Recalling Our Intro to the Course
The Program Correctness Problem

- Conventional models of using computers – not easy to determine correctness!
 - Has become a very important issue, not just in safety-critical apps.
 - Components with assured quality, being able to give a warranty, ...
 - Being able to run untrusted code, certificate carrying code, ...
A Simple Imperative Program

- Example:

```c
#include <stdio.h>
main() {
    int Number, Square;
    Number = 0;
    while(Number <= 5) {
        Square = Number * Number;
        printf("%d\n",Square);
        Number = Number + 1;
    }
}
```

- Is it correct? With respect to what?

- A suitable formalism:
 - to provide *specifications* (describe problems), and
 - to reason about the *correctness of programs* (their *implementation*).

is needed.
“Compute the squares of the natural numbers which are less or equal than 5.”

Ideal at first sight, but:

- verbose
- vague
- ambiguous
- needs context (assumed information)
- ...

Philosophers and Mathematicians already pointed this out a long time ago...
Logic

- A means of clarifying / formalizing the human thought process
- Logic for example tells us that (classical logic)
 Aristotle likes cookies, and
 Plato is a friend of anyone who likes cookies
 imply that
 Plato is a friend of Aristotle
- Symbolic logic:
 A shorthand for classical logic – plus many useful results:
 \[a_1 : \text{likes}(\text{aristotle, cookies}) \]
 \[a_2 : \forall X \text{ likes}(X, \text{cookies}) \rightarrow \text{friend}(\text{plato, } X) \]
 \[t_1 : \text{friend}(\text{plato, aristotle}) \]
 \[T[a_1, a_2] \vdash t_1 \]
- But, can logic be used:
 - To represent the problem (specifications)?
 - *Even perhaps to solve the problem?*
For expressing specifications and reasoning about the correctness of programs we need:

- Specification languages (assertions), modeling, ...
- Program semantics (models, axiomatic, fixpoint, ...).
- Proofs: program *verification* (and debugging, equivalence, ...).
Generating Squares: A Specification (I)

Numbers —we will use “Peano” representation for simplicity:
\[0 \rightarrow 0 \quad 1 \rightarrow s(0) \quad 2 \rightarrow s(s(0)) \quad 3 \rightarrow s(s(s(0))) \quad \ldots\]

- Defining the natural numbers:
 \[nat(0) \land nat(s(0)) \land nat(s(s(0))) \land \ldots\]

- A better solution:
 \[nat(0) \land \forall X (nat(X) \rightarrow nat(s(X)))\]

- Order on the naturals:
 \[\forall X (le(0, X)) \land \forall X \forall Y (le(X, Y) \rightarrow le(s(X), s(Y)))\]

- Addition of naturals:
 \[\forall X (nat(X) \rightarrow add(0, X, X)) \land \forall X \forall Y \forall Z (add(X, Y, Z) \rightarrow add(s(X), Y, s(Z)))\]
Generating Squares: A Specification (II)

- **Multiplication of naturals:**
 \[\forall X \ (\text{nat}(X) \rightarrow \text{mult}(0, X, 0)) \land \\
 \forall X \forall Y \forall Z \forall W \ (\text{mult}(X, Y, W) \land \text{add}(W, Y, Z) \rightarrow \text{mult}(s(X), Y, Z)) \]

- **Squares of the naturals:**
 \[\forall X \forall Y \ (\text{nat}(X) \land \text{nat}(Y) \land \text{mult}(X, X, Y) \rightarrow \text{nat_square}(X, Y)) \]

We can now write a *specification* of the (imperative) program, i.e., conditions that we want the program to meet:

- **Precondition:**
 empty.

- **Postcondition:**
 \[\forall X \ (\text{output}(X) \leftarrow (\exists Y \ \text{nat}(Y) \land \text{le}(Y, s(s(s(s(0))))) \land \text{nat_square}(Y, X))) \]
For expressing specifications and reasoning about the correctness of programs we need:

- Specification languages (assertions), modeling, ...
- Program semantics (models, axiomatic, fixpoint, ...).
- Proofs: program verification (and debugging, equivalence, ...).
Semantic Tasks

- Semantics:
 - A *semantics* associates a meaning (a mathematical object) to a program or program sentence.

- Semantic tasks:
 - Verification: proving that a program meets its specification.
 - Static debugging: finding where a program does not meet specifications.
 - Program equivalence: proving that two programs have the same semantics.
 - etc.
Styles of Semantics

- **Operational:**
 The meaning of program sentences is defined in terms of the steps (transformations from state to state) that computations may take during execution (derivations). Proofs by induction on derivations.

- **Axiomatic:**
 The meaning of program sentences is defined indirectly in terms of some axioms and rules of a *logic* of program properties.

- **Denotational (fixpoint):**
 The meaning of program sentences is given abstractly as *functions* on an appropriate *domain* (which is often a lattice). E.g., λ-calculus for functional programming. C.f., lattice / fixpoint theory.

- Also, **model (declarative) semantics:** (For (Constraint) Logic Programs:) The meaning of programs is given as a minimal model (“logical meaning”) of the logic that the program is written in.
Operational Semantics
Traditional Operational Semantics

- Meaning of program sentences defined in terms of the steps (state transitions, transformations from state to state) that computations may take during executions (derivations).
- Proofs by induction on derivations.
- Examples of concrete operational semantics:
 - Semantics modeling memory for imperative programs.
 - Interpreters and meta-interpreters (self-interpreters).
 - Resolution and CLP(\(\lambda\)) resolution, for (constraint) logic programs.
 - ...
- Examples of generic / standard methodologies:
 - *Structural operational semantics.*
 - Vienna definition language (VDL).
 - SECD machine.
 - ...
A Simple Imperative Language

Program ::= Statement
Statement ::= Statement ; Statement
 | noop
 | Id := Expression
 | if Expression then Statement else Statement
 | while Expression do Statement
Expression ::= Numeral
 | Id
 | Expression + Expression

• Only integer data types.
• Variables do not need to be declared.
Operational Semantics

- States: memory configurations – values of variables.
- \(s[X] \) denotes the value of the variable \(X \) in state \(s \).
- \(<\text{statement}, s> \Rightarrow s'\) denotes that
 if \(\text{statement} \) is executed in state \(s \) the resulting state is \(s' \).
- \(<\text{expression}, s> \Rightarrow \text{value}\) denotes that
 if \(\text{expression} \) is executed in state \(s \) it returns \(\text{value} \).

- Expressions:
 - If \(n \) is a number \(<n, s> \Rightarrow n\)
 - If \(X \) is a variable \(<X, s> \Rightarrow s[X]\)
 - If \(\text{expression} \) is of the form \(\text{exp}_1 + \text{exp}_2 \) we write:
 \[
 \frac{<\text{exp}_1, s> \Rightarrow v_1 \quad <\text{exp}_2, s> \Rightarrow v_2}{<\text{exp}_1 + \text{exp}_2, s> \Rightarrow v_1 + v_2}
 \]
Operational Semantics

- Statements:
 \[s[X/v] \] denotes a new state, identical to \(s \) but where variable \(X \) has value \(v \).

 ◦ Noop: \(< \text{noop}, s > \Rightarrow s \)
 ◦ Assignment:

 \[
 \frac{< \text{exp}, s > \Rightarrow v}{< X := \text{exp}, s > \Rightarrow s[X/v]} \]

 ◦ Conditional:

 \[
 \frac{< \text{exp}, s > \Rightarrow 0 \quad < \text{stmt}_2, s > \Rightarrow s'}{< \text{if} \ \text{exp} \ \text{then} \ \text{stmt}_1 \ \text{else} \ \text{stmt}_2, s > \Rightarrow s'}
 \]

 \[
 \frac{< \text{exp}, s > \Rightarrow v, v \neq 0 \quad < \text{stmt}_1, s > \Rightarrow s'}{< \text{if} \ \text{exp} \ \text{then} \ \text{stmt}_1 \ \text{else} \ \text{stmt}_2, s > \Rightarrow s'}
 \]
Operational Semantics

• Statements (Contd.):

 ◊ Sequencing:

 \[
 \langle \text{stmt}_1, s \rangle \Rightarrow s_1 \quad \langle \text{stmt}_2, s_1 \rangle \Rightarrow s_2
 \]

 \[
 \langle \text{stmt}_1 ; \text{stmt}_2, s \rangle \Rightarrow s_2
 \]

 ◊ Loops:

 \[
 \langle \exp, s \rangle \Rightarrow 0
 \]

 \[
 \langle \textbf{while} \ \exp \ \textbf{do} \ \text{stmt}, s \rangle \Rightarrow s
 \]

 \[
 \langle \exp, s \rangle \Rightarrow v, v \neq 0 \quad \langle \text{stmt}, s \rangle \Rightarrow s' \quad \langle \textbf{while} \ \exp \ \textbf{do} \ \text{stmt}, s' \rangle \Rightarrow s''
 \]

 \[
 \langle \textbf{while} \ \exp \ \textbf{do} \ \text{stmt}, s \rangle \Rightarrow s''
 \]
Example

- Program:

 \[
 \begin{align*}
 x & := 5; \\
 y & := -6; \\
 \text{if } (x+y) \text{ then } z & := x \text{ else } z := y
 \end{align*}
 \]

- Semantics:

 \[
 \begin{align*}
 < x := 5, s_0 > & \Rightarrow s_1 \\
 < y := -6, s_1 > & \Rightarrow s_2 \quad < x+y, s_2 > \Rightarrow -1 \quad < z := x, s_2 > \Rightarrow s_3 \\
 < S_3, s_2 > & \Rightarrow s_3
 \end{align*}
 \]

 where \(S_3 = \text{if } (x+y) \text{ then } z := x \text{ else } z := y \).

 And:

 \[
 \begin{align*}
 s_1 &= s_0[x/5] \\
 s_2 &= s_1[y/-6] \\
 s_3 &= s_2[z/5]
 \end{align*}
 \]
Axiomatic Semantics
Axiomatic Semantics

• Characteristics:
 ◆ Based on techniques from predicate logic.
 ◆ There is no concept of *state of the machine* (as in operational or denotational semantics).
 ◆ More abstract than, e.g., denotational semantics.
 ◆ Semantic meaning of a program is based on assertions about relationships that remain the same each time the program executes.

• Classical application:
 ◆ Proving programs to be correct w.r.t. specifications.

• (Typical, classical) limitations:
 ◆ Side-effects disallowed in expressions.
 ◆ `goto` command difficult to treat.
 ◆ Aliasing not allowed.
 ◆ Scope rules difficult to describe ⇒ require all identifier names to be unique.
History and References

- Main original papers:

- Many textbooks available.
Assertions and Correctness

- **Assertion:** A logical formula, say

 \[(m \neq 0 \land (\sqrt{m})^2 = m)\]

 that is true when a point in the program is reached.

- **Precondition:** Assertion before a command (← includes a whole program).

- **Postcondition:** Assertion after a command.

\[
\{\text{PRE}\} \ C \ \{\text{POST}\} \leftarrow \text{a “Hoare triple”}
\]

- **Partial Correctness:**
 If the initial assertion (the precondition) is true and if the program terminates, then the final assertion (the postcondition) must be true.

 \[
 \text{Precondition} + \text{Termination} \Rightarrow \text{Postcondition}
 \]

- **Total Correctness:**
 Given that the precondition for the program is true, the program must terminate and the postcondition must be true.

 \[
 \text{Total Correctness} = \text{Partial Correctness} + \text{Termination}
 \]
Hoare Calculus: The Assignment Axiom

- **Examples:**
 - $\{\text{true}\} \ m := 13 \ \{m = 13\}$
 - $\{n = 3 \land c = 2\} \ n := c \ast n \ \{n = 6 \land c = 2\}$
 - $\{k \geq 0\} \ k := k + 1 \ \{k > 0\}$

- **Notation:**
 - $\{\text{Precondition}\} \ \text{command} \ \{\text{Postcondition}\}$
 - $P[V \rightarrow E]$ denotes substitution: putting E in place of V in P

- **Axiom for assignment command:**

 $\{P[V \rightarrow E]\} \ V := E \ \{P\}$

 Work backwards:
 - **Postcondition:** $P \equiv (n = 6 \land c = 2)$
 - **Command:** $n := c \ast n$
 - **Precondition:** $P[V \rightarrow E] \equiv (c \ast n = 6 \land c = 2)$

 $\equiv (n = 3 \land c = 2)$
Hoare Calculus: Read and Write Commands

- **Notation:**
 - Use \(IN = [1, 2, 3] \) and \(OUT = [4, 5] \) to represent input and output files.
 - \([M|L]\) denotes list whose head is \(M \) and tail is \(L \).
 - \(K, M, N, \ldots \) represent arbitrary numerals.

- **Axiom for read command:**
 - \(\{ IN = [K|L] \land P[V \rightarrow K] \} \) read \(V \) \(\{ IN = L \land P \} \)

- **Axiom for write command:**
 - \(\{ OUT = L \land E = K \land P \} \) write \(E \) \(\{ OUT = L :: [K] \land E = K \land P \} \)

- **Note:** \(L :: [K] \) is the list whose last element is \(K \) (\(:: \) represents concatenation).
Hoare Calculus: Rules of Inference

- **Format** (c.f. structural operational semantics):

\[
\frac{H_1, H_2, H_n, \ldots}{H}
\]

- Axiom for Command Sequencing:

\[
\frac{\{P\}C_1\{Q\}, \{Q\}C_2\{R\}}{\{P\}C_1; C_2\{R\}}
\]

- Axioms for If Commands:

\[
\frac{\{P \land b\}C_1\{Q\}, \{P \land \neg b\}C_2\{Q\}}{\{P\} \textbf{if } b \textbf{ then } C_1 \textbf{ else } C_2 \textbf{ endif } \{Q\}}
\]

\[
\frac{\{P \land b\}C\{Q\}, (P \land \neg b) \rightarrow Q}{\{P\} \textbf{ if } b \textbf{ then } C \textbf{ endif } \{Q\}}
\]
Hoare Calculus: Rules of Inference (Contd.)

- **Weaken Postcondition:**

 \[
 \begin{align*}
 &\{P\}C\{Q\}, \ Q \rightarrow R \\
 \Rightarrow &\{P\}C\{R\}
 \end{align*}
 \]

- **Strengthen Precondition:**

 \[
 \begin{align*}
 &P \rightarrow Q, \ \{Q\}C\{R\} \\
 \Rightarrow &\{P\}C\{R\}
 \end{align*}
 \]

- **And and Or Rules:**

 \[
 \begin{align*}
 &\{P\}C\{Q\}, \ \{P'\}C\{Q'\} \\
 \Rightarrow &\{P \land P'\}C\{Q \land Q'\}
 \end{align*}
 \]

 \[
 \begin{align*}
 &\{P\}C\{Q\}, \ \{P'\}C\{Q'\} \\
 \Rightarrow &\{P \lor P'\}C\{Q \lor Q'\}
 \end{align*}
 \]

- **Observation:**

 \[
 \begin{align*}
 &\{false\} \text{ any-command } \{any-postcondition\}
 \end{align*}
 \]
Example (I)

\[\{ IN = [4, 9, 16] \land OUT = [0, 1, 2] \} \]

read \(m \); read \(n \);
if \(m \geq n \) then
 \[a := 2 \cdot m \]
else
 \[a := 2 \cdot n \]
endif;
write \(a \)
\[\{ IN = [16] \land OUT = [0, 1, 2, 18] \} \]

\[\{ IN = [4, 9, 16] \land OUT = [0, 1, 2] \} \rightarrow \{ IN = [4\mid9, 16] \land OUT = [0, 1, 2] \land 4 = 4 \} \]
read \(m \);
\[\{ IN = [9, 16] \land OUT = [0, 1, 2] \land m = 4 \} \rightarrow \{ IN = [9\mid16] \land OUT = [0, 1, 2] \land m = 4 \land 9 = 9 \} \]
read \(n \);
\[\{ IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \} \]

Recall:
\[\{ IN = [K \mid L] \land P[V \rightarrow K] \} \]
read \(V \)
\[\{ IN = L \land P \} \]
Example (II)

We have $P = \{IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9\}$

read m; read n;
if $m \geq n$ then
 a := 2*m
else
 a := 2*n
endif;
write a

So, $b \equiv m \geq n = false$ and $\neg b = true$; thus $\{P \land b\} = false$ and $\{P \land \neg b\} = P$.

So, for C_2 we have:

$\{P \land \neg b\} = \{P\} =$

$\{IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9\} \rightarrow$

$\{IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \land 2 \times n = 18\}$

a := 2*n

$\{IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \land a = 18\}$

and for C_1 we can have anything since the premise is false:

$\{P \land b\} = false$

a := 2*m

$\{IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \land a = 18\}$
Example (III)

\[
\{ \text{IN} = [16] \land \text{OUT} = [0, 1, 2] \land m = 4 \land n = 9 \}
\]

\textbf{if} \ m \geq n \ \textbf{then}

\[a := 2 \times m \]

\textbf{else}

\[a := 2 \times n \]

\textbf{endif};

\[
\{ \text{IN} = [16] \land \text{OUT} = [0, 1, 2] \land m = 4 \land n = 9 \land a = 18 \}
\]

and

\[
\{ \text{IN} = [16] \land \text{OUT} = [0, 1, 2] \land m = 4 \land n = 9 \land a = 18 \}
\]

\textbf{write} \ a

\[
\{ \text{IN} = [16] \land \text{OUT} = [0, 1, 2] :: [18] \land m = 4 \land n = 9 \land a = 18 \}
\]

which implies

\[
\{ \text{IN} = [16] \land \text{OUT} = [0, 1, 2, 18] \}
\]
While Command

\[
\{P \land b\}C\{P\} \\
\{P\} \textbf{while } b \textbf{ do } C \textbf{ endwhile } \{P \land \neg b\}
\]

- **Loop Invariant:** \(P\)
 - Preserved during execution of the loop.

- **Loop steps:**
 - *Initialization:* show that the loop invariant \(\{P\}\) is initially true.
 - *Preservation:* show the loop invariant remains true when the loop executes (\(\{P \land b\}\)).
 - *Completion:* show that the loop invariant and the exit condition produce the final assertion (\(\{P \land \neg b\}\)).

- **Main Problem:**
 - Constructing the loop invariant.
Loop Invariant

- A relationship among the variables that does not change as the loop is executed.
- “Inspiration” tips:
 - Look for some expression that can be combined with $\neg b$ to produce part of the postcondition.
 - Construct a table of values to see what stays constant.
 - Combine what has already been computed at some stage in the loop with what has yet to be computed to yield a constant of some sort.

Study carefully many examples!
Example (exponent)

\[\{ N \geq 0 \land A \geq 0 \} \]
\[k := N; \quad s := 1; \]
\[\textbf{while} \quad k > 0 \quad \textbf{do} \]
\[s := A \times s; \]
\[k := k - 1 \]
\[\textbf{endwhile} \]
\[\{ s = A^N \} \]

We follow the “tips:”

- Trace algorithm with small numbers \(A = 2, \ N = 5 \).
- Build a table of values to find loop invariant.
- Notice that \(k \) is decreasing and that \(2^k \) represents the computation that still needs to be done.
- Add a column to the table for the value of \(2^k \).
- The value \(s \times 2^k = 32 \) remains constant throughout the execution of the loop.
Example (Exponent)

```
{N ≥ 0 ∧ A ≥ 0}
k := N; s := 1;
while k>0 do
    s := A*s;
    k := k-1
endwhile
{s = A^N}
```

- Observe that \(s \) and \(2^k \) change when \(k \) changes.
- Their product is constant, namely \(32 = 2^5 = A^N \).
- This suggests that \(s \ast A^k = A^N \) is part of the invariant.
- The relation \(k \geq 0 \) seems to be invariant, and when combined with "−b", which is \(k \leq 0 \), establishes \(k = 0 \) at the end of the loop.
- When \(k = 0 \) is joined with \(s \ast A^k = A^N \), we get the postcondition \(s = A^N \).

Loop Invariant: \(\{k \geq 0 \land s \ast A^k = A^N\} \).
Verification of the Program

Initialization:
\[\{ N \geq 0 \land A \geq 0 \} \rightarrow \{ N = N \land N \geq 0 \land A \geq 0 \land 1 = 1 \} \]
\[k := N; s := 1; \]
\[\{k = N \land N \geq 0 \land A \geq 0 \land s = 1\} \rightarrow \{k \geq 0 \land s \ast A^k = A^N\} \]

Preservation:
\[\{k \geq 0 \land s \ast A^k = A^N \land k > 0\} \rightarrow \{k > 0 \land s \ast A^k = A^N\} \rightarrow \]
\[\{k > 0 \land s \ast A \ast A^{k-1} = A^N\} \rightarrow \{k > 0 \land A \ast s \ast A^{k-1} = A^N\} \]
\[s := A \ast s; \]
\[\{k > 0 \land s \ast A^{k-1} = A^N\} \rightarrow \{k - 1 \geq 0 \land s \ast A^{k-1} = A^N\} \]
\[k := k-1 \]
\[\{k \geq 0 \land s \ast A^k = A^N\} \]

Completion:
\[\{k \geq 0 \land s \ast 2^k = A^N \land k \leq 0\} \rightarrow \{k = 0 \land s \ast 2^k = A^N\} \rightarrow \{s = A^N\} \]
Further Topics

• Dealing with other language features:
 ◊ Nested loops.
 ◊ Procedure calls.
 ◊ Recursive procedures.
 ◊ ...

• Proving termination / total correctness.
 ◊ Well founded orderings.
Acknowledgments

- Some slides and examples taken from:
 - Enrico Pontelli
 - Jim Lipton
 - Ken Slonneger and Barry L. Kurtz.
 Formal Syntax and Semantics of Programming Languages: A Laboratory-Based Approach.
 Addison-Wesley, Reading, Massachusetts.