Computational Logic: (Constraint) Logic Programming
Theory, practice, and implementation

Program Analysis, Debugging, and Optimization
A Tour of ciaopp: The Ciao Prolog Preprocessor

Department of Artificial Intelligence
School of Computer Science
Technical University of Madrid
28660-Boadilla del Monte, Madrid, SPAIN

The following people have contributed to this course material:
Manuel Hermenegildo (editor), Francisco Bueno, Manuel Carro, Germán Puebla, and Pedro López Technical University of Madrid, Spain
Introduction: The Ciao Program Development System

- Ciao is a next-generation (C)LP programming environment – features:
 - Public domain (GNU license).
 - Pure kernel (*no “built-ins”*); subsumes ISO-Prolog (transparently) via library.
 - Designed to be extensible and analyzable.
 - Support for programming *in the large*:
 * robust module/object system, separate/incremental compilation, ...
 * “industry standard” performance.
 * (semi-automatic) interfaces to other languages, databases, etc.
 * assertion language, automatic static inference and checking, autodoc, ...
 - Support for programming *in the small*:
 * scripts, small (static/dynamic/lazy-load) executables, ...
 - Support for several paradigms:
 * functions, higher-order, objects, constraint domains, ...
 * concurrency, parallelism, distributed execution, ...
 - Advanced Emacs environment (with e.g., automatic access to documentation).
Introduction: The Ciao Program Development System (Contd.)

- Components of the environment (independent):

 ciaosh: Standard top-level shell.
 ciaoc: Standalone compiler.
 ciaosi: Script interpreter.
 lpdoc: Documentation Generator (info, ps, pdf, html, ...).
 ciaopp: Preprocessor.

 Many libraries:

 - Records (argument names).
 - Persistent predicates.
 - Transparent interface to databases.
 - Interfaces to C, Java, tcl-tk, etc.
 - Distributed execution.
 - Internet (PiLLoW: HTML, VRML, forms, http protocol, etc.), ...
CiaoPP: The Ciao System Preprocessor

- A standalone preprocessor to the standard clause-level compiler [6].

- Performs source-to-source transformations:
 - Output: error/warning messages + transformed logic program, with
 * Results of analysis, as assertions (types, modes, sharing, non-failure, determinacy, term sizes, cost, ...).
 * Results of static checking of assertions [8, 14] (abstract verification).
 * Assertion run-time checking code.
 * Optimizations (specialization, parallelization, etc.).

- By design, a generic tool – can be applied to other systems (e.g., CHIP → CHIPRE).

- Underlying technology:
 - Modular polyvariant abstract interpretation [2, 10].
 - Modular abstract multiple specialization [17].
Overview

• We demonstrate Ciaopp in use:
 ◇ Inference of complex properties of programs.
 ◇ Program debugging.
 ◇ Program validation.
 ◇ Program optimization (e.g., specialization, parallelization).
 ◇ Program documentation.

• We discuss some practical issues:
 ◇ The assertion language.
 ◇ Dealing with built-ins and complex language features.
 ◇ Modular analysis (including libraries).
 ◇ Efficiency and incremental analysis (only reanalyze what is needed).

• We start by describing the Ciao assertion language, used throughout the demo.
Properties and Assertions – I

• Assertion language \[\text{[13]}\] suitable for *multiple purposes* (see later).

• Assertions are typically *optional*.

• Properties (include *types* as a special case):
 ◦ Arbitrary predicates, (generally) *written in the source language*.
 ◦ Some predefined in system, some of them “native” to an analyzer.
 ◦ Others user-defined.
 ◦ Should be “runnable” (but property may be an approximation itself).

```
:- regtype list/1.
list([]).  
list([_|Y]) :- list(Y).

:- prop sorted/1.
sorted([]).  
sorted([_]).  
sorted([X,Y|Z]) :- X>Y, sorted([Y|Z]).
```

```
| :- typedef list ::= [];|[_|list].
| :- regtype int/1 + impl_defined.
| :- regtype peano_int/1.
| peano_int(0).
| peano_int(s(X)) :- peano_int(X).
```
Properties and Assertions – II

- Basic assertions:

\[
\begin{align*}
\text{:- success } & \quad \text{PredDesc} \quad [\quad : \quad PreC \quad] \quad \Rightarrow \quad PostC. \\
\text{:- calls } & \quad \text{PredDesc} \quad : \quad PreC. \\
\text{:- comp} & \quad \text{PredDesc} \quad [\quad : \quad PreC \quad] \quad + \quad \text{CompProps}.
\end{align*}
\]

Examples:

\[
\begin{align*}
\text{:- success qsort(A,B) : list(A) \Rightarrow ground(B).} \\
\text{:- calls qsort(A,B) : (list(A),var(B)).} \\
\text{:- comp qsort(A,B) : (list(A,int),var(B)) + (det,succeeds).}
\end{align*}
\]

- Compound assertion (syntactic sugar):

\[
\begin{align*}
\text{:- pred } & \quad \text{PredDesc} \quad [\quad : \quad PreC \quad] \quad [\Rightarrow \quad PostC] \quad [\quad + \quad \text{Comp} \quad].
\end{align*}
\]

Examples:

\[
\begin{align*}
\text{:- pred qsort(A,B) : (list(A,int),var(B)) \Rightarrow sorted(B) + (det,succeeds).} \\
\text{:- pred qsort(A,B) : (var(A),list(B,int)) \Rightarrow ground(A) + succeeds.}
\end{align*}
\]
Properties and Assertions – III

- **Assertion status:**
 - check (default) – intended semantics, to be checked.
 - true, false – actual semantics, output from compiler.
 - trust – actual semantics, input from user (guiding compiler).
 - checked – validation: a check that has been proved (same as a true).

  ```prolog
  :- trust pred is(X,Y) => (num(X), numexpr(Y)).
  ```

- **Program point assertions:**
  ```prolog
  main :- read(X), trust(int(X)), ...
  ```

- **entry:** equiv. to “trust calls” (but only describes calls external to a module).

- + much more syntactic sugar, mode macros, “compatibility” properties, fields for automatic documentation [7], ...

  ```prolog
  :- pred p/2 : list(int) * var => list(int) * int.
  :- modedef +X : nonvar(X).
  :- pred sortints(+L,-SL) :: list(int) * list(int) + sorted(SL)
      # "@var{SL} has same elements as @var{L}".
  ```
PART I: Analysis

- **ciaopp** includes two basic analyzers:
 - The PLAI generic, top-down analysis framework.
 - Several domains: modes (ground, free), independence, patterns, etc.
 - Incremental analysis, analysis of programs with delay, ...
 - Gallagher’s bottom-up type analysis.
 - Adapted to infer *parametric types* (list(int)) and at the *literal level*.
 - Advanced analyzers (GraCos/CASLOG) for complex properties: non-failure, coverage, determinism, sizes, cost, ...

- **Issues:**
 - Reporting the results → “true” assertions.
 - Helping the analyzer → “entry/trust” assertions.
 - Dealing with builtins → “trust” assertions.
 - Incomplete programs → “trust” assertions.
 - Modular programs → “trust” assertions, interface (.itf, .asr) files.
 - Multivariance, incrementality, ...
Inference of Complex Properties : Non-failure (Intuition)

- Based on the intuitively simple notion of a set of tests “covering” the type of the input variables.
- Clause: set of primitive tests followed by various unifications and body goals.
- The tests at the beginning determine whether the clause should be executed or not (may involve pattern matching, arithmetic tests, type tests, etc.)
- Consider the predicate:

\[
\begin{align*}
\text{abs}(X,Y) & \leftarrow X \geq 0, \ Y \text{ is } X. \\
\text{abs}(X,Y) & \leftarrow X < 0, \ Y \text{ is } -X.
\end{align*}
\]

- and a call to \text{abs}/2 with \(X\) bound to an \textit{integer} and \(Y\) free.
- The test of \text{abs}/2, \(X \geq 0 \lor X < 0\), will succeed for this call.
- “The test of the predicate \text{abs}/2 covers the type of \(X\).”
- Since the rest of the body literals of \text{abs}/2 are guaranteed not to fail, at least one of the clauses will not fail, and thus the call will also not fail.
Inference of Complex Properties: Lower-Bounds on Cost (Intuition)

:- true pred append(A,B,C): list * list * var.
append([], L, L).
append([H|L], L1, [H|R]) :- append(L, L1, R).

- Assuming:
 ◦ Cost metric: number of resolution steps.
 ◦ Argument size metric: list length.
 ◦ Types, modes, covering, and non-failure info available.

- Let $\text{Cost}_{\text{append}}(n,m)$: cost of a call to $\text{append}/3$ with input lists of lengths n and m.

- A difference equation can be set up for $\text{append}/3$:

 $\text{Cost}_{\text{append}}(0,m) = 1$ (boundary condition from first clause),
 $\text{Cost}_{\text{append}}(n,m) = 1 + \text{Cost}_{\text{append}}(n - 1,m)$.

- Solution obtained: $\text{Cost}_{\text{append}}(n,m) = n + 1$.

- Based on also inferring argument size relationships (relative sizes).
“Resource awareness” example (Upper-Bounds Cost Analysis)

- **Given:**

 :- entry inc_all : ground * var.

 inc_all([],[]).
 inc_all([H|T],[NH|NT]) :- NH is H+1, inc_all(T,NT).

- **After running through ciaopp (cost analysis) we get:**

 :- entry inc_all : ground * var.

 :- true pred inc_all(A,B) : (list(A,int), var(B))
 => (list(A,int), list(B,int))
 + upper_cost(2*length(A)+1).

 inc_all([],[]).
 inc_all([H|T],[NH|NT]) :- NH is H+1, inc_all(T,NT).

 which is a program with a certificate of needed resources!
PART II: Program Validation and Diagnosis (Debugging)

- We compare actual semantics $[P]$ vs. intended semantics \mathcal{I} for P:
 - P is partially correct w.r.t. \mathcal{I} iff $[P] \subseteq \mathcal{I}$.
 - P is complete w.r.t. \mathcal{I} iff $\mathcal{I} \subseteq [P]$.
 - P is incorrect w.r.t. \mathcal{I} iff $[P] \nsubseteq \mathcal{I}$.
 - P is incomplete w.r.t. \mathcal{I} iff $\mathcal{I} \nsubseteq [P]$.

- \mathcal{I} described via (check) assertions.

- Incorrectness and incompleteness indicate that diagnosis should be performed.

- **Problems**: difficulty in computing $[P]$ (+ \mathcal{I} incomplete, i.e., *approximate*).

- **Approach**:
 - Use the abstract interpreter to infer properties of P.
 - Compare them to the assertions.
 - Generate run-time tests if anything remains to be tested.
Validation Using Abstract Interpretation

- Specification given as a semantic value $I_\alpha \in D_\alpha$ and compared with $[P]_\alpha$.

<table>
<thead>
<tr>
<th>Property</th>
<th>Definition</th>
<th>Sufficient condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>P is partially correct w.r.t. I_α</td>
<td>$\alpha([P]) \subseteq I_\alpha$</td>
<td>$[P]\alpha^+ \subseteq I\alpha$</td>
</tr>
<tr>
<td>P is complete w.r.t. I_α</td>
<td>$I_\alpha \subseteq \alpha([P])$</td>
<td>$I_\alpha \subseteq [P]_\alpha^-$</td>
</tr>
<tr>
<td>P is incorrect w.r.t. I_α</td>
<td>$\alpha([P]) \nsubseteq I_\alpha$</td>
<td>$[P]\alpha^- \nsubseteq I\alpha$, or $[P]\alpha^+ \cap I\alpha = \emptyset \land [P]_\alpha \neq \emptyset$</td>
</tr>
<tr>
<td>P is incomplete w.r.t. I_α</td>
<td>$I_\alpha \nsubseteq \alpha([P])$</td>
<td>$I_\alpha \nsubseteq [P]_\alpha^+$</td>
</tr>
</tbody>
</table>

($[P]_\alpha^+$ represents that $[P]_\alpha \supseteq \alpha([P])$ and $[P]_\alpha^-$ indicates that $[P]_\alpha \subseteq \alpha([P])$)

- Conclusions w.r.t. direct Galois insertions (i.e., over-approximation):
 - Suited for proving partial correctness and incompleteness w.r.t. I.
 - It is also possible to prove incorrectness.
 - Completeness can only be proved if the abstraction is “precise.”

- Conclusion w.r.t. reversed Galois insertions (i.e., under-approximation):
 - Suited for proving completeness and incorrectness.
 - Partial correctness and incompleteness only if the abstraction is “precise.”
Integrated Validation/Diagnosis in the Ciao Preprocessor

Program

:- entry
:- check

Builtins/ Libs

Syntax checker

Static Analysis

Assertion Normalizer & Lib Itf.

Comparator

Analysis Info

RT tests

Annotator

:- false
:- check
:- checked

CIAOPP

informal
comp-time
run-time
system
error
user
run-time
error

 syntactic
error/warning

semantic
comp-time error/warning

Interactive Diagnosis

Program + RT tests

CIAO, CHIP,

output

Inspection

...CHIP
A Program validation example

- Given:

  ```prolog
  :- check comp : list(int) * var + succeeds.
  inc_all([],[]).
  inc_all([H|T],[NH|NT]) :- NH is H+1, inc_all(T,NT).
  ```

- After running through ciaopp (non-failure analysis) we get:

  ```prolog
  :- true comp : list(int) * var + succeeds.
  inc_all([],[]).
  inc_all([H|T],[NH|NT]) :- NH is H+1, inc_all(T,NT).
  ```

 which is a validated (certified) program.
Debugging with Global Analysis

• Simple bugs:
 ◦ Undefined predicates, discontiguous, multiple arity, ...
 ◦ Cannot be done without global analysis & a robust module system.

• Checking programs against library interfaces:
 ◦ System predicates (builtin and library predicates):
 * Intended behavior known in advance / usually assumed to be correct.
 ◦ If interfaces of these predicates are available as assertions, we can:
 * automatically compare analysis results against these specs,
 * (+ avoid analyzing the libraries over and over again).
 ◦ Detects many bugs with no user burden (no need to use assert. language).
 ◦ Can also be done with user-defined libraries!

• We may be interested also in checking properties of our program.
 ◦ Price: adding assertions describing what we want checked (can be partial).
 ◦ Advantage: more errors detected and automatic documentation!
Finding Bugs with Global Analysis

- Checking the calls to built-ins and libraries:

  ```prolog
  main(X,Y) :- q(X,N), Y is X+N.
  
  q(1,V).
  ```

 with, e.g., mode analysis an error is flagged: N is not ground.

- Checking program assertions:

  ```prolog
  :- pred p(X,Y) : list(num) * var => list(num) * list(num) + no_fail.
  
  p([],[]).
  p([H|T],[NH|NT]) :- q(H,NH), p(T,NT).
  
  q(H,NH) :- H > 0, NH = H+1.
  q(H,NH) :- H < 0, NH = H-1.
  ```

 with, e.g., type analysis an error is flagged: Y is not a list of numbers
 (is/2 should be used instead of =/2);

 with, e.g., non-failure analysis an error is flagged: =</2 should be used.
Discussion: Comparison with “Classical” Types

- Global analysis w/approximations: important role also in program development.
- Allows going beyond straight-jacket of classical type systems (Gödel, Mercury,...):

<table>
<thead>
<tr>
<th>“Traditional” Types</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory (do not allow “any”)</td>
<td>Optional (allow “any”)</td>
</tr>
<tr>
<td>Expressed in a Special Language</td>
<td>Expressed in the Source Language</td>
</tr>
<tr>
<td>Limited Property Language</td>
<td>Much More General Property Language</td>
</tr>
<tr>
<td>Limit Programming Language</td>
<td>Do not Limit Programming Language</td>
</tr>
<tr>
<td>Untypable Programs Rejected</td>
<td>Run-time Checks Introduced</td>
</tr>
<tr>
<td>(Almost) Decidable</td>
<td>Approximated</td>
</tr>
<tr>
<td>“check”</td>
<td>“check” or “trust”</td>
</tr>
</tbody>
</table>

...without giving up much (types are included as just another kind of property).

- Key issues:

<table>
<thead>
<tr>
<th>Approximation</th>
<th>Suitable assertion language</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract Interpretation</td>
<td>Relating approximations of actual and intended semantics</td>
</tr>
</tbody>
</table>
PART III: Using Analysis Results in Program Optimization

• Eliminating run-time work at compile-time.
 ◇ Low-level optimization.
 ◇ Abstract specialization/partial evaluation.
 Evaluating parts of the program based on abstract information.
 ◇ Abstract multiple specialization.
 Ditto on (possibly) multiple versions of each predicate.

• Automatic program parallelization:
 strict and non-strict Independent And-Parallelism.

• Automatic task granularity control.

• Optimization of other control rules / languages (e.g., Andorra).

• Just for fun: generating documentation!
(Multiple) Specialization

- Given the analysis output:

```prolog
main :-
    ..., 
    true(int(X)),
    ( ground(X) -> write(a); write(b) ),
    ...
```

the `ground(X)` can be \textit{abstractly executed} to true and the whole conditional to `write(A)`.

- Specializer is customizable, controlled by a table of “abstract executability”.

- Can subsume traditional “partial evaluation”:
 Given `true(X=list(a))`, then, e.g., `X=[a|Y] \rightarrow X=[_|Y]` (no need to test that first element is an a).

- Multiple specialization: creating multiple versions of predicates for different uses.
Automatic Program Parallelization

- Parallelization process \([2]\) starts with dependency graph:
 - edges exist if there can be a dependency,
 - conditions label edges if the dependency can be removed.

- Global analysis: reduce number of checks in conditions (also to true and false).

- Annotation: encoding of parallelism in the target parallel language:
 \[g_1(\ldots), g_2(\ldots), g_3(\ldots) \]

Alternative:

```
(test(1−3) → ( g1, g2 ) & g3 ;  g1, ( g2 & g3 ) )
```

Alternative: \(g1, (g2 & g3) \)
• Example:

\[\text{qs}([X|L], R) \leftarrow \text{part}(L, X, L_1, L_2),\]
\[\text{qs}(L_2, R_2), \text{qs}(L_1, R_1),\]
\[\text{app}(R_1, [X|R_2], R).\]

Might be annotated in &-Prolog (or Ciao Prolog), using local analysis, as:

\[\text{qs}([X|L], R) \leftarrow \]
\[\text{part}(L, X, L_1, L_2),\]
\[(\text{indep}(L_1, L_2) \rightarrow \]
\[\text{qs}(L_2, R_2) \& \text{qs}(L_1, R_1)\]
\[; \quad \text{qs}(L_2, R_2), \text{qs}(L_1, R_1)\),\]
\[\text{app}(R_1, [X|R_2], R).\]

Global analysis would eliminate the \text{indep}(L_1, L_2) check.
Annotators (local dependency analysis)
MEL/CDG/UDG/URLP/...
Abstract Interpretation
(Sharing, Sharing+Freeness, Aeqs, Def, Lsign, ...)
Dependency Info
side−effect analysis
granularity analysis
Parallelized Code (&)
Ciao/
Parallel RT system
PARALLELIZING COMPILER (CiaoPP)
Ciao:
(C)LP, FP, (Java) ...
User
Annotators (local dependency analysis)
MEL/CDG/UDG/URLP/...
Granularity Control

- Do not schedule tasks for parallel execution if they are too small.
- Cannot be done well completely at compile-time: work done by a call often depends on the size of its input:

 \[
 q([],[]). \\
 q([X|RX],[X1|RX1]) : - \ X1 \ \text{is} \ X +1, \ q(RX,RX1).
 \]

- Approach \[12\]:
 - generate at compile-time *functions* (to be evaluated at run-time) that efficiently approximate task size (upper and lower bounds),
 - transform programs to carry out run-time granularity control.
 - Note: size computations can be done on-the-fly \[11\].

- Example (with \(q\) above):

 \[
 \ldots, \ q(X,Y) \ \& \ r(X), \ \ldots \\
 \]

 Cost = \(2 \times \text{length}(X) + 1\) (cost function \(2 \times n + 1\)). Assuming *threshold* is 4 units:

 \[
 \ldots, \ \text{length}(X,LX), \ \text{Cost is} \ LX\times2+1, \ (\ \text{Cost} \ > \ 4 \ \rightarrow \ q(X,Y) \ \& \ r(Z) \\
 \ \ \ ; \ q(X,y), \ r(X) \), \ \ldots
 \]
Granularity Control System Output

g_qsort([], []).
g_qsort([First|L1], L2) :-
 partition3o4o(First, L1, Ls, Lg, Size_Ls, Size_Lg),
 Size_Ls > 20 ->
 (Size_Lg > 20 -> g_qsort(Ls, Ls2) & g_qsort(Lg, Lg2);
 g_qsort(Ls, Ls2), s_qsort(Lg, Lg2));
 (Size_Lg > 20 -> s_qsort(Ls, Ls2), g_qsort(Lg, Lg2);
 s_qsort(Ls, Ls2), s_qsort(Lg, Lg2)),
 append(Ls2, [First|Lg2], L2).

partition3o4o(F, [], [], [], 0, 0).
partition3o4o(F, [X|Y], [X|Y1], Y2, SL, SG) :-
 X =< F, partition3o4o(F, Y, Y1, Y2, SL1, SG), SL is SL1 + 1.
partition3o4o(F, [X|Y], Y1, [X|Y2], SL, SG) :-
 X > F, partition3o4o(F, Y, Y1, Y2, SL, SG1), xSG is SG1 + 1.

• Note: when term sizes are compared directly with a threshold: not necessary to traverse all the terms involved, only to the point at which threshold is reached.
• **ciaopp** is *generic*, i.e., it can be customized:
 ◦ For a new language: giving assertions for its built-ins and libraries (+ syntax).
 ◦ For new properties: adding a new *domain* to the analyzer.

• Example: **chipre**, preprocessor for CHIP.
Acknowledgements/Downloading the systems

- Ciao/ciaopp is a collaborative effort: UPM, Melbourne/Monash (incremental analysis, ...), Arizona (cost analyses, ...), SICS (engine)
 + Bristol, Linköping, NMSU, Leuven, Beer-Sheva, ...

- Downloading ciao, ciaopp, ciaodoc/pl2texi, and other CLIP software:
 ◦ Standard distributions: http://www.clip.dia.fi.upm.es/Software
 ◦ Betas (in testing or completing documentation – ask webmaster for info): http://www.clip.dia.fi.upm.es/Software/Beta
 ◦ User’s mailing list: ciao-users@clip.dia.fi.upm.es
 Subscribe by sending a message with only subscribe in the body to ciao-users-request@clip.dia.fi.upm.es
Recent Bibliography on the ciaopp System Components

