Computational Logic
CLP Semantics and Fundamental Results
Constraint Domains

- Semantics parameterized by the constraint domain: \(\text{CLP}(\mathcal{X}) \), where \(\mathcal{X} \equiv (\Sigma, \mathcal{D}, \mathcal{L}, \mathcal{T}) \)
- Signature \(\Sigma \): set of predicate and function symbols, together with their arity
- \(\mathcal{L} \subseteq \Sigma \)-formulae: constraints
- \(\mathcal{D} \) is the set of actual elements in the domain
- \(\Sigma \)-structure \(\mathcal{D} \): gives the meaning of predicate and function symbols (and hence, constraints).
- \(\mathcal{T} \) a first–order theory (axiomatizes some properties of \(\mathcal{D} \))
- \((\mathcal{D}, \mathcal{L}) \) is a constraint domain
- Assumptions:
 - \(\mathcal{L} \) built upon a first–order language
 - \(= \in \Sigma \) is identity in \(\mathcal{D} \)
 - There are identically false and identically true constraints in \(\mathcal{L} \)
 - \(\mathcal{L} \) is closed w.r.t. renaming, conjunction and existential quantification
Domains (I)

- $\Sigma = \{0, 1, +, *, =, <, \leq\}$, $D = \mathbb{R}$, \mathcal{D} interprets Σ as usual, $\mathcal{R} = (\mathcal{D}, \mathcal{L})$
 - Arithmetic over the reals
 - Eg.: $x^2 + 2xy < \frac{y}{x} \land x > 0 \ (\equiv xxx + xxy + xxy < y \land 0 < x)$
 - Question: is 0 needed? How can it be represented?

- Let us assume $\Sigma' = \{0, 1, +, =, <, \leq\}$, $\mathcal{R}_{Lin} = (\mathcal{D}', \mathcal{L}')$
 - Linear arithmetic
 - Eg.: $3x - y < 3 \ (\equiv x + x + x < 1 + 1 + 1 + y)$

- Let us assume $\Sigma'' = \{0, 1, +, =\}$, $\mathcal{R}_{LinEq} = (\mathcal{D}'', \mathcal{L}'')$
 - Linear equations
 - Eg.: $3x + y = 5 \land y = 2x$
Domains (II)

- $\Sigma = \{ \text{constant and function symbols}, = \}$
- $D = \{ \text{finite trees} \}$
- D interprets Σ as tree constructors
- Each $f \in \Sigma$ with arity n maps n trees to a tree with root labeled f and whose subtrees are the arguments of the mapping
- Constraints: syntactic tree equality
- $\mathcal{FT} = (D, L)$
 - Constraints over the Herbrand domain
 - Eg.: $g(h(Z), Y) = g(Y, h(a))$
- $LP \equiv CLP(\mathcal{FT})$
Domains (III)

- \(\Sigma = \{ \text{<constants>, } \lambda, ., ::, = \} \)
- \(D = \{ \text{finite strings of constants} \} \)
- \(D \) interprets \(. \) as string concatenation, \(:: \) as string length
 - Equations over strings of constants
 - Eg.: \(X.A.X = X.A \)

- \(\Sigma = \{ 0, 1, \neg, \land, = \} \)
- \(D = \{ \text{true, false} \} \)
- \(D \) interprets symbols in \(\Sigma \) as boolean functions
- \(BOOL = (D, \mathcal{L}) \)
 - Boolean constraints
 - Eg.: \(\neg(x \land y) = 1 \)
CLP(\mathcal{X}) Programs

- Recall that:
 - \(\Sigma \) is a set of predicate and function symbols
 - \(\mathcal{L} \subseteq \Sigma \)–formulae are the constraints
- \(\Pi \): set of predicate symbols definable by a program
- Atom: \(p(t_1, t_2, \ldots, t_n) \), where \(t_1, t_2, \ldots, t_n \) are terms and \(p \in \Pi \)
- Primitive constraint: \(p(t_1, t_2, \ldots, t_n) \), where \(t_1, t_2, \ldots, t_n \) are terms and \(p \in \Sigma \) is a predicate symbol
- Every constraint is a (first–order) formula built from primitive constraints
- The class of constraints will vary (generally only a subset of formulas are considered constraints)
- A CLP program is a collection of rules of the form \(a \leftarrow b_1, \ldots, b_n \) where \(a \) is an atom and the \(b_i \)'s are atoms or constraints
- A fact is a rule \(a \leftarrow c \) where \(c \) is a constraint
- A goal (or query) \(G \) is a conjunction of constraints and atoms
Basic Operations on Constraints

- Constraint domains are expected to support some basic operations on constraints
 1. Consistency (or satisfiability) test: \(D \models \exists c, \)
 2. Implication or entailment: \(D \models c_0 \rightarrow c_1, \)
 3. Projection of a constraint \(c_0 \) onto variables \(\tilde{x} \) to obtain a constraint \(c_1 \) such that \(D \models c_1 \iff \exists_{\tilde{x}} c_0, \)
 4. Detection of uniqueness of variable value: \(D \models c(x, \tilde{z}) \land c(y, \tilde{w}) \rightarrow x = y \)

- Actually, only the first one is really required
- In actual implementations, some of these operations—in particular the test of consistency—may be incomplete
- Examples:
 - \(x \times x < 0 \) is inconsistent in \(\mathbb{R} \) (because \(\neg \exists x \in \mathbb{R} : x \times x < 0 \))
 - \(D \models (x \land y = 1) \rightarrow (x \lor y = 1) \) in \(BOOL \)
 - In \(FT \), the projection of \(x = f(y) \land y = f(z) \) on \(\{x, z\} \) is \(x = f(f(z)) \)
 - In \(WE \), \(D \models x.a.x = x.a \land y.b.y = y.b \rightarrow x = y \)

- Prove the last assertion!
Properties of CLP Languages

- \mathcal{T} axiomatizes some of the properties of \mathcal{D}

- For a given Σ, let $(\mathcal{D}, \mathcal{L})$ be a constraint domain with signature Σ, and \mathcal{T} a Σ–theory.

- \mathcal{D} and \mathcal{T} correspond on \mathcal{L} if:
 - \mathcal{D} is a model of \mathcal{T}, and
 - for every constraint $c \in \mathcal{L}$, $\mathcal{D} \models \exists c$ iff $\mathcal{T} \models \exists c$.

- \mathcal{T} is *satisfaction complete* with respect to \mathcal{L} if for every constraint $c \in \mathcal{L}$, either $\mathcal{T} \models \exists c$ or $\mathcal{T} \models \neg \exists c$.

- $(\mathcal{D}, \mathcal{L})$ is *solution compact* if
 $$\forall c \exists \{c_i\}_{i \in I} : \mathcal{D} \models \forall \bar{x} \neg c(\bar{x}) \iff \bigvee_{i \in I} c_i(\bar{x})$$

i.e., any negated constraint in \mathcal{L} can be expressed as a (in)finite disjunction of constraints
Solution Compactness

- Important to lift SLDNF results to CLP(\mathcal{X})
- We have to deal only with user predicates
- E.g.
 - $x \not\geq y$ in CLP(\mathbb{R}) is $x < y$
 - $x \not= y$ in CLP(\mathbb{R}) is $x < y \lor y < x$
 - \mathbb{R}_{Lin} with constraint $x \neq \pi$ is not s.c.
- How can we express $x \neq y$ in CLP($\mathcal{F}\mathcal{T}$)?
Logical Semantics (I)

- Two common logical semantics exist.
- The first one interprets a rule

\[p(\tilde{x}) \leftarrow b_1, \ldots, b_n \]

as the logic formula

\[\forall \tilde{x}, \tilde{y} \, p(\tilde{x}) \lor \neg b_1 \lor \ldots \lor \neg b_n \]
Logical Semantics (II)

- The second one associates a logic formula to each predicate in Π

 - If the set of rules of P with p in the head is:

 \[
 \begin{align*}
 p(\tilde{x}) & \leftarrow B_1 \\
 p(\tilde{x}) & \leftarrow B_2 \\
 & \vdots \\
 p(\tilde{x}) & \leftarrow B_n
 \end{align*}
 \]

 then the formula associated with p is:

 \[
 \forall \tilde{x} \exists \tilde{y}_1 B_1 \\
 \lor \exists \tilde{y}_2 B_2 \\
 \lor \vdots \\
 \lor \exists \tilde{y}_n B_n
 \]

 - If p does not occur in the head of a rule of P, the formula is: $\forall \tilde{x} \neg p(\tilde{x})$

 - The collection of all such formulas is the Clark completion of P (denoted by P^*)

- These two semantics differ on the treatment of the negation
• A valuation is a mapping from variables to D, and the natural extension which maps terms to D and formulas to closed L^*–formulas.

• A D–interpretation of a formula is an interpretation of the formula with the same domain as D and the same interpretation for the symbols in Σ as D.

• It can be represented as a subset of B_D where

$$B_D = \{ p(\tilde{d}) \mid p \in \Pi, \tilde{d} \in D^k \}$$

• A D–model of a closed formula is a D–interpretation which is a model of the formula.

• The usual logical semantics is based on the D–models of P and the models of P^*, T.

• The least D–model of a formula Q is denoted by $lm(Q, D)$.

• A solution to a query G is a valuation v such that $v(G) \subseteq lm(P, D)$.
Fixpoint Semantics

• Based on one-step consequence operator T_P^D (also called “immediate consequence operator”).

• Take as semantics $lfp(T_P^D)$, where:

$$T_P^D(I) = \{ p(\tilde{d}) \mid p(\tilde{x}) \leftarrow c, b_1, \ldots, b_n \in P, a_i \in I, \quad \mathcal{D} \models v(c), v(\tilde{x}) = \tilde{d}, v(b_i) = a_i \}$$

• Theorems:

1. $T_P^D \uparrow \omega = lfp(T_P^D)$
2. $lm(P, \mathcal{D}) = lfp(T_P^D)$
Top–Down Operational Semantics (I)

- General framework for operational semantics
- Formalized as a transition system on states
- State: a 3–tuple $\langle A, C, S \rangle$, or fail, where
 - A is a multiset of atoms and constraints,
 - $C \cup S$ multiset of constraints,
 - C, active constraints (awake)
 - S, passive constraints (asleep)
- Computation and Selection rules depend on A
- Transition system: parameterized by a predicate consistent and a function infer:
 - $\text{consistent}(C)$ checks the consistency of a constraint store
 - Usually “$\text{consistent}(C)$ iff $D \models \exists c$”, but sometimes “if $D \models \exists c$ then $\text{consistent}(C)$”
 - $\text{infer}(C, S)$ computes a new set of active and passive constraints
Top–Down Operational Semantics (II)

- **Transition** r: computation step; rewriting using user predicates
 \[\langle A \cup a, C, S \rangle \rightarrow_r \langle A \cup B, C, S \cup (a = h) \rangle \]
 if \(h \leftarrow B \in P \), and \(a \) and \(h \) have the same predicate symbol, or
 \[\langle A \cup a, C, S \rangle \rightarrow_r \text{fail} \]
 if there is no rule \(h \leftarrow B \) of \(P \) such that \(a \) and \(h \) have the same predicate symbol
 \((a = h) \) is a set of argument–wise equations) if \(a \) is a predicate symbol selected by
 the computation rule

- **Transition** c: selects constraints
 \[\langle A \cup c, C, S \rangle \rightarrow_c \langle A, C, S \cup c \rangle \]
 if \(c \) is a constraint selected by the computation rule

- **Transition** i: infers new constraints
 \[\langle A, C, S \rangle \rightarrow_i \langle A, C', S' \rangle \text{ if } (C', S') = \text{infer}(C, S) \]
 ◦ In particular, may turn passive constraints into active ones

- **Transition** s: checks satisfiability
 \[\langle A, C, S \rangle \rightarrow_s \begin{cases}
 \langle A, C, S' \rangle & \text{if } \text{consistent}(C) \\
 \text{fail} & \text{if } \neg\text{consistent}(C')
 \end{cases} \]
Top–Down Operational Semantics (III)

- Initial state: \(\langle G, \emptyset, \emptyset \rangle \)
- Derivation: \(\langle A_1, C_1, S_1 \rangle \rightarrow \ldots \rightarrow \langle A_i, C_i, S_i \rangle \rightarrow \ldots \)
- Final state: \(E \rightarrow E \)
- **Successful derivation**: final state \(\langle \emptyset, C, S \rangle \)
- A derivation **flounders** if finite and the final state is \(\langle A, C, S \rangle \) with \(A \neq \emptyset \)
- A derivation is **failed** if it is finite and the final state is fail
- Answer: \(\exists_{\tilde{x}} C \land S \), where \(\tilde{x} \) are the variables in the initial goal
- A derivation is **fair** if it is failed or, for every \(i \) and every \(a \in A_i \), \(a \) is rewritten in a later transition
- A computation rule is fair if it gives rise only to fair derivations

- **Computation tree** for goal G and program P:
 - Nodes labeled with states
 - Edges labeled with \rightarrow_r, \rightarrow_c, \rightarrow_i or \rightarrow_s
 - Root labeled by $\langle G, \emptyset, \emptyset \rangle$
 - All sons of a given node have the same label
 - Only one son with transitions \rightarrow_c, \rightarrow_i or \rightarrow_s
 - A son per program clause with transition \rightarrow_r
Computation Tree: Example

- Consider the program
 \[p(X + 3, X) \leftarrow X < 3. \]
 \[p(X + 3, X) \leftarrow X > 3, p(X, Y). \]
 and the goal \(\leftarrow p(5, X) \)

- A possible computation tree is:

- Dotted rectangle: previous state was final as well
Types of CLP(\mathcal{X}) Systems

- **Quick–checking** CLP(\mathcal{X}) system: its operational semantics can be described by
 \[\rightarrow_{\text{ris}} \equiv \rightarrow_r \rightarrow_i \rightarrow_s \quad \text{and} \quad \rightarrow_{\text{cis}} \equiv \rightarrow_c \rightarrow_i \rightarrow_s \]

- I.e., always selects either an atom or a constraint, infers and checks consistency

- **Progressive** CLP system: for all $\langle A, C, S \rangle$ with $A \neq \emptyset$, every derivation from that state either fails or contains a \rightarrow_r or \rightarrow_c transition

- **Ideal** CLP system:
 - Quick-checking
 - Progressive
 - $\text{infer}(C, S) = (C \cup S, \emptyset)$
 - $\text{consistent}(C)$ holds iff $\mathcal{D} \models \exists c$
Soundness and Completeness Results

- Success set: the set of queries plus constraints which have a successful derivation in the program:

\[SS(P) = \{ p(\bar{x}) \leftarrow c \mid \langle p(\bar{x}), \emptyset, \emptyset \rangle \rightarrow^* \langle \emptyset, c', c'' \rangle, D \models c \leftrightarrow \exists \bar{x} c' \wedge c'' \} \]

- Consider a program \(P \) in the CLP language determined by a 4–tuple \((\Sigma, D, \mathcal{L}, T) \) and executing on an ideal CLP system. Then:

1. \[[SS(P)]_D = \text{l}m(P, D), \text{ where} \]
 \[[SS(P)]_D = \{ v(a) \mid (a \leftarrow c) \in SS(P), D \models v(c) \} \]
2. \[SS(P) = \text{l}f\text{p}(S^D_P) \]
3. (Soundness) if the goal \(G \) has a successful derivation with answer constraint \(c \), then \(P, T \models c \rightarrow G \)
4. (Completeness) if \(P, T \models c \rightarrow G \) then there are derivations for the goal \(G \) with answer constraints \(c_1, \ldots, c_n \) such that \(T \models c \rightarrow \forall_{i=1}^n c_i \)
5. Assume \(T \) is satisfaction complete w.r.t. \(\mathcal{L} \). Then the goal \(G \) is finitely failed for \(P \) iff \(P^*, T \models \neg G \).
Negation in CLP(\mathcal{X}')

- Most LP results can be lifted to CLP(\mathcal{X}')
- In particular, negation as failure (à la SLDNF) is still valid using:
 - Satisfiability instead of unification
 - Variable elimination instead of groundness
- Added bonus: if the system is solution compact, then negated constraints can be expressed in terms of primitive constraints
- Less chances of a floundered / incorrect computation