Recalling Our Intro to the Course
The Program Correctness Problem

- Conventional models of using computers – not easy to determine correctness!
 - Has become a very important issue, not just in safety-critical apps.
 - Components with assured quality, being able to give a warranty, ...
 - Being able to run untrusted code, certificate carrying code, ...
A Simple Imperative Program

• Example:

```c
#include <stdio.h>
main() {
    int Number, Square;
    Number = 0;
    while(Number <= 5) {
        Square = Number * Number;
        printf("%d\n",Square);
        Number = Number + 1;
    }
}
```

• Is it correct? With respect to what?

• A suitable formalism:
 ◦ to provide *specifications* (describe problems), and
 ◦ to reason about the *correctness of programs* (their *implementation*).

is needed.
“Compute the squares of the natural numbers which are less or equal than 5.”

Ideal at first sight, but:

- verbose
- vague
- ambiguous
- needs context (assumed information)
- ...

Philosophers and Mathematicians already pointed this out a long time ago...
Logic

- A means of clarifying / formalizing the human thought process
- Logic for example tells us that (classical logic)
 Aristotle likes cookies, and
 Plato is a friend of anyone who likes cookies
 imply that
 Plato is a friend of Aristotle
- Symbolic logic:
 A shorthand for classical logic – plus many useful results:
 \[a_1 : \text{likes(\text{aristotle, cookies})} \]
 \[a_2 : \forall X \text{ likes}(X, \text{cookies}) \rightarrow \text{friend}(\text{plato, X}) \]
 \[t_1 : \text{friend}(\text{plato, aristotle}) \]
 \[T[a_1, a_2] \vdash t_1 \]
- But, can logic be used:
 - To represent the problem (specifications)?
 - *Even perhaps to solve the problem*?
• For expressing specifications and reasoning about the correctness of programs we need:
 ◇ Specification languages (assertions), modeling, ...
 ◇ Program semantics (models, axiomatic, fixpoint, ...).
 ◇ Proofs: program verification (and debugging, equivalence, ...).
Generating Squares: A Specification (I)

Numbers — we will use “Peano” representation for simplicity:

\[\begin{align*}
0 & \rightarrow 0 \\
1 & \rightarrow s(0) \\
2 & \rightarrow s(s(0)) \\
3 & \rightarrow s(s(s(0))) \\
& \ldots
\end{align*} \]

- Defining the natural numbers:
 \[\text{nat}(0) \land \text{nat}(s(0)) \land \text{nat}(s(s(0))) \land \ldots \]

- A better solution:
 \[\text{nat}(0) \land \forall X \ (\text{nat}(X) \rightarrow \text{nat}(s(X))) \]

- Order on the naturals:
 \[\forall X \ (\text{le}(0, X)) \land \]
 \[\forall X \forall Y \ (\text{le}(X, Y) \rightarrow \text{le}(s(X), s(Y))) \]

- Addition of naturals:
 \[\forall X \ (\text{nat}(X) \rightarrow \text{add}(0, X, X)) \land \]
 \[\forall X \forall Y \forall Z \ (\text{add}(X, Y, Z) \rightarrow \text{add}(s(X), Y, s(Z))) \]
Generating Squares: A Specification (II)

- Multiplication of naturals:
 \[\forall X \ (\text{nat}(X) \rightarrow \text{mult}(0, X, 0)) \land \]
 \[\forall X \forall Y \forall Z \forall W \ (\text{mult}(X, Y, W) \land \text{add}(W, Y, Z) \rightarrow \text{mult}(s(X), Y, Z)) \]

- Squares of the naturals:
 \[\forall X \forall Y \ (\text{nat}(X) \land \text{nat}(Y) \land \text{mult}(X, X, Y) \rightarrow \text{nat_square}(X, Y)) \]

We can now write a specification of the (imperative) program, i.e., conditions that we want the program to meet:

- **Precondition:**
 empty.

- **Postcondition:**
 \[\forall X \ (\text{output}(X) \leftarrow (\exists Y \ \text{nat}(Y) \land \text{le}(Y, s(s(s(s(0))))) \land \text{nat_square}(Y, X))) \]
For expressing specifications and reasoning about the correctness of programs we need:

- Specification languages (assertions), modeling, ...
- Program semantics (models, axiomatic, fixpoint, ...).
- Proofs: program verification (and debugging, equivalence, ...).
Semantic Tasks

- Semantics:
 - A *semantics* associates a meaning (a mathematical object) to a program or program sentence.

- Semantic tasks:
 - Verification: proving that a program meets its specification.
 - Static debugging: finding where a program does not meet specifications.
 - Program equivalence: proving that two programs have the same semantics.
 - etc.
Styles of Semantics

- **Operational:**
 The meaning of program sentences is defined in terms of the steps (transformations from state to state) that computations may take during execution (derivations). Proofs by induction on derivations.

- **Axiomatic:**
 The meaning of program sentences is defined indirectly in terms of some axioms and rules of a logic of program properties.

- **Denotational (fixpoint):**
 The meaning of program sentences is given abstractly as functions on an appropriate domain (which is often a lattice). E.g., λ-calculus for functional programming. C.f., lattice / fixpoint theory.

- Also, **model (declarative) semantics:** (For (Constraint) Logic Programs:) The meaning of programs is given as a minimal model (“logical meaning”) of the logic that the program is written in.
Operational Semantics
Traditional Operational Semantics

- Meaning of program sentences defined in terms of the steps (*state transitions*, transformations from state to state) that computations may take during executions (derivations).

- Proofs by induction on derivations.

- Examples of concrete operational semantics:
 - Semantics modeling memory for imperative programs.
 - Interpreters and meta-interpreters (self-interpreters).
 - Resolution and CLP(\(\mathcal{X}\)) resolution, for (constraint) logic programs.
 - ...

- Examples of generic / standard methodologies:
 - *Structural operational semantics*.
 - Vienna definition language (VDL).
 - SECD machine.
 - ...

A Simple Imperative Language

Program ::= Statement
Statement ::= Statement ; Statement
| noop
| Id := Expression
| if Expression then Statement else Statement
| while Expression do Statement
Expression ::= Numeral
| Id
| Expression + Expression

- Only integer data types.
- Variables do not need to be declared.
Operational Semantics

• States: memory configurations – values of variables.

• $s[X]$ denotes the value of the variable X in state s.

• $<\text{statement}, s> \Rightarrow s'$ denotes that
 if statement is executed in state s the resulting state is s'.

• $<\text{expression}, s> \Rightarrow \text{value}$ denotes that
 if expression is executed in state s it returns value.

• Expressions:

 ◦ If n is a number $<n, s> \Rightarrow n$

 ◦ If X is a variable $<X, s> \Rightarrow s[X]$

 ◦ If expression is of the form $\text{exp}_1 + \text{exp}_2$ we write:

 $<\text{exp}_1, s> \Rightarrow v_1 \quad <\text{exp}_2, s> \Rightarrow v_2$

 $<\text{exp}_1 + \text{exp}_2, s> \Rightarrow v_1 + v_2$
Operational Semantics

- **Statements:**

 \(s[X/v] \) denotes a new state, identical to \(s \) but where variable \(X \) has value \(v \).

 ◦ **Noop:** \(<\text{noop}, s> \Rightarrow s\)

 ◦ **Assignment:**

 \[
 <exp, s> \Rightarrow v \\
 \frac{\rightarrow}{X := exp, s \Rightarrow s[X/v]}
 \]

 ◦ **Conditional:**

 \[
 <exp, s> \Rightarrow 0 \\
 \frac{\rightarrow}{<\text{if } exp \text{ then } stmt_1 \text{ else } stmt_2, s> \Rightarrow s'}
 \]

 \[
 <exp, s> \Rightarrow v, v \neq 0 \\
 \frac{\rightarrow}{<\text{if } exp \text{ then } stmt_1 \text{ else } stmt_2, s> \Rightarrow s'}
 \]
Operational Semantics

• Statements (Contd.):
 ◯ Sequencing:

 \[
 \langle \text{stmt}_1, s \rangle \Rightarrow s_1 \quad \langle \text{stmt}_2, s_1 \rangle \Rightarrow s_2 \\
 \langle \text{stmt}_1 \ ; \ ; \text{stmt}_2, s \rangle \Rightarrow s_2
 \]

 ◯ Loops:

 \[
 \langle \exp, s \rangle \Rightarrow 0 \\
 \langle \text{while} \ \exp \ \text{do} \ \text{stmt}, s \rangle \Rightarrow s
 \]

 \[
 \langle \exp, s \rangle \Rightarrow v, v \neq 0 \quad \langle \text{stmt}, s \rangle \Rightarrow s' \\
 \langle \text{while} \ \exp \ \text{do} \ \text{stmt}, s' \rangle \Rightarrow s'' \\
 \langle \text{while} \ \exp \ \text{do} \ \text{stmt}, s \rangle \Rightarrow s''
 \]
Example

- **Program:**

  ```
  x := 5;
y := -6;
if (x+y) then z := x else z := y
  ```

- **Semantics:**


  ```
  <x := 5, s_0 >⇒ s_1
  < y := -6, s_1 >⇒ s_2
  < x+y, s_2 >⇒ -1
  < S_3, s_2 >⇒ s_3
  < y := -6; S_3, s_1 >⇒ s_3
  < x := 5; y := -6; S_3, s_0 >⇒ s_3
  ```

 where $S_3 = \text{if } (x+y) \text{ then } z := x \text{ else } z := y$.

 And:


  ```
  s_1 = s_0[x/5]
s_2 = s_1[y/-6]
s_3 = s_2[z/5]
  ```
Axiomatic Semantics
Axiomatic Semantics

• **Characteristics:**
 - Based on techniques from predicate logic.
 - There is no concept of *state of the machine* (as in operational or denotational semantics).
 - More abstract than, e.g., denotational semantics.
 - Semantic meaning of a program is based on assertions about relationships that remain the same each time the program executes.

• **Classical application:**
 - Proving programs to be correct w.r.t. specifications.

• **(Typical, classical) limitations:**
 - Side-effects disallowed in expressions.
 - `goto` command difficult to treat.
 - Aliasing not allowed.
 - Scope rules difficult to describe ⇒ require all identifier names to be unique.
History and References

• Main original papers:
 ◦ 1967: Floyd. *Assigning Meanings to Programs*.

• Many textbooks available.
Assertions and Correctness

- **Assertion**: a logical formula, say

\[(m \neq 0 \land (\sqrt{m})^2 = m)\]

that is true when a point in the program is reached.

- **Precondition**: Assertion before a command (\(\leftarrow\) includes a whole program).

- **Postcondition**: Assertion after a command.

\[\{PRE\} \ C \ \{POST\}\]

\(\leftarrow\) a “Hoare triple”

- **Partial Correctness**: If the initial assertion (the precondition) is true and if the program terminates, then the final assertion (the postcondition) must be true.

 \[Precondition + Termination \Rightarrow Postcondition\]

- **Total Correctness**: Given that the precondition for the program is true, the program must terminate and the postcondition must be true.

 \[Total \ Correctness = Partial \ Correctness + Termination\]
Hoare Calculus: The Assignment Axiom

- Examples:
 - $\{true\} \, m := 13 \, \{m = 13\}$
 - $\{n = 3 \land c = 2\} \, n := c*n \, \{n = 6 \land c = 2\}$
 - $\{k \geq 0\} \, k := k + 1 \, \{k > 0\}$

- Notation:
 - $\{\text{Precondition}\} \, \text{command} \, \{\text{Postcondition}\}$
 - $P[V \rightarrow E]$ denotes substitution: putting E in place of V in P

- Axiom for assignment command:
 $$\{P[V \rightarrow E]\} \, V := E \, \{P\}$$

 Work backwards:
 - Postcondition: $P \equiv (n = 6 \land c = 2)$
 - Command: $n := c*n$
 - Precondition: $P[V \rightarrow E] \equiv (c * n = 6 \land c = 2)$
 $$\equiv (n = 3 \land c = 2)$$
Hoare Calculus: Read and Write Commands

- **Notation:**
 - Use "\(IN = [1, 2, 3]\)" and "\(OUT = [4, 5]\)" to represent input and output files.
 - \([M|L]\) denotes list whose head is M and tail is L.
 - K, M, N, ... represent arbitrary numerals.

- **Axiom for read command:**
 - \(\{IN = [K|L] \land P[V \rightarrow K]\} \text{ read } V \{IN = L \land P\}\)

- **Axiom for write command:**
 - \(\{OUT = L \land E = K \land P\} \text{ write } E \{OUT = L :: [K] \land E = K \land P\}\)

- **Note:** \(L :: [K]\) is the list whose last element is K (: represents concatenation).
Hoare Calculus: Rules of Inference

- **Format** (c.f. structural operational semantics):

\[
\frac{H_1, H_2, H_n, \ldots}{H}
\]

- **Axiom for Command Sequencing:**

\[
\frac{\{P\}C_1\{Q\}, \ {Q}\ C_2\{R\}}{\{P\}C_1; C_2\{R\}}
\]

- **Axioms for If Commands:**

\[
\frac{\{P \land b\}C_1\{Q\}, \ {P \land \neg b}\ C_2\{Q\}}{\{P\ \text{if} \ b \ \text{then} \ C_1 \ \text{else} \ C_2 \ \text{endif} \ {Q}}
\]

\[
\frac{\{P \land b\}C\{Q\}, \ (P \land \neg b) \rightarrow Q}{\{P\ \text{if} \ b \ \text{then} \ C \ \text{endif} \ \{Q\}}
\]
• **Weaken Postcondition:**
 \[
 \frac{\{P\}C\{Q\}, \ Q \rightarrow R}{\{ P \}C\{ R \}}
 \]

• **Strengthen Precondition:**
 \[
 \frac{P \rightarrow Q, \ \{Q\}C\{R\}}{\{ P \}C\{ R \}}
 \]

• **And and Or Rules:**
 \[
 \frac{\{P\}C\{Q\}, \ \{P'\}C\{Q'\}}{\{P \land P'\}C\{Q \land Q'\}}
 \]
 \[
 \frac{\{P\}C\{Q\}, \ \{P'\}C\{Q'\}}{\{P \lor P'\}C\{Q \lor Q'\}}
 \]

• **Observation:**
 \[
 \{ \text{false} \} \text{ any-command } \{ \text{any-postcondition} \}
 \]
Example (I)

\{IN = [4, 9, 16] \land OUT = [0, 1, 2]\}
read m; read n;
if m \geq n then
 a := 2*m
else
 a := 2*n
endif;
write a
\{IN = [16] \land OUT = [0, 1, 2, 18]\}

\{IN = [4, 9, 16] \land OUT = [0, 1, 2]\} \rightarrow \{IN = [4][9, 16] \land OUT = [0, 1, 2] \land 4 = 4\}
read m;
\{IN = [9, 16] \land OUT = [0, 1, 2] \land m = 4\} \rightarrow
\{IN = [9][16] \land OUT = [0, 1, 2] \land m = 4 \land 9 = 9\}
read n;
\{IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9\}

Recall:
\{IN = [K,L] \land P[V \rightarrow K]\}
read V
\{IN = L \land P\}
Example (II)

We have \(P = \{IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9\} \)

read \(m; \) read \(n; \)

if \(m \geq n \) then

\[
\text{a} := 2 \cdot m
\]

else

\[
\text{a} := 2 \cdot n
\]
endif;

write a

So, \(b \equiv m \geq n = \text{false} \) and \(\neg b = \text{true}; \) thus \(\{P \land b\} = \text{false} \) and \(\{P \land \neg b\} = P. \)

So, for \(C_2 \) we have:

\[
\{P \land \neg b\} = \{P\} = \\
\{IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9\} \rightarrow \\
\{IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \land 2 \cdot n = 18\}
\]

\[
\text{a} := 2 \cdot n
\]

\[
\{IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \land a = 18\}
\]

and for \(C_1 \) we can have anything since the premise is false:

\[
\{P \land b\} = \text{false}
\]

\[
\text{a} := 2 \cdot m
\]

\[
\{IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \land a = 18\}\]
Example (III)

\{IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9\}

\textbf{if} m \geq n \textbf{ then}

\quad a := 2 \times m

\textbf{else}

\quad a := 2 \times n

\textbf{endif;}

\{IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \land a = 18\}

and

\{IN = [16] \land OUT = [0, 1, 2] \land m = 4 \land n = 9 \land a = 18\}

\textbf{write} a

\{IN = [16] \land OUT = [0, 1, 2] :: [18] \land m = 4 \land n = 9 \land a = 18\}

which implies

\{IN = [16] \land OUT = [0, 1, 2, 18]\}
While Command

\[
\begin{align*}
\{P \land b\} C \{P\} \\
\{P\} \textbf{ while } b \textbf{ do } C \textbf{ endwhile } \{P \land \neg b\}
\end{align*}
\]

- **Loop Invariant:** \(P \)
 - Preserved during execution of the loop.

- **Loop steps:**
 - **Initialization:** show that the loop invariant \(\{P\} \) is initially true.
 - **Preservation:**
 - show the loop invariant remains true when the loop executes (\(\{P \land b\}\)).
 - **Completion:** show that the loop invariant and the exit condition produce the final assertion (\(\{P \land \neg b\}\)).

- **Main Problem:**
 - Constructing the loop invariant.
Loop Invariant

- A relationship among the variables that does not change as the loop is executed.

- “Inspiration” tips:
 - Look for some expression that can be combined with b to produce part of the postcondition.
 - Construct a table of values to see what stays constant.
 - Combine what has already been computed at some stage in the loop with what has yet to be computed to yield a constant of some sort.

Study carefully many examples!
Example (exponent)

\[
\{N \geq 0 \land A \geq 0\} \\
k := N; \quad s := 1; \quad \textbf{while} \quad k > 0 \textbf{ do} \\
\quad s := A \times s; \quad k := k - 1 \\
\textbf{endwhile} \\
\{s = A^N\}
\]

We follow the “tips:”

- Trace algorithm with small numbers \(A = 2, N = 5 \).
- Build a table of values to find loop invariant.
- Notice that \(k \) is decreasing and that \(2^k \) represents the computation that still needs to be done.
- Add a column to the table for the value of \(2^k \).
- The value \(s \times 2^k = 32 \) remains constant throughout the execution of the loop.
Example (Exponent)

\[\{ N \geq 0 \land A \geq 0 \} \]
\[k := N; \quad s := 1; \]
\[\textbf{while} \quad k > 0 \textbf{ do} \]
\[\quad \textbf{endwhile} \]
\[\{ s = A^N \} \]

- Observe that \(s \) and \(2^k \) change when \(k \) changes.
- Their product is constant, namely \(32 = 2^5 = A^N \).
- This suggests that \(s \cdot A^k = A^N \) is part of the invariant.
- The relation \(k \geq 0 \) seems to be invariant, and when combined with "¬b", which is \(k \leq 0 \), establishes \(k = 0 \) at the end of the loop.
- When \(k = 0 \) is joined with \(s \cdot A^k = A^N \), we get the postcondition \(s = A^N \).

\textbf{Loop Invariant:} \(\{ k \geq 0 \land s \cdot A^k = A^N \} \).
Verification of the Program

Initialization:
\{N \geq 0 \land A \geq 0\} \rightarrow \{N = N \land N \geq 0 \land A \geq 0 \land 1 = 1\}
\quad k := N; s := 1;
\quad \{k = N \land N \geq 0 \land A \geq 0 \land s = 1\} \rightarrow \{k \geq 0 \land s \ast A^k = A^N\}

Preservation:
\{k \geq 0 \land s \ast A^k = A^N \land k > 0\} \rightarrow \{k > 0 \land s \ast A^k = A^N\} \rightarrow
\quad \{k > 0 \land s \ast A \ast A^{k-1} = A^N\} \rightarrow \{k > 0 \land A \ast s \ast A^{k-1} = A^N\}
\quad s := A \ast s;
\quad \{k > 0 \land s \ast A^{k-1} = A^N\} \rightarrow \{k - 1 \geq 0 \land s \ast A^{k-1} = A^N\}
\quad k := k - 1
\quad \{k \geq 0 \land s \ast A^k = A^N\}

Completion:
\{k \geq 0 \land s \ast 2^k = A^N \land k \leq 0\} \rightarrow \{k = 0 \land s \ast 2^k = A^N\} \rightarrow \{s = A^N\}
Further Topics

- Dealing with other language features:
 - Nested loops.
 - Procedure calls.
 - Recursive procedures.
 - ...

- Proving termination / total correctness.
 - Well founded orderings.
Acknowledgments

- Some slides and examples taken from:
 - Enrico Pontelli
 - Jim Lipton
 - Ken Slonneger and Barry L. Kurtz.
 Formal Syntax and Semantics of Programming Languages: A Laboratory-Based Approach.
 Addison-Wesley, Reading, Massachusetts.