Computational Logic

CLP Semantics and Fundamental Results
Constraint Domains

- Semantics parameterized by the constraint domain: $\text{CLP}(\mathcal{X})$, where $\mathcal{X} \equiv (\Sigma, D, L, T)$

- Signature Σ: set of predicate and function symbols, together with their arity

- $L \subseteq \Sigma$–formulae: constraints

- D is the set of actual elements in the domain

- Σ–structure D: gives the meaning of predicate and function symbols (and hence, constraints).

- T a first–order theory (axiomatizes some properties of D)

- (D, L) is a constraint domain

- Assumptions:
 - L built upon a first–order language
 - $\in \in \Sigma$ is identity in D
 - There are identically false and identically true constraints in L
 - L is closed w.r.t. renaming, conjunction and existential quantification
Domains (I)

- $\Sigma = \{0, 1, +, *, =, <, \leq\}$, $D = \mathbb{R}$, D interprets Σ as usual, $\mathcal{R} = (D, \mathcal{L})$
 - Arithmetic over the reals
 - Eg.: $x^2 + 2xy < \frac{y}{x} \land x > 0$ ($\equiv xxx + xxy + xxy < y \land 0 < x$)

- Question: is 0 needed? How can it be represented?

- Let us assume $\Sigma' = \{0, 1, +, =, <, \leq\}$, $\mathcal{R}_{Lin} = (D', \mathcal{L}')$
 - Linear arithmetic
 - Eg.: $3x - y < 3$ ($\equiv x + x + x < 1 + 1 + 1 + y$)

- Let us assume $\Sigma'' = \{0, 1, +, =\}$, $\mathcal{R}_{LinEq} = (D'', \mathcal{L}'')$
 - Linear equations
 - Eg.: $3x + y = 5 \land y = 2x$
Domains (II)

- $\Sigma = \{ \langle \text{constant and function symbols} \rangle, = \}$
- $D = \{ \text{finite trees} \}$
- D interprets Σ as tree constructors
- Each $f \in \Sigma$ with arity n maps n trees to a tree with root labeled f and whose subtrees are the arguments of the mapping
- Constraints: syntactic tree equality
- $\mathcal{FT} = (D, \mathcal{L})$
 - Constraints over the Herbrand domain
 - Eg.: $g(h(Z), Y) = g(Y, h(a))$
- $LP \equiv \text{CLP}(\mathcal{FT})$
Domains (III)

- \(\Sigma = \{ <\text{constants}>, \lambda, ., ::, = \} \)
- \(D = \{ \text{finite strings of constants} \} \)
- \(D \) interprets . as string concatenation, :: as string length
 - Equations over strings of constants
 - Eg.: \(X.A.X = X.A \)

- \(\Sigma = \{ 0, 1, \neg, \land, = \} \)
- \(D = \{ \text{true, false} \} \)
- \(D \) interprets symbols in \(\Sigma \) as boolean functions
- \(BOOL = (D, \mathcal{L}) \)
 - Boolean constraints
 - Eg.: \(\neg(x \land y) = 1 \)
CLP(ח’) Programs

- Recall that:
 - Σ is a set of predicate and function symbols
 - $\mathcal{L} \subseteq \Sigma$—formulae are the constraints

- Π: set of predicate symbols definable by a program

- Atom: $p(t_1, t_2, \ldots, t_n)$, where t_1, t_2, \ldots, t_n are terms and $p \in \Pi$

- Primitive constraint: $p(t_1, t_2, \ldots, t_n)$, where t_1, t_2, \ldots, t_n are terms and $p \in \Sigma$ is a predicate symbol

- Every constraint is a (first–order) formula built from primitive constraints

- The class of constraints will vary (generally only a subset of formulas are considered constraints)

- A CLP program is a collection of rules of the form $a \leftarrow b_1, \ldots, b_n$ where a is an atom and the b_i’s are atoms or constraints

- A fact is a rule $a \leftarrow c$ where c is a constraint

- A goal (or query) G is a conjunction of constraints and atoms
Basic Operations on Constraints

• Constraint domains are expected to support some basic operations on constraints
 1. Consistency (or satisfiability) test: \(D \models \exists c, \)
 2. Implication or entailment: \(D \models c_0 \rightarrow c_1, \)
 3. Projection of a constraint \(c_0 \) onto variables \(\bar{x} \) to obtain a constraint \(c_1 \) such that
 \(D \models c_1 \iff \exists_{\bar{x}} c_0, \)
 4. Detection of uniqueness of variable value: \(D \models c(x, \bar{z}) \land c(y, \bar{w}) \rightarrow x = y \)

• Actually, only the first one is really required

• In actual implementations, some of these operations—in particular the test of consistency—may be incomplete

• Examples:
 ♦ \(x \ast x < 0 \) is inconsistent in \(\mathbb{R} \) (because \(\neg \exists x \in \mathbb{R} : x \ast x < 0 \))
 ♦ \(D \models (x \land y = 1) \rightarrow (x \lor y = 1) \) in \(\text{BOOL} \)
 ♦ In \(\mathcal{F} \mathcal{T} \), the projection of \(x = f(y) \land y = f(z) \) on \(\{x, z\} \) is \(x = f(f(z)) \)
 ♦ In \(\mathcal{W} \mathcal{E} \), \(D \models x.a.x = x.a \land y.b.y = y.b \rightarrow x = y \)

• Prove the last assertion!
Properties of CLP Languages

- T axiomatizes some of the properties of D
- For a given Σ, let (D, L) be a constraint domain with signature Σ, and T a Σ–theory.
- D and T correspond on L if:
 - D is a model of T, and
 - for every constraint $c \in L$, $D \models \exists c$ iff $T \models \exists c$.
- T is *satisfaction complete* with respect to L if for every constraint $c \in L$, either $T \models \exists c$ or $T \models \neg \exists c$.
- (D, L) is *solution compact* if
 \[
 \forall c \exists \{c_i\}_{i \in I} : D \models \forall \vec{x} \neg c(\vec{x}) \leftrightarrow \bigvee_{i \in I} c_i(\vec{x})
 \]
 i.e., any negated constraint in L can be expressed as a (in)finite disjunction of constraints.
Solution Compactness

- Important to lift SLDNF results to CLP(\(\mathcal{X}\))
- We have to deal only with user predicates
- E.g.
 - \(x \not\geq y\) in CLP(\(\mathcal{R}\)) is \(x < y\)
 - \(x \neq y\) in CLP(\(\mathcal{R}\)) is \(x < y \lor y < x\)
 - \(\mathcal{R}_{Lin}\) with constraint \(x \neq \pi\) is not s.c.
- How can we express \(x \neq y\) in CLP(\(\mathcal{F}\))?
Logical Semantics (I)

- Two common logical semantics exist.
- The first one interprets a rule

\[p(\tilde{x}) \leftarrow b_1, \ldots, b_n \]

as the logic formula

\[\forall \tilde{x}, \tilde{y} \; p(\tilde{x}) \lor \neg b_1 \lor \ldots \lor \neg b_n \]
Logical Semantics (II)

- The second one associates a logic formula to each predicate in Π
 - If the set of rules of P with p in the head is:
 \[
 p(\tilde{x}) \leftarrow B_1 \\
 p(\tilde{x}) \leftarrow B_2 \\
 \vdots \\
 p(\tilde{x}) \leftarrow B_n
 \]
 then the formula associated with p is:
 \[
 \forall \tilde{x} \ p(\tilde{x}) \iff \exists \tilde{y}_1 B_1 \\
 \lor \exists \tilde{y}_2 B_2 \\
 \vdots \\
 \lor \exists \tilde{y}_n B_n
 \]
 - If p does not occur in the head of a rule of P, the formula is: $\forall \tilde{x} \neg p(\tilde{x})$
 - The collection of all such formulas is the Clark completion of P (denoted by P^*)

- These two semantics differ on the treatment of the treatment of the negation
A *valuation* is a mapping from variables to \(D \), and the natural extension which maps terms to \(D \) and formulas to closed \(\mathcal{L}^* \)--formulas.

A \(\mathcal{D} \)--interpretation of a formula is an interpretation of the formula with the same domain as \(\mathcal{D} \) and the same interpretation for the symbols in \(\Sigma \) as \(\mathcal{D} \).

It can be represented as a subset of \(B_D \) where

\[
B_D = \{ p(\tilde{d}) \mid p \in \Pi, \tilde{d} \in D^k \}
\]

A \(\mathcal{D} \)--model of a closed formula is a \(\mathcal{D} \)--interpretation which is a model of the formula.

The usual logical semantics is based on the \(\mathcal{D} \)--models of \(P \) and the models of \(P^*, \mathcal{T} \).

The least \(\mathcal{D} \)--model of a formula \(Q \) is denoted by \(lm(Q, \mathcal{D}) \).

A *solution* to a query \(G \) is a valuation \(v \) such that \(v(G) \subseteq lm(P, \mathcal{D}) \).
Fixedpoint Semantics

- Based on one-step consequence operator T_D^P (also called “immediate consequence operator”).

- Take as semantics $lfp(T_D^P)$, where:

 $$T_D^P(I) = \{p(\tilde{d}) \mid p(\tilde{x}) \leftarrow c, b_1, \ldots, b_n \in P, a_i \in I, \quad \mathcal{D} \models v(c), v(\tilde{x}) = \tilde{d}, v(b_i) = a_i\}$$

- Theorems:

 1. $T_D^P \uparrow \omega = lfp(T_D^P)$
 2. $lm(P, \mathcal{D}) = lfp(T_D^P)$
Top–Down Operational Semantics (I)

- General framework for operational semantics
- Formalized as a transition system on states
- State: a 3–tuple \(\langle A, C, S \rangle \), or fail, where
 - \(A \) is a multiset of atoms and constraints,
 - \(C \cup S \) multiset of constraints,
 - \(C \), active constraints (awake)
 - \(S \), passive constraints (asleep)
- Computation and Selection rules depend on \(A \)
- Transition system: parameterized by a predicate consistent and a function infer:
 - \(\text{consistent}(C) \) checks the consistency of a constraint store
 - Usually “\(\text{consistent}(C) \) iff \(\mathcal{D} \models \exists c \)” , but sometimes “if \(\mathcal{D} \models \exists c \) then \(\text{consistent}(C) \)”
 - \(\text{infer}(C, S) \) computes a new set of active and passive constraints
Top–Down Operational Semantics (II)

- **Transition \(r \):** computation step; rewriting using user predicates
 \[
 \langle A \cup a, C, S \rangle \rightarrow_r \langle A \cup B, C, S \cup (a = h) \rangle
 \]
 if \(h \leftarrow B \in P \), and \(a \) and \(h \) have the same predicate symbol, or
 \[
 \langle A \cup a, C, S \rangle \rightarrow_r \text{fail}
 \]
 if there is no rule \(h \leftarrow B \) of \(P \) such that \(a \) and \(h \) have the same predicate symbol
 \((a = h) \) is a set of argument–wise equations\) if \(a \) is a predicate symbol selected by
 the computation rule

- **Transition \(c \):** selects constraints
 \[
 \langle A \cup c, C, S \rangle \rightarrow_c \langle A, C, S \cup c \rangle
 \]
 if \(c \) is a constraint selected by the computation rule

- **Transition \(i \):** infers new constraints
 \[
 \langle A, C, S \rangle \rightarrow_i \langle A, C', S' \rangle \text{ if } (C', S') = \text{infer}(C, S)
 \]
 In particular, may turn passive constraints into active ones

- **Transition \(s \):** checks satisfiability
 \[
 \langle A, C, S \rangle \rightarrow_s \begin{cases}
 \langle A, C, S \rangle & \text{if } \text{consistent}(C) \\
 \text{fail} & \text{if } \neg \text{consistent}(C)
 \end{cases}
 \]
Top–Down Operational Semantics (III)

- Initial state: $\langle G, \emptyset, \emptyset \rangle$
- Derivation: $\langle A_1, C_1, S_1 \rangle \rightarrow \ldots \rightarrow \langle A_i, C_i, S_i \rangle \rightarrow \ldots$
- Final state: $E \rightarrow E$
- **Successful derivation**: final state $\langle \emptyset, C, S \rangle$
- A derivation **flounders** if finite and the final state is $\langle A, C, S \rangle$ with $A \neq \emptyset$
- A derivation is **failed** if it is finite and the final state is fail
- Answer: $\exists \tilde{x} C \land S$, where \tilde{x} are the variables in the initial goal
- A derivation is **fair** if it is failed or, for every i and every $a \in A_i$, a is rewritten in a later transition
- A computation rule is fair if it gives rise only to fair derivations
Top–Down Operational Semantics (IV)

- *Computation tree* for goal G and program P:
 - Nodes labeled with states
 - Edges labeled with \rightarrow_r, \rightarrow_c, \rightarrow_i or \rightarrow_s
 - Root labeled by $\langle G, \emptyset, \emptyset \rangle$
 - All sons of a given node have the same label
 - Only one son with transitions \rightarrow_c, \rightarrow_i or \rightarrow_s
 - A son per program clause with transition \rightarrow_r
Computation Tree: Example

- Consider the program
 \[p(X + 3, X) \leftarrow X < 3. \]
 \[p(X + 3, X) \leftarrow X > 3, p(X, Y). \]
 and the goal \(\leftarrow p(5, X) \)

- A possible computation tree is:

- Dotted rectangle: previous state was final as well
Types of CLP(\mathcal{X}) Systems

- Quick–checking CLP(\mathcal{X}) system: its operational semantics can be described by $\rightarrow_{ris} \equiv \rightarrow_r \rightarrow_i \rightarrow_s$ and $\rightarrow_{cis} \equiv \rightarrow_c \rightarrow_i \rightarrow_s$

- I.e., always selects either an atom or a constraint, infers and checks consistency

- Progressive CLP system: for all $\langle A, C, S \rangle$ with $A \neq \emptyset$, every derivation from that state either fails or contains a \rightarrow_r or \rightarrow_c transition

- Ideal CLP system:

 - Quick-checking
 - Progressive
 - $infer(C, S) = (C \cup S, \emptyset)$
 - $consistent(C)$ holds iff $\mathcal{D} \models \exists c$
Soundness and Completeness Results

- Success set: the set of queries plus constraints which have a successful derivation in the program:

 \[SS(P) = \{ p(\tilde{x}) \leftarrow c \mid \langle p(\tilde{x}), \emptyset, \emptyset \rangle \rightarrow^* \langle \emptyset, c', c'' \rangle, \mathcal{D} \models c \leftrightarrow \exists_{\tilde{x}} c' \land c'' \} \]

- Consider a program \(P \) in the CLP language determined by a 4–tuple \((\Sigma, \mathcal{D}, \mathcal{L}, \mathcal{T}) \) and executing on an ideal CLP system. Then:

 1. \([SS(P)]_D = lm(P, D) \), where

 \[[SS(P)]_D = \{ v(a) \mid (a \leftarrow c) \in SS(P), \mathcal{D} \models v(c) \} \]

 2. \(SS(P) = lfp(S^P_P) \)

 3. (Soundness) if the goal \(G \) has a successful derivation with answer constraint \(c \), then \(P, \mathcal{T} \models c \rightarrow G \)

 4. (Completeness) if \(P, \mathcal{T} \models c \rightarrow G \) then there are derivations for the goal \(G \) with answer constraints \(c_1, \ldots, c_n \) such that \(\mathcal{T} \models c \rightarrow \bigvee_{i=1}^n c_i \)

 5. Assume \(\mathcal{T} \) is satisfaction complete w.r.t. \(\mathcal{L} \). Then the goal \(G \) is finitely failed for \(P \) iff \(P^*, \mathcal{T} \models \neg G \).
Negation in CLP(\(\mathcal{A}\))

- Most LP results can be lifted to CLP(\(\mathcal{A}\))
- In particular, negation as failure (à la SLDNF) is still valid using:
 - Satisfiability instead of unification
 - Variable elimination instead of groundness
- Added bonus: if the system is *solution compact*, then negated constraints can be expressed in terms of primitive constraints
- Less chances of a floundered / incorrect computation