Computational Logic

CLP Semantics and Fundamental Results
Constraint Domains

- Semantics parameterized by the constraint domain:
 $\text{CLP}(\mathcal{X})$, where $\mathcal{X} \equiv (\Sigma, D, \mathcal{L}, T)$

- Signature Σ: set of predicate and function symbols, together with their arity

- $\mathcal{L} \subseteq \Sigma$—formulae: constraints

- D is the set of actual elements in the domain

- Σ—structure D: gives the meaning of predicate and function symbols (and hence, constraints).

- T a first–order theory (axiomatizes some properties of D)

- (D, \mathcal{L}) is a constraint domain

- Assumptions:
 - \mathcal{L} built upon a first–order language
 - $= \in \Sigma$ is identity in D
 - There are identically false and identically true constraints in \mathcal{L}
 - \mathcal{L} is closed w.r.t. renaming, conjunction and existential quantification
Domains (I)

- $\Sigma = \{0, 1, +, *, =, <, \leq\}$, $D = \mathbb{R}$, D interprets Σ as usual, $\mathbb{R} = (D, L)$
 - ◇ Arithmetic over the reals
 - ◇ Eg.: $x^2 + 2xy < \frac{y}{x} \land x > 0$ ($\equiv xxx + xxy + xxy < y \land 0 < x$)

- Question: is 0 needed? How can it be represented?

- Let us assume $\Sigma' = \{0, 1, +, =, <, \leq\}$, $\mathbb{R}_{Lin} = (D', L')$
 - ◇ Linear arithmetic
 - ◇ Eg.: $3x - y < 3$ ($\equiv x + x + x < 1 + 1 + 1 + y$)

- Let us assume $\Sigma'' = \{0, 1, +, =\}$, $\mathbb{R}_{LinEq} = (D'', L'')$
 - ◇ Linear equations
 - ◇ Eg.: $3x + y = 5 \land y = 2x$
Domains (II)

- $\Sigma = \{<\text{constant and function symbols}>, =\}$
- $D = \{\text{finite trees}\}$
- D interprets Σ as tree constructors
- Each $f \in \Sigma$ with arity n maps n trees to a tree with root labeled f and whose subtrees are the arguments of the mapping
- Constraints: syntactic tree equality
- $\mathcal{FT} = (D, L)$
 - Constraints over the Herbrand domain
 - Eg.: $g(h(Z), Y) = g(Y, h(a))$
- $LP \equiv \text{CLP}(\mathcal{FT})$
Domains (III)

- $\Sigma = \{ \text{<constants>}, \lambda, :, ::, = \}$
- $D = \{ \text{finite strings of constants} \}$
- D interprets . as string concatenation, :: as string length
 - Equations over strings of constants
 - Eg.: $X.A.X = X.A$

- $\Sigma = \{ 0, 1, \neg, \wedge, = \}$
- $D = \{ \text{true, false} \}$
- D interprets symbols in Σ as boolean functions
- $BOOL = (D, \mathcal{L})$
 - Boolean constraints
 - Eg.: $\neg(x \wedge y) = 1$
CLP(\mathcal{X}) Programs

- Recall that:
 - Σ is a set of predicate and function symbols
 - $\mathcal{L} \subseteq \Sigma$—formulae are the constraints
- Π: set of predicate symbols definable by a program
- Atom: $p(t_1, t_2, \ldots, t_n)$, where t_1, t_2, \ldots, t_n are terms and $p \in \Pi$
- Primitive constraint: $p(t_1, t_2, \ldots, t_n)$, where t_1, t_2, \ldots, t_n are terms and $p \in \Sigma$ is a predicate symbol
- Every constraint is a (first–order) formula built from primitive constraints
- The class of constraints will vary (generally only a subset of formulas are considered constraints)
- A CLP program is a collection of rules of the form $a \leftarrow b_1, \ldots, b_n$ where a is an atom and the b_i’s are atoms or constraints
- A fact is a rule $a \leftarrow c$ where c is a constraint
- A goal (or query) G is a conjunction of constraints and atoms
Basic Operations on Constraints

- Constraint domains are expected to support some basic operations on constraints
 1. Consistency (or satisfiability) test: $\mathcal{D} \models \exists c$,
 2. Implication or entailment: $\mathcal{D} \models c_0 \rightarrow c_1$,
 3. Projection of a constraint c_0 onto variables \tilde{x} to obtain a constraint c_1 such that $\mathcal{D} \models c_1 \leftrightarrow \exists_{\tilde{x}} c_0$,
 4. Detection of uniqueness of variable value: $\mathcal{D} \models c(x, \tilde{z}) \land c(y, \tilde{w}) \rightarrow x = y$

- Actually, only the first one is really required

- In actual implementations, some of these operations—in particular the test of consistency—may be incomplete

- Examples:
 - $x \ast x < 0$ is inconsistent in \mathbb{R} (because $\neg \exists x \in \mathbb{R} : x \ast x < 0$)
 - $\mathcal{D} \models (x \land y = 1) \rightarrow (x \lor y = 1)$ in $BOOL$
 - In $\mathcal{F} \mathcal{T}$, the projection of $x = f(y) \land y = f(z)$ on $\{x, z\}$ is $x = f(f(z))$
 - In $\mathcal{W} \mathcal{E}$, $\mathcal{D} \models x.a.x = x.a \land y.b.y = y.b \rightarrow x = y$

- Prove the last assertion!
Properties of CLP Languages

- \mathcal{T} axiomatizes some of the properties of \mathcal{D}
- For a given Σ, let $(\mathcal{D}, \mathcal{L})$ be a constraint domain with signature Σ, and \mathcal{T} a Σ–theory.
- \mathcal{D} and \mathcal{T} correspond on \mathcal{L} if:
 - \mathcal{D} is a model of \mathcal{T}, and
 - for every constraint $c \in \mathcal{L}$, $\mathcal{D} \models \exists c$ iff $\mathcal{T} \models \exists c$.
- \mathcal{T} is satisfaction complete with respect to \mathcal{L} if for every constraint $c \in \mathcal{L}$, either $\mathcal{T} \models \exists c$ or $\mathcal{T} \models \neg \exists c$.
- $(\mathcal{D}, \mathcal{L})$ is solution compact if
 $$\forall c \exists \{c_i\}_{i \in I} : \mathcal{D} \models \forall \bar{x} \neg c(\bar{x}) \iff \bigvee_{i \in I} c_i(\bar{x})$$
 i.e., any negated constraint in \mathcal{L} can be expressed as a (in)finite disjunction of constraints.
Solution Compactness

- Important to lift SLDNF results to CLP(\mathcal{X})
- We have to deal only with user predicates
- E.g.
 - $x \not\geq y$ in CLP(\mathbb{R}) is $x < y$
 - $x \neq y$ in CLP(\mathbb{R}) is $x < y \lor y < x$
 - \mathbb{R}_{Lin} with constraint $x \neq \pi$ is not s.c.
- How can we express $x \neq y$ in CLP(\mathcal{FT})?
Two common logical semantics exist.

The first one interprets a rule

\[p(\tilde{x}) \leftarrow b_1, \ldots, b_n \]

as the logic formula

\[\forall \tilde{x}, \tilde{y} \ p(\tilde{x}) \lor \neg b_1 \lor \ldots \lor \neg b_n \]
Logical Semantics (II)

- The second one associates a logic formula to each predicate in Π:
 - If the set of rules of P with p in the head is:

 \[
 p(\tilde{x}) \leftarrow B_1 \\
 p(\tilde{x}) \leftarrow B_2 \\
 \vdots \\
 p(\tilde{x}) \leftarrow B_n
 \]

 then the formula associated with p is:
 \[
 \forall \tilde{x} \ p(\tilde{x}) \leftrightarrow \exists \tilde{y}_1 B_1 \\
 \lor \exists \tilde{y}_2 B_2 \\
 \vdots \\
 \lor \exists \tilde{y}_n B_n
 \]
 - If p does not occur in the head of a rule of P, the formula is: $\forall \tilde{x} \neg p(\tilde{x})$
 - The collection of all such formulas is the *Clark completion* of P (denoted by P^*)

- These two semantics differ on the treatment of the negation
• A *valuation* is a mapping from variables to D, and the natural extension which maps terms to D and formulas to closed \mathcal{L}^*–formulas.

• A \mathcal{D}–interpretation of a formula is an interpretation of the formula with the same domain as \mathcal{D} and the same interpretation for the symbols in Σ as \mathcal{D}.

• It can be represented as a subset of $B_\mathcal{D}$ where

$$B_\mathcal{D} = \{ p(\tilde{d}) \mid p \in \Pi, \tilde{d} \in D^k \}$$

• A \mathcal{D}–model of a closed formula is a \mathcal{D}–interpretation which is a model of the formula.

• The usual logical semantics is based on the \mathcal{D}–models of P and the models of P^*, \mathcal{T}.

• The least \mathcal{D}–model of a formula Q is denoted by $lm(Q, \mathcal{D})$.

• A *solution* to a query G is a valuation v such that $v(G) \subseteq lm(P, \mathcal{D})$.
Fixpoint Semantics

- Based on one-step consequence operator T_P^D (also called “immediate consequence operator”).

- Take as semantics $lfp(T_P^D)$, where:

 $$T_P^D(I) = \{ p(\tilde{d}) \mid p(\tilde{x}) \leftarrow c, b_1, \ldots, b_n \in P, a_i \in I, D \models v(c), v(\tilde{x}) = \tilde{d}, v(b_i) = a_i \}$$

- Theorems:

 1. $T_P^D \uparrow \omega = lfp(T_P^D)$
 2. $lm(P, D) = lfp(T_P^D)$
Top–Down Operational Semantics (I)

- General framework for operational semantics
- Formulated as a transition system on states
- State: a 3-tuple \(\langle A, C, S \rangle \), or \(\text{fail} \), where
 - \(A \) is a multiset of atoms and constraints,
 - \(C \cup S \) multiset of constraints,
 - \(C \), active constraints (awake)
 - \(S \), passive constraints (asleep)
- Computation and Selection rules depend on \(A \)
- Transition system: parameterized by a predicate \(\text{consistent} \) and a function \(\text{infer} \):
 - \(\text{consistent}(C) \) checks the consistency of a constraint store
 - Usually “\(\text{consistent}(C) \) iff \(\mathcal{D} \models \exists c \)”, but sometimes “if \(\mathcal{D} \models \exists c \) then \(\text{consistent}(C) \)”
 - \(\text{infer}(C, S) \) computes a new set of active and passive constraints
Top–Down Operational Semantics (II)

- Transition r: computation step; rewriting using user predicates
 \[\langle A \cup a, C, S \rangle \rightarrow_r \langle A \cup B, C, S \cup (a = h) \rangle \]
 if $h \leftarrow B \in P$, and a and h have the same predicate symbol, or
 \[\langle A \cup a, C, S \rangle \rightarrow_r \text{fail} \]
 if there is no rule $h \leftarrow B$ of P such that a and h have the same predicate symbol
 ($a = h$ is a set of argument–wise equations) if a is a predicate symbol selected by the computation rule

- Transition c: selects constraints
 \[\langle A \cup c, C, S \rangle \rightarrow_c \langle A, C, S \cup c \rangle \]
 if c is a constraint selected by the computation rule

- Transition i: infers new constraints
 \[\langle A, C, S \rangle \rightarrow_i \langle A, C', S' \rangle \text{ if } (C', S') = \text{infer}(C, S) \]
 ◊ In particular, may turn passive constraints into active ones

- Transition s: checks satisfiability
 \[\langle A, C, S \rangle \rightarrow_s \begin{cases}
 \langle A, C, S' \rangle & \text{if } \text{consistent}(C) \\
 \text{fail} & \text{if } \neg\text{consistent}(C)
 \end{cases} \]
Top–Down Operational Semantics (III)

- Initial state: \(\langle G, \emptyset, \emptyset \rangle \)
- Derivation: \(\langle A_1, C_1, S_1 \rangle \rightarrow \ldots \rightarrow \langle A_i, C_i, S_i \rangle \rightarrow \ldots \)
- Final state: \(E \rightarrow E \)
- **Successful derivation**: final state \(\langle \emptyset, C, S \rangle \)
- A derivation *flounders* if finite and the final state is \(\langle A, C, S \rangle \) with \(A \neq \emptyset \)
- A derivation is *failed* if it is finite and the final state is fail
- Answer: \(\exists_{\tilde{x}} C \land S \), where \(\tilde{x} \) are the variables in the initial goal
- A derivation is *fair* if it is failed or, for every \(i \) and every \(a \in A_i \), \(a \) is rewritten in a later transition
- A computation rule is fair if it gives rise only to fair derivations
C omputation tree for goal \(G \) and program \(P \):

- Nodes labeled with states
- Edges labeled with \(\rightarrow_r \), \(\rightarrow_c \), \(\rightarrow_i \) or \(\rightarrow_s \)
- Root labeled by \(\langle G, \emptyset, \emptyset \rangle \)
- All sons of a given node have the same label
- Only one son with transitions \(\rightarrow_c \), \(\rightarrow_i \) or \(\rightarrow_s \)
- A son per program clause with transition \(\rightarrow_r \)
Computation Tree: Example

- Consider the program
 \[p(X + 3, X) \leftarrow X < 3. \]
 \[p(X + 3, X) \leftarrow X > 3, p(X, Y). \]
 and the goal \(\leftarrow p(5, X) \)
- A possible computation tree is:

- Dotted rectangle: previous state was final as well
Types of CLP(\(\mathcal{X}\)) Systems

- **Quick-checking** CLP(\(\mathcal{X}\)) system: its operational semantics can be described by
 \[\rightarrow_{ris} \equiv \rightarrow_r \rightarrow_{i} \rightarrow_{s} \]
 and
 \[\rightarrow_{cis} \equiv \rightarrow_{c} \rightarrow_{i} \rightarrow_{s} \]

- I.e., always selects either an atom or a constraint, infers and checks consistency

- **Progressive** CLP system: for all \(\langle A, C, S \rangle\) with \(A \neq \emptyset\), every derivation from that state either fails or contains a \(\rightarrow_r\) or \(\rightarrow_c\) transition

- **Ideal** CLP system:
 - Quick-checking
 - Progressive
 - \(\text{infer}(C, S) = (C \cup S, \emptyset)\)
 - \(\text{consistent}(C)\) holds iff \(D \models \exists c\)
Soundness and Completeness Results

- Success set: the set of queries plus constraints which have a successful derivation in the program:
 \[SS(P) = \{ p(\bar{x}) \leftarrow c \mid \langle p(\bar{x}), \emptyset, \emptyset \rangle \rightarrow^* \langle \emptyset, c', c'' \rangle, D \models c \leftrightarrow \exists \bar{x} c' \land c'' \} \]

- Consider a program \(P \) in the CLP language determined by a 4–tuple \((\Sigma, D, L, T) \) and executing on an \textbf{ideal} CLP system. Then:

 1. \[[SS(P)]_D = lm(P, D), \text{ where} \]
 \[[SS(P)]_D = \{ v(a) \mid (a \leftarrow c) \in SS(P), D \models v(c) \} \]
 2. \[SS(P) = lfp(S^P_P) \]
 3. (Soundness) if the goal \(G \) has a successful derivation with answer constraint \(c \), then \(P, T \models c \rightarrow G \)
 4. (Completeness) if \(P, T \models c \rightarrow G \) then there are derivations for the goal \(G \) with answer constraints \(c_1, \ldots, c_n \) such that \(T \models c \rightarrow \bigvee_{i=1}^n c_i \)
 5. Assume \(T \) is satisfaction complete w.r.t. \(L \). Then the goal \(G \) is finitely failed for \(P \) iff \(P^*, T \models \neg G \).
Negation in CLP(\(\mathcal{X}\))

- Most LP results can be lifted to CLP(\(\mathcal{X}\))
- In particular, negation as failure (à la SLDNF) is still valid using:
 - Satisfiability instead of unification
 - Variable elimination instead of groundness
- Added bonus: if the system is \textit{solution compact}, then negated constraints can be expressed in terms of primitive constraints
- Less chances of a floundered / incorrect computation