Computational Logic: (Constraint) Logic Programming
Theory, practice, and implementation

Program Analysis, Debugging, and Optimization
A Tour of ciaopp: The Ciao Prolog Preprocessor

Department of Artificial Intelligence
School of Computer Science
Technical University of Madrid
28660-Boadilla del Monte, Madrid, SPAIN

The following people have contributed to this course material:
Manuel Hermenegildo (editor), Francisco Bueno, Manuel Carro, Germán Puebla, and Pedro López Technical University of Madrid, Spain
Introduction: The Ciao Program Development System

- Ciao is a next-generation (C)LP programming environment – features:
 - Public domain (GNU license).
 - Pure kernel (*no “built-ins”*); subsumes ISO-Prolog (transparently) via *library*.
 - Designed to be extensible and analyzable.
 - Support for programming *in the large*:
 * robust module/object system, separate/incremental compilation, ...
 * “industry standard” performance.
 * (semi-automatic) interfaces to other languages, databases, etc.
 * assertion language, automatic static inference and checking, autodoc, ...
 - Support for programming *in the small*:
 * scripts, small (static/dynamic/lazy-load) executables, ...
 - Support for several paradigms:
 * functions, higher-order, objects, constraint domains, ...
 * concurrency, parallelism, distributed execution, ...
 - Advanced Emacs environment (with e.g., automatic access to documentation).
Components of the environment (independent):

- **ciaosh**: Standard top-level shell.
- **ciaoc**: Standalone compiler.
- **ciaosi**: Script interpreter.
- **lpdoc**: Documentation Generator (info, ps, pdf, html, ...).
- **ciaopp**: Preprocessor.

Many libraries:

- Records (argument names).
- Persistent predicates.
- Transparent interface to databases.
- Interfaces to C, Java, tcl-tk, etc.
- Distributed execution.
- Internet (PiLLoW: HTML, VRML, forms, http protocol, etc.), ...
CiaoPP: The Ciao System Preprocessor

- A standalone preprocessor to the standard clause-level compiler [6].
- Performs source-to-source transformations:
 - Output: error/warning messages + transformed logic program, with
 * Results of analysis, as assertions (types, modes, sharing, non-failure, determinacy, term sizes, cost, ...).
 * Results of static checking of assertions [8, 14] (abstract verification).
 * Assertion run-time checking code.
 * Optimizations (specialization, parallelization, etc.).
- By design, a generic tool – can be applied to other systems (e.g., CHIP → CHIPRE).
- Underlying technology:
 - Modular polyvariant abstract interpretation [2, 10].
 - Modular abstract multiple specialization [17].
Overview

- We demonstrate Ciaopp in use:
 - Inference of complex properties of programs.
 - Program debugging.
 - Program validation.
 - Program optimization (e.g., specialization, parallelization).
 - Program documentation.

- We discuss some practical issues:
 - The *assertion* language.
 - Dealing with built-ins and complex language features.
 - Modular analysis (including libraries).
 - Efficiency and incremental analysis (only reanalyze what is needed).

- We start by describing the Ciao assertion language, used throughout the demo.
Properties and Assertions – I

- Assertions are typically *optional*.
- Properties (include *types* as a special case):
 - Arbitrary predicates, (generally) *written in the source language*.
 - Some predefined in system, some of them “native” to an analyzer.
 - Others user-defined.
 - Should be “runnable” (but property may be an approximation itself).

```prolog
:- regtype list/1. | :- typedef list ::= [];[_|list].
list([]).          |
list([_|Y]) :- list(Y). |______________________________|
___________________________| :- regtype int/1 + impl_defined.
:- prop sorted/1.   |______________________________|
sorted([]).        | :- regtype peano_int/1.
sorted([_]).        | peano_int(0).
sorted([X,Y|Z]) :- X>Y, sorted([Y|Z]). | peano_int(s(X)) :- peano_int(X).
```
Properties and Assertions – II

• Basic assertions:

| :- calls PredDesc : PreC . |

Examples:
:- success qsort(A,B) : list(A) => ground(B).
:- calls qsort(A,B) : (list(A),var(B)).
:- comp qsort(A,B) : (list(A,int),var(B)) + (det,succeeds).

• Compound assertion (syntactic sugar):

| :- pred PredDesc [: PreC] [=> PostC] [+ Comp] . |

Examples:
:- pred qsort(A,B) : (list(A,int),var(B)) => sorted(B) + (det,succeeds).
:- pred qsort(A,B) : (var(A),list(B,int)) => ground(A) + succeeds.
Properties and Assertions – III

- **Assertion status:**
 - check (default) – intended semantics, to be checked.
 - true, false – actual semantics, output from compiler.
 - trust – actual semantics, input from user (guiding compiler).
 - checked – validation: a check that has been proved (same as a true).

\[\text{:- trust pred is}(X,Y) \Rightarrow (\text{num}(X), \text{numexpr}(Y)). \]

- **Program point assertions:**

 \[
 \text{main :- read}(X), \text{trust}(\text{int}(X)), \ldots
 \]

- **entry:** equiv. to “trust calls” (but only describes calls external to a module).

- + much more syntactic sugar, mode macros, “compatibility” properties, fields for automatic documentation [7], ...

\[\text{:- pred p/2 : list}(\text{int}) \times \text{var} \Rightarrow \text{list}(\text{int}) \times \text{int}. \]
\[\text{:- modedef} +X : \text{nonvar}(X). \]
\[\text{:- pred sortints}(+L,-SL) :: \text{list}(\text{int}) \times \text{list}(\text{int}) + \text{sorted}(SL) \]

 \# "@var{SL} has same elements as @var{L}".
PART I: Analysis

- ciaopp includes two basic analyzers:
 - The PLAI generic, top-down analysis framework.
 * Several domains: modes (ground, free), independence, patterns, etc.
 * Incremental analysis, analysis of programs with delay, ...
 - Gallagher’s bottom-up type analysis.
 * Adapted to infer parametric types (list(int)) and at the literal level.
 - Advanced analyzers (GraCos/CASLOG) for complex properties:
 non-failure, coverage, determinism, sizes, cost, ...

- Issues:
 - Reporting the results → “true” assertions.
 - Helping the analyzer → “entry/trust” assertions.
 - Dealing with builtins → “trust” assertions.
 - Incomplete programs → “trust” assertions.
 - Modular programs → “trust” assertions, interface (.itf, .asr) files.
 - Multivariance, incrementality, ...
Inference of Complex Properties : Non-failure (Intuition)

• Based on the intuitively simple notion of a set of tests “covering” the type of the input variables.

• Clause: set of primitive tests followed by various unifications and body goals.

• The tests at the beginning determine whether the clause should be executed or not (may involve pattern matching, arithmetic tests, type tests, etc.)

• Consider the predicate:

\[
\begin{align*}
\text{abs}(X,Y) & \leftarrow X \geq 0, \ Y \text{ is } X. \\
\text{abs}(X,Y) & \leftarrow X < 0, \ Y \text{ is } -X.
\end{align*}
\]

• and a call to \(\text{abs}/2\) with \(X\) bound to an integer and \(Y\) free.

• The test of \(\text{abs}/2, X \geq 0 \lor X < 0\), will succeed for this call.

• “The test of the predicate \(\text{abs}/2\) covers the type of \(X\).”

• Since the rest of the body literals of \(\text{abs}/2\) are guaranteed not to fail, at least one of the clauses will not fail, and thus the call will also not fail.
:- true pred append(A,B,C): list * list * var.
append([], L, L).
append([H|L], L1, [H|R]) :- append(L, L1, R).

• Assuming:
 ◦ Cost metric: number of resolution steps.
 ◦ Argument size metric: list length.
 ◦ Types, modes, covering, and non-failure info available.

• Let \(\text{Cost}_{\text{append}}(n, m) \): cost of a call to append/3 with input lists of lengths \(n \) and \(m \).

• A difference equation can be set up for append/3:
 \[
 \text{Cost}_{\text{append}}(0, m) = 1 \text{ (boundary condition from first clause)},
 \text{Cost}_{\text{append}}(n, m) = 1 + \text{Cost}_{\text{append}}(n - 1, m).
 \]

• Solution obtained: \(\text{Cost}_{\text{append}}(n, m) = n + 1 \).

• Based on also inferring argument size relationships (relative sizes).
“Resource awareness” example (Upper-Bounds Cost Analysis)

- **Given:**

  ```prolog
  :- entry inc_all : ground * var.

  inc_all([],[]).
  inc_all([H|T],[NH|NT]) :- NH is H+1, inc_all(T,NT).
  ```

- **After running through ciaopp (cost analysis) we get:**

  ```prolog
  :- entry inc_all : ground * var.

  :- true pred inc_all(A,B) : (list(A,int), var(B))
      => (list(A,int), list(B,int))
      + upper_cost(2*length(A)+1).

  inc_all([],[]).
  inc_all([H|T],[NH|NT]) :- NH is H+1, inc_all(T,NT).

  which is a program with a certificate of needed resources!
  ```
We compare actual semantics $[P]$ vs. intended semantics \mathcal{I} for P:

- P is partially correct w.r.t. \mathcal{I} iff $[P] \subseteq \mathcal{I}$.
- P is complete w.r.t. \mathcal{I} iff $\mathcal{I} \subseteq [P]$.
- P is incorrect w.r.t. \mathcal{I} iff $[P] \nsubseteq \mathcal{I}$.
- P is incomplete w.r.t. \mathcal{I} iff $\mathcal{I} \nsubseteq [P]$.

- \mathcal{I} described via (check) assertions.

- Incorrectness and incompleteness indicate that diagnosis should be performed.

- **Problems:** difficulty in computing $[P]$ (+ \mathcal{I} incomplete, i.e., approximate).

- **Approach:**
 - Use the abstract interpreter to infer properties of P.
 - Compare them to the assertions.
 - Generate run-time tests if anything remains to be tested.
Validation Using Abstract Interpretation

- Specification given as a semantic value $\mathcal{I}_\alpha \in D_\alpha$ and compared with $[P]_\alpha$.

<table>
<thead>
<tr>
<th>Property</th>
<th>Definition</th>
<th>Sufficient condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>P is partially correct w.r.t. \mathcal{I}_α</td>
<td>$\alpha([P]) \subseteq \mathcal{I}_\alpha$</td>
<td>$[P]{\alpha+} \subseteq \mathcal{I}\alpha$</td>
</tr>
<tr>
<td>P is complete w.r.t. \mathcal{I}_α</td>
<td>$\mathcal{I}_\alpha \subseteq \alpha([P])$</td>
<td>$\mathcal{I}\alpha \subseteq [P]{\alpha-}$</td>
</tr>
<tr>
<td>P is incorrect w.r.t. \mathcal{I}_α</td>
<td>$\alpha([P]) \not\subseteq \mathcal{I}_\alpha$</td>
<td>$[P]{\alpha-} \not\subseteq \mathcal{I}\alpha$, or $[P]{\alpha+} \cap \mathcal{I}\alpha = \emptyset \land [P]_\alpha \neq \emptyset$</td>
</tr>
<tr>
<td>P is incomplete w.r.t. \mathcal{I}_α</td>
<td>$\mathcal{I}_\alpha \not\subseteq \alpha([P])$</td>
<td>$\mathcal{I}\alpha \not\subseteq [P]{\alpha+}$</td>
</tr>
</tbody>
</table>

($[P]_{\alpha+}$ represents that $[P]_\alpha \supseteq \alpha([P])$ and $[P]_{\alpha-}$ indicates that $[P]_\alpha \subseteq \alpha([P])$)

- Conclusions w.r.t. direct Galois insertions (i.e., over-approximation):
 - Suited for proving partial correctness and incompleteness w.r.t. \mathcal{I}.
 - It is also possible to prove incorrectness.
 - Completeness can only be proved if the abstraction is “precise.”

- Conclusion w.r.t. reversed Galois insertions (i.e., under-approximation):
 - Suited for proving completeness and incorrectness.
 - Partial correctness and incompleteness only if the abstraction is “precise.”
Integrated Validation/Diagnosis in the Ciao Preprocessor
A Program validation example

• Given:

```prolog
:- check comp : list(int) * var + succeeds.
inc_all([],[]).
inc_all([H|T],[NH|NT]) :- NH is H+1, inc_all(T,NT).
```

• After running through ciaopp (non-failure analysis) we get:

```prolog
:- true comp : list(int) * var + succeeds.
inc_all([],[]).
inc_all([H|T],[NH|NT]) :- NH is H+1, inc_all(T,NT).
```

which is a validated (certified) program.
Debugging with Global Analysis

- Simple bugs:
 - Undefined predicates, discontiguous, multiple arity, ...
 - Cannot be done without global analysis & a robust module system.

- Checking programs against library interfaces:
 - System predicates (builtin and library predicates):
 - Intended behavior known in advance / usually assumed to be correct.
 - If interfaces of these predicates are available as *assertions*, we can:
 - Automatically compare analysis results against these specs,
 - (+ avoid analyzing the libraries over and over again).
 - Detects many bugs with no user burden (no need to use assert. language).
 - Can also be done with user-defined libraries!

- We may be interested also in checking properties of our program.
 - Price: adding *assertions* describing what we want checked (can be partial).
 - Advantage: more errors detected and automatic documentation!
Finding Bugs with Global Analysis

- Checking the calls to built-ins and libraries:

 \[
 \text{main}(X,Y) :- \ q(X,N), \ Y \text{ is } X+N. \\
 q(1,V).
 \]

 with, e.g., mode analysis an error is flagged: \(N\) is not ground.

- Checking program assertions:

 \[
 :- \ \text{pred} \ p(X,Y) : \text{list(num)} * \text{var} \Rightarrow \text{list(num)} * \text{list(num)} + \text{no_fail}. \\
 p([],[]).
 p([H|T],[NH|NT]) :- q(H,NH), \ p(T,NT).
 \]

 \[
 q(H,NH) :- H > 0, \ NH = H+1. \\
 q(H,NH) :- H < 0, \ NH = H-1.
 \]

 with, e.g., type analysis an error is flagged: \(Y\) is not a list of numbers (\text{is/2} should be used instead of =/2);

 with, e.g., non-failure analysis an error is flagged: =\text{/2} should be used.
Discussion: Comparison with “Classical” Types

- Global analysis w/approximations: important role also in program development.
- Allows going beyond straight-jacket of classical type systems (Gödel, Mercury,...):

```
<table>
<thead>
<tr>
<th>“Traditional” Types</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory (do not allow “any”)</td>
<td>Optional (allow “any”)</td>
</tr>
<tr>
<td>Expressed in a Special Language</td>
<td>Expressed in the Source Language</td>
</tr>
<tr>
<td>Limited Property Language</td>
<td>Much More General Property Language</td>
</tr>
<tr>
<td>Limit Programming Language</td>
<td>Do not Limit Programming Language</td>
</tr>
<tr>
<td>Untypable Programs Rejected</td>
<td>Run-time Checks Introduced</td>
</tr>
<tr>
<td>(Almost) Decidable</td>
<td>Approximated</td>
</tr>
<tr>
<td>“check”</td>
<td>“check” or “trust”</td>
</tr>
</tbody>
</table>
```

...without giving up much (types are included as just another kind of property).

- Key issues:

```
<table>
<thead>
<tr>
<th>Approximation</th>
<th>Suitable assertion language</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract Interpretation</td>
<td>Relating approximations of actual and intended semantics</td>
</tr>
</tbody>
</table>
```
PART III: Using Analysis Results in Program Optimization

- Eliminating run-time work at compile-time.
 - Low-level optimization.
 - Abstract specialization/partial evaluation.
 Evaluating parts of the program based on abstract information.
 - Abstract multiple specialization.
 Ditto on (possibly) multiple versions of each predicate.
- Automatic program parallelization:
 strict and non-strict Independent And-Parallelism.
- Automatic task granularity control.
- Optimization of other control rules / languages (e.g., Andorra).
- Just for fun: generating documentation!
(Multiple) Specialization

- Given the analysis output:

```prolog
main :-
...
true(int(X)),
( ground(X) -> write(a) ; write(b) ),
...
```

the `ground(X)` can be *abstractly executed* to true and the whole conditional to `write(A)`.

- Specializer is customizable, controlled by a table of “abstract executability”.

- Can subsume traditional “partial evaluation”:
 Given `true(X=list(a))`, then, e.g., `X=[a|Y] -> X=[_|Y]` (no need to test that first element is an a).

- Multiple specialization: creating multiple versions of predicates for different uses.
Automatic Program Parallelization

- Parallelization process [2] starts with dependency graph:
 - edges exist if there can be a dependency,
 - conditions label edges if the dependency can be removed.
- Global analysis: reduce number of checks in conditions (also to true and false).
- Annotation: encoding of parallelism in the target parallel language:
 \[g_1(\ldots), g_2(\ldots), g_3(\ldots) \]

Alternative:
"Annotation"
Local/Global analysis and simplification
(test(1\text{--}3) \rightarrow (g_1, g_2) \& g_3 ; \ g_1, (g_2 \& g_3))

Alternative: \ g_1, (g_2 \& g_3) \)
Automatic Program Parallelization (Contd.)

- Example:

\[
qs([X|L],R) :- \text{part}(L,X,L1,L2), \\
 qs(L2,R2), qs(L1,R1), \\
 \text{app}(R1,[X|R2],R).
\]

Might be annotated in \&-Prolog (or Ciao Prolog), using local analysis, as:

\[
qs([X|L],R) :- \\
 \text{part}(L,X,L1,L2), \\
 (\text{indep}(L1,L2) \to \\
 \quad qs(L2,R2) \& qs(L1,R1) \\
 ; \quad qs(L2,R2) , qs(L1,R1)), \\
 \text{app}(R1,[X|R2],R).
\]

Global analysis would eliminate the \text{indep}(L1,L2) check.
&-Prolog/Ciao parallelizer overview

USER

Ciao: (C)LP, FP, (Java) ...

Annotators (local dependency analysis)
MEL/CDG/UDG/URLP/...

Parallelized Code (&)

Ciao/&−Prolog Parallel RT system

PARALLELIZING COMPILER (CiaoPP)

Abstract Interpretation
(Sharing, Sharing+Freeness, Aeqs, Def, Lsign, ...)

Dependency Info

side−effect analysis

granularity analysis
Granularity Control

- Do not schedule tasks for parallel execution if they are too small.
- Cannot be done well completely at compile-time: work done by a call often depends on the size of its input:
 \[q([],[]) \]
 \[q([X|RX],[X1|RX1]) :\neg \ X1 \text{ is } X +1, \quad q(RX,RX1). \]

- Approach [12]:
 - generate at compile-time *functions* (to be evaluated at run-time) that efficiently approximate task size (upper and lower bounds),
 - transform programs to carry out run-time granularity control.
 - Note: size computations can be done on-the-fly [11].

- Example (with \(q \) above):
 \[..., q(X,Y) \& r(X), ... \]
 \[\text{Cost} = 2 \star \text{length}(X) + 1 \text{ (cost function } 2 \star n + 1). \text{ Assuming } \text{threshold} \text{ is 4 units:} \]
 \[..., \text{length}(X,LX), \text{Cost is } LX \star 2 + 1, \ (\text{Cost} > 4 \rightarrow q(X,Y) \& r(Z) \]
 \[; \ q(X,y), \ r(X)), ..., \]
Granularity Control System Output

g_qsort([], []).
g_qsort([First|L1], L2) :-
 partition3o4o(First, L1, Ls, Lg, Size_Ls, Size_Lg),
 Size_Ls > 20 ->
 (Size_Lg > 20 -> g_qsort(Ls, Ls2) & g_qsort(Lg, Lg2);
 g_qsort(Ls, Ls2), s_qsort(Lg, Lg2));
 (Size_Lg > 20 -> s_qsort(Ls, Ls2), g_qsort(Lg, Lg2);
 s_qsort(Ls, Ls2), s_qsort(Lg, Lg2)),
 append(Ls2, [First|Lg2], L2).

partition3o4o(F, [], [], [], 0, 0).
partition3o4o(F, [X|Y], [X|Y1], Y2, SL, SG) :-
 X =< F, partition3o4o(F, Y, Y1, Y2, SL1, SG), SL is SL1 + 1.
partition3o4o(F, [X|Y], Y1, [X|Y2], SL, SG) :-
 X > F, partition3o4o(F, Y, Y1, Y2, SL, SG1), xSG is SG1 + 1.

• Note: when term sizes are compared directly with a threshold: not necessary to
 traverse all the terms involved, only to the point at which threshold is reached.
• **ciaopp** is *generic*, i.e., it can be customized:
 - For a new language: giving assertions for its built-ins and libraries (+ syntax).
 - For new properties: adding a new *domain* to the analyzer.

• **Example:** *chipre*, preprocessor for CHIP.

```
:- false
:- check
:- checked
```
Acknowledgements/Downloading the systems

- Ciao/ciaopp is a collaborative effort:
 UPM, Melbourne/Monash (incremental analysis, ...), Arizona (cost analyses, ...), SICS (engine)
 + Bristol, Linköping, NMSU, Leuven, Beer-Sheva, ...

- Downloading ciao, ciaopp, ciaodoc/pl2texi, and other CLIP software:
 ◦ Standard distributions:
 http://www.clip.dia.fi.upm.es/Software
 ◦ Betas (in testing or completing documentation – ask webmaster for info):
 http://www.clip.dia.fi.upm.es/Software/Beta
 ◦ User’s mailing list:
 ciao-users@clip.dia.fi.upm.es
 Subscribe by sending a message with only subscribe in the body to
 ciao-users-request@clip.dia.fi.upm.es
Recent Bibliography on the ciaopp System Components

