] \land OUT = [0, 1, 2]\} \rightarrow \{IN = [4][9, 16] \land OUT = [0, 1, 2] \land 4 = 4\}
read m;
\{IN = [9, 16] \land OUT = [0, 1, 2] \land m = 4\} \rightarrow
\{IN = [9][16] \land OUT = [0, 1, 2] \land m = 4 \land 9 = 9\}
read n;
\{IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9\}

Recall:
\{IN = [K|L] \land P[V \rightarrow K]\}
read V
\{IN = L \land P\}
Example (II)

We have \(P = \{ IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \} \)

read \(m \); read \(n \);
if \(m \geq n \) then
 \[a := 2^*m \]
else
 \[a := 2^*n \]
endif;
write \(a \)

So, \(b \equiv m \geq n = false \) and \(\neg b = true \); thus \(\{ P \land b \} = false \) and \(\{ P \land \neg b \} = P \).

So, for \(C_2 \) we have:
\[\{P \land \neg b\} = \{P\} = \]
\[\{IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9\} \rightarrow \]
\[\{IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \land 2^* n = 18\} \]
\[a := 2^*n \]
\[\{IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \land a = 18\} \]
and for \(C_1 \) we can have anything since the premise is false:
\[\{P \land b\} = false \]
\[a := 2^*m \]
\[\{IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \land a = 18\} \]
Example (III)

\{IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9\}

if \(m \geq n \) then

\(a := 2^m \)

else

\(a := 2^n \)

endif;

\{IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \land a = 18\}

and

\{IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \land a = 18\}

write a

\{IN = [16] \land OUT = [0, 1, 2] :: [18] \land m = 4 \land n = 9 \land a = 18\}

which implies

\{IN = [16] \land OUT = [0, 1, 2, 18]\}
While Command

\[\{P \land b\}C\{P\} \]

\[\{P\} \textbf{while } b \textbf{ do } C \textbf{ endwhile } \{P \land \neg b\} \]

- **Loop Invariant:** \(P \)
 - Preserved during execution of the loop.

- **Loop steps:**
 - *Initialization:* show that the loop invariant \(\{P\} \) is initially true.
 - *Preservation:*
 - show the loop invariant remains true when the loop executes (\(\{P \land b\}\)).
 - *Completion:* show that the loop invariant and the exit condition produce the final assertion (\(\{P \land \neg b\}\)).

- **Main Problem:**
 - Constructing the loop invariant.
Loop Invariant

- A relationship among the variables that does not change as the loop is executed.
- “Inspiration” tips:
 - Look for some expression that can be combined with $\neg b$ to produce part of the postcondition.
 - Construct a table of values to see what stays constant.
 - Combine what has already been computed at some stage in the loop with what has yet to be computed to yield a constant of some sort.

Study carefully many examples!
Example (exponent)

\{ N \geq 0 \land A \geq 0 \} \\
k := N; \quad s := 1; \\
while \quad k > 0 \quad do \\
\quad s := A \times s; \\
\quad k := k - 1 \\
endwhile \\
\{ s = A^N \}

We follow the “tips:”

- Trace algorithm with small numbers \(A = 2, N = 5 \).
- Build a table of values to find loop invariant.
- Notice that \(k \) is decreasing and that \(2^k \) represents the computation that still needs to be done.
- Add a column to the table for the value of \(2^k \).
- The value \(s \times 2^k = 32 \) remains constant throughout the execution of the loop.
Example (Exponent)

\{N \geq 0 \land A \geq 0\}

\[k := N; \quad s := 1; \]

\textbf{while} \quad k > 0 \textbf{ do}

\hspace{1em} s := A \cdot s;

\hspace{1em} k := k - 1

\textbf{endwhile}

\{s = A^N\}

\begin{tabular}{|c|c|c|c|}
\hline
k & s & \(2^k\) & \(s \cdot 2^k\) \\
\hline
5 & 1 & 32 & 32 \\
4 & 2 & 16 & 32 \\
3 & 4 & 8 & 32 \\
2 & 8 & 4 & 32 \\
1 & 16 & 2 & 32 \\
0 & 32 & 1 & 32 \\
\hline
\end{tabular}

- Observe that \(s\) and \(2^k\) change when \(k\) changes.

- Their product is constant, namely \(32 = 2^5 = A^N\).

- This suggests that \(s \cdot A^k = A^N\) is part of the invariant.

- The relation \(k \geq 0\) seems to be invariant, and when combined with "\(\neg b\)", which is \(k \leq 0\), establishes \(k = 0\) at the end of the loop.

- When \(k = 0\) is joined with \(s \cdot A^k = A^N\), we get the postcondition \(s = A^N\).

\textbf{Loop Invariant:} \(\{k \geq 0 \land s \cdot A^k = A^N\}\).
Verification of the Program

Initialization:
\[
\{N \geq 0 \land A \geq 0\} \rightarrow \{N = N \land N \geq 0 \land A \geq 0 \land 1 = 1\}
\]
\[
k := N; \ s := 1;
\]
\[
\{k = N \land N \geq 0 \land A \geq 0 \land s = 1\} \rightarrow \{k \geq 0 \land s \ast A^k = A^N\}
\]

Preservation:
\[
\{k \geq 0 \land s \ast A^k = A^N \land k > 0\} \rightarrow \{k > 0 \land s \ast A^k = A^N\} \rightarrow
\]
\[
\{k > 0 \land s \ast A \ast A^{k-1} = A^N\} \rightarrow \{k > 0 \land A \ast s \ast A^{k-1} = A^N\}
\]
\[
s := A \ast s;
\]
\[
\{k > 0 \land s \ast A^{k-1} = A^N\} \rightarrow \{k - 1 \geq 0 \land s \ast A^{k-1} = A^N\}
\]
\[
k := k-1
\]
\[
\{k \geq 0 \land s \ast A^k = A^N\}
\]

Completion:
\[
\{k \geq 0 \land s \ast 2^k = A^N \land k \leq 0\} \rightarrow \{k = 0 \land s \ast 2^k = A^N\} \rightarrow \{s = A^N\}
\]
Further Topics

• Dealing with other language features:
 ◦ Nested loops.
 ◦ Procedure calls.
 ◦ Recursive procedures.
 ◦ ...

• Proving termination / total correctness.
 ◦ Well founded orderings.
Acknowledgments

- Some slides and examples taken from:
 - Enrico Pontelli
 - Jim Lipton
 - Ken Slonneger and Barry L. Kurtz.
 Formal Syntax and Semantics of Programming Languages: A Laboratory-Based Approach.
 Addison-Wesley, Reading, Massachusetts.