Computational Logic

CLP Semantics and Fundamental Results
Constraint Domains

- Semantics parameterized by the constraint domain: $\text{CLP}(\mathcal{X})$, where $\mathcal{X} \equiv (\Sigma, D, \mathcal{L}, \mathcal{T})$
- Signature Σ: set of predicate and function symbols, together with their arity
- $\mathcal{L} \subseteq \Sigma$–formulae: constraints
- D is the set of actual elements in the domain
- Σ–structure D: gives the meaning of predicate and function symbols (and hence, constraints).
- \mathcal{T} a first–order theory (axiomatizes some properties of D)
- (D, \mathcal{L}) is a constraint domain
- Assumptions:
 - \mathcal{L} built upon a first–order language
 - $=\in \Sigma$ is identity in D
 - There are identically false and identically true constraints in \mathcal{L}
 - \mathcal{L} is closed w.r.t. renaming, conjunction and existential quantification
Domains (I)

- \(\Sigma = \{0, 1, +, *, =, <, \leq\} \), \(D = \mathbb{R} \), \(D \) interprets \(\Sigma \) as usual, \(\mathbb{R} = (D, \mathcal{L}) \)

 - Arithmetic over the reals

 - \(\text{Eg.: } x^2 + 2xy < \frac{y}{x} \land x > 0 \ (\equiv xxx + xxy + xxy < y \land 0 < x) \)

- Question: is 0 needed? How can it be represented?

- Let us assume \(\Sigma' = \{0, 1, +, =, <, \leq\} \), \(\mathbb{R}_{Lin} = (D', \mathcal{L}') \)

 - Linear arithmetic

 - \(\text{Eg.: } 3x - y < 3 \ (\equiv x + x + x < 1 + 1 + 1 + y) \)

- Let us assume \(\Sigma'' = \{0, 1, +, =\} \), \(\mathbb{R}_{LinEq} = (D'', \mathcal{L}'') \)

 - Linear equations

 - \(\text{Eg.: } 3x + y = 5 \land y = 2x \)
Domains (II)

- $\Sigma = \{ <\text{constant and function symbols}>, = \}$
- $D = \{ \text{finite trees} \}$
- D interprets Σ as tree constructors
- Each $f \in \Sigma$ with arity n maps n trees to a tree with root labeled f and whose subtrees are the arguments of the mapping
- Constraints: syntactic tree equality
- $\mathcal{FT} = (D, \mathcal{L})$
 - Constraints over the Herbrand domain
 - Eg.: $g(h(Z), Y) = g(Y, h(a))$
- $LP \equiv CLP(\mathcal{FT})$
Domains (III)

- $\Sigma = \{<\text{constants}>, \lambda, ., ::, =\}$
- $D = \{\text{finite strings of constants}\}$
- D interprets $.$ as string concatenation, $::$ as string length
 - Equations over strings of constants
 - Eg.: $X.A.X = X.A$

- $\Sigma = \{0, 1, \neg, \land, =\}$
- $D = \{\text{true}, \text{false}\}$
- D interprets symbols in Σ as boolean functions
- $BOOL = (D, \mathcal{L})$
 - Boolean constraints
 - Eg.: $\neg(x \land y) = 1$
CLP(\mathcal{L}) Programs

- Recall that:
 - \(\Sigma\) is a set of predicate and function symbols
 - \(\mathcal{L} \subseteq \Sigma\)—formulae are the constraints
- \(\Pi\): set of predicate symbols definable by a program
- Atom: \(p(t_1, t_2, \ldots, t_n)\), where \(t_1, t_2, \ldots, t_n\) are terms and \(p \in \Pi\)
- Primitive constraint: \(p(t_1, t_2, \ldots, t_n)\), where \(t_1, t_2, \ldots, t_n\) are terms and \(p \in \Sigma\) is a predicate symbol
- Every constraint is a (first–order) formula built from primitive constraints
- The class of constraints will vary (generally only a subset of formulas are considered constraints)
- A CLP program is a collection of rules of the form \(a \leftarrow b_1, \ldots, b_n\) where \(a\) is an atom and the \(b_i\)’s are atoms or constraints
- A fact is a rule \(a \leftarrow c\) where \(c\) is a constraint
- A goal (or query) \(G\) is a conjunction of constraints and atoms
Basic Operations on Constraints

- Constraint domains are expected to support some basic operations on constraints
 1. Consistency (or satisfiability) test: $\mathcal{D} \models \exists c$,
 2. Implication or entailment: $\mathcal{D} \models c_0 \rightarrow c_1$,
 3. Projection of a constraint c_0 onto variables \tilde{x} to obtain a constraint c_1 such that $\mathcal{D} \models c_1 \leftrightarrow \exists_{\tilde{x}} c_0$,
 4. Detection of uniqueness of variable value: $\mathcal{D} \models c(x, \tilde{z}) \land c(y, \tilde{w}) \rightarrow x = y$

- Actually, only the first one is really required
- In actual implementations, some of these operations—in particular the test of consistency—may be incomplete
- Examples:
 - $x \neq x < 0$ is inconsistent in \mathbb{R} (because $\neg \exists x \in \mathbb{R} : x \neq x < 0$)
 - $\mathcal{D} \models (x \land y = 1) \rightarrow (x \lor y = 1)$ in BOOL
 - In \mathcal{F}, the projection of $x = f(y) \land y = f(z)$ on $\{x, z\}$ is $x = f(f(z))$
 - In \mathcal{V}, $\mathcal{D} \models x.a.x = x.a \land y.b.y = y.b \rightarrow x = y$

- Prove the last assertion!
Properties of CLP Languages

- \mathcal{T} axiomatizes some of the properties of \mathcal{D}

- For a given Σ, let $(\mathcal{D}, \mathcal{L})$ be a constraint domain with signature Σ, and \mathcal{T} a Σ–theory.

- \mathcal{D} and \mathcal{T} correspond on \mathcal{L} if:
 - \mathcal{D} is a model of \mathcal{T}, and
 - for every constraint $c \in \mathcal{L}$, $\mathcal{D} \models \exists c$ iff $\mathcal{T} \models \exists c$.

- \mathcal{T} is satisfaction complete with respect to \mathcal{L} if for every constraint $c \in \mathcal{L}$, either $\mathcal{T} \models \exists c$ or $\mathcal{T} \models \lnot \exists c$.

- $(\mathcal{D}, \mathcal{L})$ is solution compact if
 \[\forall c \exists \{c_i\}_{i \in I} : \mathcal{D} \models \forall \bar{x} \lnot c(\bar{x}) \iff \bigvee_{i \in I} c_i(\bar{x}) \]
 i.e., any negated constraint in \mathcal{L} can be expressed as a (in)finite disjunction of constraints
Solution Compactness

• Important to lift SLDNF results to CLP(\(X\))
• We have to deal only with user predicates
• E.g.
 - \(x \not\geq y\) in CLP(\(\mathbb{R}\)) is \(x < y\)
 - \(x \neq y\) in CLP(\(\mathbb{R}\)) is \(x < y \lor y < x\)
 - \(\mathbb{R}_{Lin}\) with constraint \(x \neq \pi\) is not s.c.
• How can we express \(x \neq y\) in CLP(\(\mathbb{F}\)?
Two common logical semantics exist.
The first one interprets a rule

\[p(\vec{x}) \leftarrow b_1, \ldots, b_n \]

as the logic formula

\[\forall \vec{x}, \vec{y} \ p(\vec{x}) \lor \neg b_1 \lor \ldots \lor \neg b_n \]
Logical Semantics (II)

- The second one associates a logic formula to each predicate in \(\Pi \)
 - If the set of rules of \(P \) with \(p \) in the head is:

\[
\begin{align*}
p(\tilde{x}) & \leftarrow B_1 \\
p(\tilde{x}) & \leftarrow B_2 \\
& \quad \vdots \\
p(\tilde{x}) & \leftarrow B_n
\end{align*}
\]

then the formula associated with \(p \) is:

\[
\forall \tilde{x} \; p(\tilde{x}) \iff \exists \tilde{y}_1 B_1 \\
& \quad \lor \exists \tilde{y}_2 B_2 \\
& \quad \quad \vdots \\
& \quad \lor \exists \tilde{y}_n B_n
\]

- If \(p \) does not occur in the head of a rule of \(P \), the formula is: \(\forall \tilde{x} \neg p(\tilde{x}) \)

- The collection of all such formulas is the \textit{Clark completion} of \(P \) (denoted by \(P^* \))

- These two semantics differ on the treatment of the treatment of the negation
A valuation is a mapping from variables to D, and the natural extension which maps terms to D and formulas to closed \mathcal{L}^*–formulas.

A D–interpretation of a formula is an interpretation of the formula with the same domain as D and the same interpretation for the symbols in Σ as D.

It can be represented as a subset of B_D where

$$B_D = \{ p(\tilde{d}) \mid p \in \Pi, \tilde{d} \in D^k \}$$

A D–model of a closed formula is a D–interpretation which is a model of the formula.

The usual logical semantics is based on the D–models of P and the models of P^*, \mathcal{T}.

The least D–model of a formula Q is denoted by $lm(Q, D)$.

A solution to a query G is a valuation v such that $v(G) \subseteq lm(P, D)$.
Fixpoint Semantics

- Based on one-step consequence operator T^D_P (also called “immediate consequence operator”).

- Take as semantics $\text{lfp}(T^D_P)$, where:

 $$T^D_P(I) = \{ p(\tilde{d}) \mid p(\tilde{x}) \leftarrow c, b_1, \ldots, b_n \in P, a_i \in I,$$
 $$D \models v(c), v(\tilde{x}) = \tilde{d}, v(b_i) = a_i \}$$

- Theorems:

 1. $T^D_P \uparrow \omega = \text{lfp}(T^D_P)$
 2. $\text{lm}(P, D) = \text{lfp}(T^D_P)$
Top–Down Operational Semantics (I)

- General framework for operational semantics
- Formalized as a transition system on states
- State: a 3–tuple \(\langle A, C, S \rangle \), or \(\text{fail} \), where
 - \(A \) is a multiset of atoms and constraints,
 - \(C \cup S \) multiset of constraints,
 - \(C \), active constraints (awake)
 - \(S \), passive constraints (asleep)
- **Computation** and **Selection** rules depend on \(A \)
- Transition system: parameterized by a predicate \(\text{consistent} \) and a function \(\text{infer} \):
 - \(\text{consistent}(C) \) checks the consistency of a constraint store
 - Usually “\(\text{consistent}(C) \) iff \(\mathcal{D} \models \exists c \)” but sometimes “if \(\mathcal{D} \models \exists c \) then \(\text{consistent}(C) \)”
 - \(\text{infer}(C, S) \) computes a new set of active and passive constraints
Top–Down Operational Semantics (II)

- **Transition** r: computation step; rewriting using user predicates
 \[
 \langle A \cup a, C, S \rangle \rightarrow_r \langle A \cup B, C, S \cup (a = h) \rangle
 \]
 if $h \leftarrow B \in P$, and a and h have the same predicate symbol, or
 \[
 \langle A \cup a, C, S \rangle \rightarrow_r \text{fail}
 \]
 if there is no rule $h \leftarrow B$ of P such that a and h have the same predicate symbol
 ($a = h$ is a set of argument–wise equations) if a is a predicate symbol selected by
 the computation rule

- **Transition** c: selects constraints
 \[
 \langle A \cup c, C, S \rangle \rightarrow_c \langle A, C, S \cup c \rangle
 \]
 if c is a constraint selected by the computation rule

- **Transition** i: infers new constraints
 \[
 \langle A, C, S \rangle \rightarrow_i \langle A, C', S' \rangle \text{ if } (C', S') = \text{infer}(C, S)
 \]
 ◦ In particular, may turn passive constraints into active ones

- **Transition** s: checks satisfiability
 \[
 \langle A, C, S \rangle \rightarrow_s \begin{cases}
 \langle A, C', S' \rangle & \text{if } \text{consistent}(C) \\
 \text{fail} & \text{if } \neg \text{consistent}(C)
 \end{cases}
 \]
Top–Down Operational Semantics (III)

- **Initial state:** \(\langle G, \emptyset, \emptyset \rangle \)
- **Derivation:** \(\langle A_1, C_1, S_1 \rangle \rightarrow \ldots \rightarrow \langle A_i, C_i, S_i \rangle \rightarrow \ldots \)
- **Final state:** \(E \rightarrow E \)
- **Successful derivation:** final state \(\langle \emptyset, C, S \rangle \)
- A derivation **flounders** if finite and the final state is \(\langle A, C, S \rangle \) with \(A \neq \emptyset \)
- A derivation is **failed** if it is finite and the final state is fail
- **Answer:** \(\exists _\tilde{x} C \land S \), where \(\tilde{x} \) are the variables in the initial goal
- A derivation is **fair** if it is failed or, for every \(i \) and every \(a \in A_i \), \(a \) is rewritten in a later transition
- A computation rule is fair if it gives rise only to fair derivations
Top–Down Operational Semantics (IV)

- *Computation tree* for goal G and program P:
 - Nodes labeled with states
 - Edges labeled with \rightarrow_r, \rightarrow_c, \rightarrow_i or \rightarrow_s
 - Root labeled by $\langle G, \emptyset, \emptyset \rangle$
 - All sons of a given node have the same label
 - Only one son with transitions \rightarrow_c, \rightarrow_i or \rightarrow_s
 - A son per program clause with transition \rightarrow_r
Consider the program:
\[p(X + 3, X) \leftarrow X < 3. \]
\[p(X + 3, X) \leftarrow X > 3, p(X, Y). \]
and the goal \(\leftarrow p(5, X) \)

A possible computation tree is:

\[
\begin{align*}
\langle \{\text{p(5, X)}\}, \emptyset, \emptyset \rangle & \quad \text{r} \quad \langle \{\text{p(5, X)}\}, \emptyset, \{5=\text{X+3}\} \rangle \\
\langle \{\text{X<3}\}, \emptyset, \{5=\text{X+3}\} \rangle & \quad \text{i} \quad \langle \{\text{X<3}\}, \{\text{X=2}\}, \emptyset \rangle \\
\langle \{\text{X<3}\}, \{\text{X=2}\}, \emptyset \rangle & \quad \text{c} \quad \langle \emptyset, \{\text{X=2}\}, \{\text{X<3}\} \rangle \\
\langle \emptyset, \{\text{X=2}\}, \{\text{X<3}\} \rangle & \quad \text{i} \quad \langle \emptyset, \{\text{X=2}\}, \emptyset \rangle \\
\langle \emptyset, \{\text{X=2}\}, \emptyset \rangle & \quad \text{dotted rectangle: previous state was final as well} \\
\langle \emptyset, \{\text{X=2}\}, \emptyset \rangle & \quad \text{s} \quad \langle \emptyset, \{\text{X=2}\}, \emptyset \rangle \\
\langle \emptyset, \{\text{X=2}\}, \emptyset \rangle & \quad \text{fail} \quad \langle \emptyset, \{\text{X=2}\}, \emptyset \rangle \\
\end{align*}
\]
Types of CLP(\(\mathcal{X}\)) Systems

- **Quick–checking** CLP(\(\mathcal{X}\)) system: its operational semantics can be described by
 \[\rightarrow_{ris} \equiv \rightarrow_r \rightarrow_i \rightarrow_s \text{ and } \rightarrow_{cis} \equiv \rightarrow_c \rightarrow_i \rightarrow_s \]

- I.e., always selects either an atom or a constraint, infers and checks consistency

- **Progressive** CLP system: for all \(\langle A, C, S \rangle\) with \(A \neq \emptyset\), every derivation from that state either fails or contains a \(\rightarrow_r\) or \(\rightarrow_c\) transition

- **Ideal** CLP system:
 - Quick-checking
 - Progressive
 - \(\text{infer}(C, S) = (C \cup S, \emptyset)\)
 - \(\text{consistent}(C)\) holds iff \(\mathcal{D} \models \exists c\)
Soundness and Completeness Results

• Success set: the set of queries plus constraints which have a successful derivation in the program:
 \[SS(P) = \{ p(\tilde{x}) \leftarrow c \mid \langle p(\tilde{x}), \emptyset, \emptyset \rangle \rightarrow^* \langle \emptyset, c', c'' \rangle, D \models c \leftrightarrow \exists \tilde{x} c' \land c'' \} \]

• Consider a program \(P \) in the CLP language determined by a 4–tuple \((\Sigma, D, L, T)\) and executing on an ideal CLP system. Then:
 1. \([SS(P)]_D = lm(P, D)\), where
 \[[SS(P)]_D = \{ v(a) \mid (a \leftarrow c) \in SS(P), D \models v(c) \} \]
 2. \(SS(P) = lfp(S^P_P) \)
 3. (Soundness) if the goal \(G \) has a successful derivation with answer constraint \(c \), then \(P, T \models c \rightarrow G \)
 4. (Completeness) if \(P, T \models c \rightarrow G \) then there are derivations for the goal \(G \) with answer constraints \(c_1, \ldots, c_n \) such that \(T \models c \rightarrow \bigvee_{i=1}^n c_i \)
 5. Assume \(T \) is satisfaction complete w.r.t. \(L \). Then the goal \(G \) is finitely failed for \(P \) iff \(P^*, T \models \neg G \).
Negation in CLP(\mathcal{X})

- Most LP results can be lifted to CLP(\mathcal{X})
- In particular, negation as failure (à la SLDNF) is still valid using:
 - Satisfiability instead of unification
 - Variable elimination instead of groundness
- Added bonus: if the system is *solution compact*, then negated constraints can be expressed in terms of primitive constraints
- Less chances of a floundered / incorrect computation