Computational Logic

Constraint Logic Programming
Constraints

- Born within AI: e.g. house design
- Constraints used as problem representation:

 \[\text{The man in yellow does not have green eyes}\]
 \[\text{The murderer knows no detective will ever wear dark clothes}\]

- A solution is an assignment which agrees with the initial constraints:
 \[\text{Murderer: López, green eyes, Magnum gun}\]

- Or, alternatively, the solution can also be a set of constraints:
 \[\text{The murderer is one of those who had met the cabaret entertainer}\]
 (they represent several ground mappings from elements to variables)

- There may be no solution:
 \[\text{Natural death}\]
A General View

- Ancestors:
 - SKETCHPAD (1963), THINGLAB (1981), Waltz’s algorithm (1965?), MACSYMA (1983), ...

- Constraints in logic languages – the origin of “constraint programming”:
 - General theory developed.
 - Practical systems, generally based on Prolog + some constraint domain(s).

- Constraints in imperative languages:
 - Equation solving libraries (ILOG)
 - Timestamping of variables: \(x := x + 1 \leftrightarrow x_{i+1} := x_i + 1 \) (similar to iterative methods in numerical analysis)

- Constraints in functional languages, via extensions:
 - Evaluation of expressions including free variables.
 - *Absolute Set Abstraction*.
A comparison with LP (I)

- Example (Prolog): \(q(X, Y, Z) :- Z = f(X, Y). \)

 | ?- q(3, 4, Z).
 | \(Z = f(3,4) \)

 | ?- q(X, Y, f(3,4)).
 | \(X = 3, Y = 4 \)

 | ?- q(X, Y, Z).
 | \(Z = f(X,Y) \)

- Example (Prolog): \(p(X, Y, Z) :- Z \text{ is } X + Y. \)

 | ?- p(3, 4, Z).
 | \(Z = 7 \)

 | ?- p(X, 4, 7).
 | \{INSTANTIATION ERROR: in expression\}
Example (CLP(\(\mathbb{R}\))): \(p(X, Y, Z) :- Z = X + Y\).

2 ?- \(p(3, 4, Z)\).

\(Z = 7\)
*** Yes

3 ?- \(p(X, 4, 7)\).

\(X = 3\)
*** Yes

4 ?- \(p(X, Y, 7)\).

\(X = 7 - Y\)
*** Yes
A Comparison with LP (III)

• Features in CLP:
 ◊ Domain of computation (reals, integers, booleans, etc).
 Have to meet some conditions.
 ◊ Type of constraints allowed for each domain: e.g. arithmetic constraints
 (+, *, =, ≤, ≥, <, >)
 ◊ Constraint solving algorithms: simplex, gauss, etc.

• LP can be viewed as a constraint logic language over Herbrand terms with a
 single constraint predicate symbol: “=”
A Comparison with LP (IV)

- **Advantages:**
 - Helps making programs expressive and flexible.
 - May save much coding.
 - In some cases, more efficient than traditional LP programs due to solvers typically being very efficiently implemented.
 - Also, efficiency due to search space reduction:
 - LP: generate-and-test.
 - CLP: constrain-and-generate.

- **Disadvantages:**
 - Complexity of solver algorithms (simplex, gauss, etc) can affect performance.

- **Solutions:**
 - better algorithms
 - compile-time optimizations (program transformation, global analysis, etc)
 - parallelism
Example of Search Space Reduction

- **Prolog (generate–and–test):**
  ```prolog
  solution(X, Y, Z) :-
      p(X), p(Y), p(Z),
      test(X, Y, Z).
  ```


 test(X, Y, Z) :- Y is X + 1, Z is Y + 1.

- **Query:**
  ```prolog
  | ?- solution(X, Y, Z).
  X = 14
  Y = 15
  Z = 16 ? ;
  no
  ```

- **458 steps (all solutions: 465 steps).**
Example of Search Space Reduction

- **CLP(ℜ)** (using generate–and–test):

 \[
 \text{solution}(X, Y, Z) :-
 \begin{align*}
 &p(X), p(Y), p(Z), \\
 &\text{test}(X, Y, Z).
 \end{align*}
 \]

 \[
 p(14). \ p(15). \ p(16). \ p(7). \ p(3). \ p(11).
 \]

 \[
 \text{test}(X, Y, Z) :- \ Y = X + 1, \ Z = Y + 1.
 \]

- **Query:**

 \[
 ?- \ \text{solution}(X, Y, Z).
 \]

 \[
 \begin{align*}
 &Z = 16 \\
 &Y = 15 \\
 &X = 14 \\
 *** &\text{Retry? y} \\
 *** &\text{No}
 \end{align*}
 \]

- **458 steps (all solutions: 465 steps).**
Generate–and–test Search Tree

A:
B:

X = 14
Y = 14
B5

X = 15
Y = 15
B4

X = 16
Y = 16
B3

X = 7
Y = 7
B2

X = 3
Y = 3
B1

X = 11
Y = 11
g

Z = 14
Z = 15
Z = 16
Z = 7
Z = 3
Z = 11

A1
A2
A3
A4
A5
Example of Search Space Reduction

- Move test(X, Y, Z) at the beginning (constrain–and–generate):

solution(X, Y, Z) :-
 test(X, Y, Z),
 p(X), p(Y), p(Z).

- Prolog: test(X, Y, Z) :- Y is X + 1, Z is Y + 1.
 | ?- solution(X, Y, Z).
 {INSTANTIATION ERROR: in expression}

- CLP(ℜ): test(X, Y, Z) :- Y = X + 1, Z = Y + 1.
 ?- solution(X, Y, Z).
 Z = 16
 Y = 15
 X = 14
 *** Retry? y
 *** No

- 6 steps (all solutions: 11 steps).
Constrain–and–generate Search Tree

```
X=14   X=15   X=16   X=7   X=3   X=11
Y=15   Y=16
Z=16
```

```
g
```
Constraint Domains

- Semantics parameterized by the constraint domain:
 \(\text{CLP}(\mathcal{X}) \), where \(\mathcal{X} \equiv (\Sigma, D, L, T) \)

- Signature \(\Sigma \): set of predicate and function symbols, together with their arity

- \(L \subseteq \Sigma \)–formulae: constraints

- \(D \) is the set of actual elements in the domain

- \(\Sigma \)–structure \(D \): gives the meaning of predicate and function symbols (and hence, constraints).

- \(T \) a first–order theory (axiomatizes some properties of \(D \))

- \((D, L)\) is a constraint domain

- Assumptions:
 - \(L \) built upon a first–order language
 - \(=\in \Sigma \) is identity in \(D \)
 - There are identically false and identically true constraints in \(L \)
 - \(L \) is closed w.r.t. renaming, conjunction and existential quantification
Domains (I)

- $\Sigma = \{0, 1, +, *, =, <, \leq\}$, $D = \mathbb{R}$, D interprets Σ as usual, $\mathcal{R} = (D, \mathcal{L})$

 ◦ Arithmetic over the reals

 ◦ Eg.: $x^2 + 2xy < \frac{y}{x} \land x > 0$ ($\equiv xxx + xxy + xxy < y \land 0 < x$)

- Question: is 0 needed? How can it be represented?

- Let us assume $\Sigma' = \{0, 1, +, =, <, \leq\}$, $\mathcal{R}_{Lin} = (D', \mathcal{L}')$

 ◦ Linear arithmetic

 ◦ Eg.: $3x - y < 3$ ($\equiv x + x + x < 1 + 1 + 1 + y$)

- Let us assume $\Sigma'' = \{0, 1, +, =\}$, $\mathcal{R}_{LinEq} = (D'', \mathcal{L}'')$

 ◦ Linear equations

 ◦ Eg.: $3x + y = 5 \land y = 2x$
Domains (II)

- $\Sigma = \{ <\text{constant and function symbols}>, = \}$
- $D = \{ \text{finite trees} \}$
- D interprets Σ as tree constructors
- Each $f \in \Sigma$ with arity n maps n trees to a tree with root labeled f and whose subtrees are the arguments of the mapping
- Constraints: syntactic tree equality
- $\mathcal{FT} = (D, \mathcal{L})$
 - Constraints over the Herbrand domain
 - Eg.: $g(h(Z), Y) = g(Y, h(a))$
- $\text{LP} \equiv \text{CLP} (\mathcal{FT})$
Domains (III)

- $\Sigma = \{\text{<constants>}, \lambda, .., ::, =\}$
- $D = \{\text{finite strings of constants}\}$
- D interprets . as string concatenation, :: as string length
 - Equations over strings of constants
 - Eg.: $X.A.X = X.A$

- $\Sigma = \{0, 1, \neg, \land, =\}$
- $D = \{\text{true, false}\}$
- D interprets symbols in Σ as boolean functions
- $BOOL = (D, L)$
 - Boolean constraints
 - Eg.: $\neg(x \land y) = 1$
CLP(\mathcal{X}) Programs

- Recall that:
 - Σ is a set of predicate and function symbols
 - $\mathcal{L} \subseteq \Sigma$–formulae are the constraints
- Π: set of predicate symbols definable by a program
- Atom: $p(t_1, t_2, \ldots, t_n)$, where t_1, t_2, \ldots, t_n are terms and $p \in \Pi$
- Primitive constraint: $p(t_1, t_2, \ldots, t_n)$, where t_1, t_2, \ldots, t_n are terms and $p \in \Sigma$ is a predicate symbol
- Every constraint is a (first–order) formula built from primitive constraints
- The class of constraints will vary (generally only a subset of formulas are considered constraints)
- A CLP program is a collection of rules of the form $a \leftarrow b_1, \ldots, b_n$ where a is an atom and the b_i’s are atoms or constraints
- A fact is a rule $a \leftarrow c$ where c is a constraint
- A goal (or query) G is a conjunction of constraints and atoms
A case study: CLP(\(\mathbb{R}\))

- CLP(\(\mathbb{R}\)) is a language based on Prolog, with the addition of constraint solving capabilities over the reals (\(\mathcal{R}_{Lin}\)).
- CLP(\(\mathbb{R}\)) uses the same execution strategy as Prolog (depth–first, left–to–right).
- CLP(\(\mathbb{R}\)) is able to solve directly linear (dis)equations over the reals.
- Non–linear equations are delayed, waiting for them to eventually become linear.
- Most relevant feature w.r.t. Prolog (for our purposes): \texttt{is/2} disappears, and is subsumed by \texttt{=/2} and (extended) unification.
- Note: CLP(\(\mathbb{R}\)) is really CLP((\(\mathbb{R}, \mathcal{F}\mathcal{T}\))) — \(\mathcal{F}\mathcal{T}\) is often omitted.
Linear Equations (CLP(\mathbb{R}))

- **Vector \times vector multiplication (dot product):**
 \[
 \cdot : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}
 \]
 \[
 (x_1, x_2, \ldots, x_n) \cdot (y_1, y_2, \ldots, y_n) = x_1 \cdot y_1 + \cdots + x_n \cdot y_n
 \]

- **Vectors represented as lists of numbers**

 prod([], [], 0).
 prod([X|Xs], [Y|Ys], X * Y + Rest) :-
 prod(Xs, Ys, Rest).

- **Unification becomes constraint solving!**

 ?- prod([2, 3], [4, 5], K).
 K = 23
 ?- prod([2, 3], [5, X2], 22).
 X2 = 4
 ?- prod([2, 7, 3], [Vx, Vy, Vz], 0).
 Vx = -1.5*Vz - 3.5*Vy

- **Any computed answer is, in general, an equation over the variables in the query**
Systems of Linear Equations (CLP(ℜ))

- Can we solve systems of equations? E.g.,

\[
\begin{align*}
3x + y &= 5 \\
x + 8y &= 3
\end{align*}
\]

- Write them down at the top level prompt:

?– prod([3, 1], [X, Y], 5), prod([1, 8], [X, Y], 3).
X = 1.6087, Y = 0.173913

- A more general predicate can be built mimicking the mathematical vector notation \(\mathbf{A} \cdot \mathbf{x} = \mathbf{b} \):

system(_Vars, [], []).
\[
system(Vars, [Co|Coefs], [Ind|Indeps]) :-
\text{prod(Vars, Co, Ind),}
\text{system(Vars, Coefs, Indeps).}
\]

- We can now express (and solve) equation systems

?– system([X, Y], [[3, 1],[1, 8]], [5, 3]).
X = 1.6087, Y = 0.173913
Non–linear Equations (CLP(ℜ))

- Non–linear equations are delayed
 \(\text{?- } \sin(X) = \cos(X).\)
 \(\sin(X) = \cos(X)\)

- This is also the case if there exists some procedure to solve them
 \(\text{?- } X^2 + 2X + 1 = 0.\)
 \(-2X - 1 = X \times X\)

- Reason: no general solving technique is known. CLP(ℜ) solves only linear (dis)equations.

- Once equations become linear, they are handled properly:
 \(\text{?- } X = \cos(\sin(Y)), Y = 2+Y*3.\)
 \(Y = -1, X = 0.666367\)

- Disequations are solved using a modified, incremental Simplex
 \(\text{?- } X + Y \leq 4, Y \geq 4, X \geq 0.\)
 \(Y = 4, X = 0\)
Fibonacci Revisited (Prolog)

- Fibonacci numbers:

 \[
 F_0 = 0 \\
 F_1 = 1 \\
 F_{n+2} = F_{n+1} + F_n
 \]

- (The good old) Prolog version:

 fib(0, 0).
 fib(1, 1).
 fib(N, F) :-
 N > 1,
 N1 is N - 1,
 N2 is N - 2,
 fib(N1, F1),
 fib(N2, F2),
 F is F1 + F2.

- Can only be used with the first argument instantiated to a number
Fibonacci Revisited (CLP(ℜ))

- CLP(ℜ) version: syntactically similar to the previous one
 - `fib(0, 0).`
 - `fib(1, 1).`
 - `fib(N, F1 + F2) :-
 N > 1, F1 >= 0, F2 >= 0,
 fib(N - 1, F1), fib(N - 2, F2).`

- Note all constraints included in program (F1 >= 0, F2 >= 0) – good practice!

- Only real numbers and equations used (no data structures, no other constraint system): “pure CLP(ℜ)”

- Semantics greatly enhanced! E.g.
 - `?- fib(N, F).`
 - F = 0, N = 0 ;
 - F = 1, N = 1 ;
 - F = 1, N = 2 ;
 - F = 2, N = 3 ;
 - F = 3, N = 4 ;
Analog RLC circuits (CLP(ℜ))

- Analysis and synthesis of analog circuits
- RLC network in steady state
- Each circuit is composed either of:
 - A simple component, or
 - A connection of simpler circuits
- For simplicity, we will suppose subnetworks connected only in parallel and series → Ohm’s laws will suffice (other networks need global, i.e., Kirchoff’s laws)
- We want to relate the current (I), voltage (V) and frequency (W) in steady state
- Entry point: circuit(C, V, I, W) states that:
 across the network C, the voltage is V, the current is I and the frequency is W
- V and I must be modeled as complex numbers (the imaginary part takes into account the angular frequency)
- Note that Herbrand terms are used to provide data structures
Analog RLC circuits (CLP(\(\mathbb{R}\)))

- Complex number \(X + Yi\) modeled as \(c(X, Y)\)
- Basic operations:

\[
c_add(c(Re1, Im1), c(Re2, Im2), c(Re1+Re2, Im1+Im2)).
\]

\[
c_mult(c(Re1, Im1), c(Re2, Im2), c(Re3, Im3)) :-
Re3 = Re1 * Re2 - Im1 * Im2,
Im3 = Re1 * Im2 + Re2 * Im1.
\]

(equality is \(c_equal(c(R, I), c(R, I))\), can be left to [extended] unification)
• Circuits in series:

\[
\text{circuit(series}(N1, N2), V, I, W) :- \\
\text{c_add}(V1, V2, V), \\
\text{circuit}(N1, V1, I, W), \\
\text{circuit}(N2, V2, I, W).
\]

• Circuits in parallel:

\[
\text{circuit(parallel}(N1, N2), V, I, W) :- \\
\text{c_add}(I1, I2, I), \\
\text{circuit}(N1, V, I1, W), \\
\text{circuit}(N2, V, I2, W).
\]
Analog RLC circuits (CLP(\mathbb{R}))

Each basic component can be modeled as a separate unit:

- **Resistor**: $V = I \times (R + 0i)$

 \[
 \text{circuit}(\text{resistor}(R), V, I, _W) :- \\
 \quad \text{c_mult}(I, \text{c}(R, 0), V).
 \]

- **Inductor**: $V = I \times (0 + WL_i)$

 \[
 \text{circuit}(\text{inductor}(L), V, I, W) :- \\
 \quad \text{c_mult}(I, \text{c}(0, W \times L), V).
 \]

- **Capacitor**: $V = I \times (0 - \frac{1}{WC}i)$

 \[
 \text{circuit}(\text{capacitor}(C), V, I, W) :- \\
 \quad \text{c_mult}(I, \text{c}(0, -1 / (W \times C)), V).
 \]
Analog RLC circuits (CLP(\(R\)))

- Example:

\[I = 0.65 \]
\[L = 0.073 \]
\[C = \, ? \]
\[R = \, ? \]
\[V = 4.5 \]
\[\omega = 2400 \]
\[I = 0.65 \]
\[L = 0.073 \]

?- circuit(parallel(inductor(0.073),
series(capacitor(C), resistor(R))),
c(4.5, 0), c(0.65, 0), 2400).

\[R = 6.91229, \quad C = 0.00152546 \]

?- circuit(C, c(4.5, 0), c(0.65, 0), 2400).
The N Queens Problem

- Problem:
 place N chess queens in a $N \times N$ board such that they do not attack each other
- Data structure: a list holding the column position for each row
- The final solution is a permutation of the list $[1, 2, \ldots, N]$
- E.g.: the solution is represented as $[2, 4, 1, 3]$
- General idea:
 - Start with partial solution
 - Nondeterministically select new queen
 - Check safety of new queen against those already placed
 - Add new queen to partial solution if compatible; start again with new partial solution
The N Queens Problem (Prolog)

queens(N, Qs) :- queens_list(N, Ns), queens(Ns, [], Qs).

queens([], Qs, Qs).
queens(Unplaced, Placed, Qs) :-
 select(Unplaced, Q, NewUnplaced), no_attack(Placed, Q, 1),
 queens(NewUnplaced, [Q|Placed], Qs).

no_attack([], _Queen, _Nb).
no_attack([Y|Ys], Queen, Nb) :-
 Queen =\= Y + Nb, Queen =\= Y - Nb, Nb1 is Nb + 1,
 no_attack(Ys, Queen, Nb1).

select([X|Ys], X, Ys).
select([Y|Ys], X, [Y|Zs]) :- select(Ys, X, Zs).

queens_list(0, []).
queens_list(N, [N|Ns]) :- N > 0, N1 is N - 1, queens_list(N1, Ns).
The N Queens Problem (Prolog)
The N Queens Problem (CLP(ℜ))

queens(N, Qs) :- constrain_values(N, N, Qs), place_queens(N, Qs).

constrain_values(0, _N, []).
constrain_values(N, Range, [X|Xs]) :-
 N > 0, X > 0, X <= Range,
 constrain_values(N - 1, Range, Xs), no_attack(Xs, X, 1).

no_attack([], _Queen, _Nb).
no_attack([Y|Ys], Queen, Nb) :-
 abs(Queen - (Y + Nb)) > 0, % Queen =\= Y + Nb
 abs(Queen - (Y - Nb)) > 0, % Queen =\= Y - Nb
 no_attack(Ys, Queen, Nb + 1).

place_queens(0, _).
place_queens(N, Q) :- N > 0, member(N, Q), place_queens(N - 1, Q).

member(X, [X|_]).
member(X, [_|Xs]) :- member(X, Xs).
The N Queens Problem (CLP(ℜ))

- This last program can attack the problem in its most general instance:

```
?- queens(M,N).
N = [], M = 0 ;
M = [1], M = 1 ;
N = [2, 4, 1, 3], M = 4 ;
N = [3, 1, 4, 2], M = 4 ;
N = [5, 2, 4, 1, 3], M = 5 ;
N = [5, 3, 1, 4, 2], M = 5 ;
N = [3, 5, 2, 4, 1], M = 5 ;
N = [2, 5, 3, 1, 4], M = 5
...
```

- Remark: Herbrand terms used to build the data structures

- But also used as constraints (e.g., length of already built list Xs in `no_attack(Xs, X, 1)`)

- Note that in fact we are using both ℜ and ℱ
The N Queens Problem (CLP(ℜ))
The N Queens Problem (CLP(ℜ))

- CLP(ℜ) generates internally a set of equations for each board size
- They are non-linear and are thus delayed until instantiation wakes them up

?- constrain_values(4, 4, Q).
Q = [_t3, _t5, _t13, _t21]

_t3 <= 4
_t5 <= 4
_t13 <= 4
_t21 <= 4
0 < _t3
0 < _t5
0 < _t13
0 < _t21
0 < abs(-_t5 + _t3 - 1)
0 < abs(-_t5 + _t3 + 1)
The N Queens Problem (CLP(\(\mathbb{R}\)))

• Constraints are (incrementally) simplified as new queens are added

\[
\begin{align*}
\text{?- constrain_values(4, 4, Qs), Qs = [3,1|0Qs].} \\
0Qs &= [_t16, _t24] \\
Qs &= [3, 1, _t16, _t24] \\
_t16 &\leq 4 \\
_t24 &\leq 4 \\
0 &< _t16 \\
0 &< _t24 \\
0 &< \text{abs}(-_t16 + 1) \\
0 &< \text{abs}(-_t24 + _t16 + 1)
\end{align*}
\]

• Bad choices are rejected using constraint consistency:

\[
\begin{align*}
\text{?- constrain_values(4, 4, Qs), Qs = [3,2|0Qs].} \\
0 &< \text{abs}(-_t24 + 6) \\
0 &< \text{abs}(-_t16 + 2) \\
0 &< \text{abs}(-_t24 - 1) \\
0 &< \text{abs}(-_t24 + 3) \\
0 &< \text{abs}(-_t24 + _t16 - 1)
\end{align*}
\]

*** No
Finite Domains (I)

- A *finite domain* constraint solver associates each variable with a finite subset of \mathbb{Z}
- I.e., $E \in \{-123, -10..4, 10\}$
 (represented as $E :: [-123, -10..4, 10]$ [Eclipse notation] or as E in
 $\{-123\} \setminus (-10..4) \setminus \{10\}$ [SICStus notation])

- We can:
 - Perform arithmetic operations (+, -, *, /) on the variables
 - Establish linear relationships among arithmetic expressions (# =, # <, # =<)

- Those operations / relationships are intended to narrow the domains of the variables

- Note: SICStus requires the use of the
 :- use_module(library(clpfd)).
 directive in the source code
Finite Domains (II)

- Example:

  ```prolog
  ?- X #= A + B, A in 1..3, B in 3..7.
  X in 4..10, A in 1..3, B in 3..7
  
  ?- X #= A - B, A in 1..3, B in 3..7.
  X in -6..0, A in 1..3, B in 3..7
  
  The respective minimums and maximums are added
  
  There is no unique solution
  
  ?- X #= A - B, A in 1..3, B in 3..7.
  X in -6..0, A in 1..3, B in 3..7
  
  The minimum value of X is the minimum value of A minus the maximum value of B
  
  (Similar for the maximum values)
  
  Putting more constraints:
  
  ?- X #= A - B, A in 1..3, B in 3..7, X #>= 0.
  A = 3, B = 3, X = 0
  ```
Finite Domains (III)

Some useful primitives in finite domains:

- **fd_min**(X, T): the term T is the minimum value in the domain of the variable X

- This can be used to minimize (c.f., maximize) a solution
 ?- X #= A - B, A in 1..3, B in 3..7, fd_min(X, X).
 A = 1, B = 7, X = -6

- **domain**(Variables, Min, Max): A shorthand for several in constraints

- **labeling**(Options, VarList):
 - instantiates variables in VarList to values in their domains
 - Options dictates the search order

 ?- X*X+Y*Y#=Z*Z, X#>=Y, domain([X, Y, Z], 1, 1000), labeling([], [X, Y, Z]).
 X = 4, Y = 3, Z = 5
 X = 8, Y = 6, Z = 10
 X = 12, Y = 5, Z = 13
 ...

A Project Management Problem (I)

- The job whose dependencies and task lengths are given by: should be finished in 10 time units or less

- Constraints:

\[\text{pn1}(A,B,C,D,E,F,G) :- \\
 A \geq 0, \quad G \leq 10, \\
 B \geq A, \quad C \geq A, \quad D \geq A, \\
 E \geq B + 1, \quad E \geq C + 2, \\
 F \geq C + 2, \quad F \geq D + 3, \\
 G \geq E + 4, \quad G \geq F + 1. \]
A Project Management Problem (II)

• Query:

?- pn1(A,B,C,D,E,F,G).
A in 0..4, B in 0..5, C in 0..4,
D in 0..6, E in 2..6, F in 3..9, G in 6..10,

• Note the slack of the variables

• Some additional constraints must be respected as well, but are not shown by default

• Minimize the total project time:

?- pn1(A,B,C,D,E,F,G), fd_min(G, G).
A = 0, B in 0..1, C = 0, D in 0..2,
E = 2, F in 3..5, G = 6

• Variables without slack represent critical tasks
A Project Management Problem (III)

• An alternative setting:

• We can accelerate task F at some cost

\[
\text{pn2}(A, B, C, D, E, F, G, X) :-
\begin{align*}
A & \geq 0, \quad G \leq 10, \\
B & \geq A, \quad C \geq A, \quad D \geq A, \\
E & \geq B + 1, \quad E \geq C + 2, \\
F & \geq C + 2, \quad F \geq D + 3, \\
G & \geq E + 4, \quad G \geq F + X.
\end{align*}
\]

• We do not want to accelerate it more than needed!

\[
\text{?- \: pn2}(A, B, C, D, E, F, G, X), \\
f_\text{d_min}(G, G), \ f_\text{d_max}(X, X). \\
A = 0, \ B \ \text{in} \ 0..1, \ C = 0, \ D = 0, \\
E = 2, \ F = 3, \ G = 6, \ X = 3
\]
A Project Management Problem (IV)

- We have two independent tasks B and D whose lengths are not fixed:

- We can finish any of B, D in 2 time units at best

- Some shared resource disallows finishing both tasks in 2 time units: they will take 6 time units
A Project Management Problem (V)

- Constraints describing the net:

 pn3(A,B,C,D,E,F,G,X,Y) :-
 A #>= 0, G #=< 10,
 X #>= 2, Y #>= 2, X + Y #= 6,
 B #>= A, C #>= A, D #>= A,
 E #>= B + X, E #>= C + 2,
 F #>= C + 2, F #>= D + Y,
 G #>= E + 4, G #>= F + 1.

- Query:

 |- pn3(A,B,C,D,E,F,G,X,Y), fd_min(G,G).

 A = 0, B = 0, C = 0, D in 0..1, E = 2, F in 4..5, X = 2, Y = 4, G = 6

- i.e., we must devote more resources to task B

- All tasks but F and D are critical now

- Sometimes, \(fd_{\text{min}}/2 \) not enough to provide best solution (pending constraints):

 pn3(A,B,C,D,E,F,G,X,Y),
 labeling([[ff, minimize(G)], [A,B,C,D,E,F,G,X,Y]]).
The N-Queens Problem Using Finite Domains (in SICStus Prolog)

- By far, the fastest implementation

```prolog
queens(N, Qs, Type) :-
    constrain_values(N, N, Qs),
    all_different(Qs), % built-in constraint
    labeling(Type, Qs).
```

`constrain_values(0, _N, []).`

`constrain_values(N, Range, [X|Xs]) :-`

 `N > 0, N1 is N - 1, X in 1 .. Range,`
 `constrain_values(N1, Range, Xs), no_attack(Xs, X, 1).`

`no_attack([], _Queen, _Nb).`

`no_attack([Y|Ys], Queen, Nb) :-`

 `Queen \#= Y + Nb, Queen \#= Y - Nb, Nb1 is Nb + 1,`
 `no_attack(Ys, Queen, Nb1).`

- Query. Type is the type of search desired.

```prolog
?- queens(20, Q, [ff]).
Q = [1,3,5,14,17,4,16,7,12,18,15,19,6,10,20,11,8,2,13,9] ?
```
CLP($\mathcal{F}T$) (a.k.a. Logic Programming)

- Equations over Finite Trees
- Check that two trees are isomorphic (same elements in each level)

```prolog
iso(Tree, Tree).
iso(t(R, I1, D1), t(R, I2, D2)) :-
    iso(I1, D2),
    iso(D1, I2).

?- iso(t(a, b, t(X, Y, Z)), t(a, t(u, v, W), L)).
L=b, X=u, Y=v, Z=W ? ;
L=b, X=u, Y=W, Z=v ? ;
L=b, W=t(_C,_B,_A), X=u, Y=t(_C,_A,_B), Z=v ? ;
L=b, W=t(_E,t(_D,_C,_B),_A), X=u, Y=t(_E,_A,t(_D,_B,_C)), Z=v ?
```

CLP(\mathcal{WE})

- Equations over finite strings
- Primitive constraints: concatenation (.), string length (::)
- Find strings meeting some property:

 \begin{align*}
 \text{?- "123".z} &= \text{z."231", z::0.} & \text{?- "123".z} &= \text{z."231", z::3.} \\
 &\text{no} & \text{no}
 \\
 \text{?- "123".z} &= \text{z."231", z::1.} & \text{?- "123".z} &= \text{z."231", z::4.} \\
 &\text{z = "1" } & \text{z = "1231"}
 \\
 \text{?- "123".z} &= \text{z."231", z::2.} & \\
 &\text{no}
 \end{align*}

- These constraint solvers are very complex
- Often incomplete algorithms are used
Word equations plus arithmetic over \(\mathbb{Q} \) (rational numbers)

Prove that the sequence \(x_{i+2} = \left| x_{i+1} \right| - x_i \) has a period of length 9 (for any starting \(x_0, x_1 \))

Strategy: describe the sequence, try to find a subsequence such that the period condition is violated

Sequence description (syntax is Prolog III slightly modified):

\[
\begin{align*}
\text{seq}(<Y, X>). & \quad \text{abs}(Y, Y) :- Y \geq 0. \\
\text{seq}(<Y1 - X, Y, X>.U) :- & \quad \text{abs}(Y, -Y) :- Y < 0. \\
& \quad \text{seq}(<Y, X>.U) \\
& \quad \text{abs}(Y, Y1).
\end{align*}
\]

Query: Is there any 11-element sequence such that the 2-tuple initial seed is different from the 2-tuple final subsequence (the seed of the rest of the sequence)?

\[
?- \text{seq}(U.V.W), U::2, V::7, W::2, U\#W.
\]

fail
Summarizing

- **In general:**
 - Data structures (Herbrand terms) for free
 - Each logical variable may have constraints associated with it (and with other variables)

- **Problem modeling:**
 - Rules represent the problem at a high level
 - Program structure, modularity
 - Recursion used to set up constraints
 - Constraints encode problem conditions
 - Solutions also expressed as constraints

- **Combinatorial search problems:**
 - CLP languages provide backtracking: enumeration is easy
 - Constraints keep the search space manageable

- **Tackling a problem:**
 - Keep an open mind: often new approaches possible
Complex Constraints

- Some complex constraints allow expressing simpler constraints
- May be operationally treated as passive constraints
- E.g.: cardinality operator $\#(L, [c_1, \ldots, c_n], U)$ meaning that the number of true constraints lies between L and U (which can be variables themselves)
 - If $L = U = n$, all constraints must hold
 - If $L = U = 1$, one and only one constraint must be true
 - Constraining $U = 0$, we force the conjunction of the negations to be true
 - Constraining $L > 0$, the disjunction of the constraints is specified
- Disjunctive constructive constraint: $c_1 \lor c_2$
 - If properly handled, avoids search and backtracking
 - E.g.: $nz(X) \leftarrow X > 0.$
 $nz(X) \leftarrow X < 0.$
 $nz(X) \leftarrow X < 0 \lor X > 0.$
Other Primitives

- CLP(\(\mathcal{X}\)) systems usually provide additional primitives
- E.g.:
 - `enum(X)` enumerates \(X\) inside its current domain
 - `maximize(X)` (c.f. `minimize(X)`) works out maximum (minimum value) for \(X\) under the active constraints
 - `delay Goal until Condition` specifies when the variables are instantiated enough so that \(Goal\) can be effectively executed
 * Its use needs deep knowledge of the constraint system
 * Also widely available in Prolog systems
 * Not really a constraint: control primitive
Implementation Issues: Satisfiability

- Algorithms must be *incremental* in order to be practical
- Incrementality refers to the performance of the algorithm
- It is important that algorithms to decide satisfiability have a good average case behavior
- Common technique: use a *solved form* representation for satisfiable constraints
- Not possible in every domain
- E.g. in \mathcal{FT} constraints are represented in the form $x_1 = t_1(\tilde{y}), \ldots, x_n = t_n(\tilde{y})$, where
 - each $t_i(\tilde{y})$ denotes a term structure containing variables from \tilde{y}
 - no variable x_i appears in \tilde{y}

(i.e., idempotent substitutions, guaranteed by the unification algorithm)
Implementation Issues: Backtracking in CLP(\$X\$)

- Implementation of backtracking more complex than in Prolog
- Need to record changes to constraints
- Constraints typically stored as an association of variable to expression
- Trailing expressions is, in general, costly: cannot be stored at every change
- Avoid trailing when there is no choice point between two successive changes
- A standard technique: use *time stamps* to compare the age of the choice point with the age of the variable at the time of last trailing

```
X<9, Y=5, Z=4, W=1  trail W, timestamp it
X<Y+4, Y=4+W, Z=4  trail X, Y, Z, timestamp them
X<Y+Z, Y=Z+W  timestamp X, Y, Z, W
```
Implementation Issues: Extensibility

- Constraint domains often implemented now in Prolog-based systems using:
 - Attributed variables [Neumerkel, Holzbaur]:
 * Provide a hook into unification.
 * Allow attaching an *attribute* to a variable.
 * When unification with that variable occurs, user-defined code is called.
 * Used to implement constraint solvers (and other applications, e.g., distributed execution).
 - Constraint handling rules (CHR):s:
 * Higher-level abstraction.
 * Allows defining propagation algorithms (e.g., constraint solvers) in a high-level way.
 * Often translated to attributed variable-based low-level code.
Attributed Variables Example: Freeze

- **Primitives:**
 - `attach_attribute(X,C)`
 - `get_attribute(X,C)`
 - `detach_attribute(X)`
 - `update_attribute(X,C)`
 - `verify_attribute(C,T)`
 - `combine_attributes(C1,C2)`

- **Example: Freeze**

```prolog
freeze( X, Goal) :-
    attach_attribute( V, frozen(V,Goal)),'
    X = V.
    
verify_attribute( frozen(Var,Goal), Value) :-
    detach_attribute( Var),
    Var = Value,
    call(Goal).
    
combine_attributes( frozen(V1,G1), frozen(V2,G2)) :-
    detach_attribute( V1),
    detach_attribute( V2),
    V1 = V2,
    attach_attribute( V1, frozen(V1,(G1,G2))).
```

Programming Tips

- Over-constraining:
 - Seems to be against general advice “do not perform extra work”, but can actually cut more space search
 - Specially useful if infer is weak
 - Or else, if constraints outside the domain are being used

- Use control primitives (e.g., cut) very sparingly and carefully

- Determinacy is more subtle, (partially due to constraints in non–solved form)

- Choosing a clause does not preclude trying other exclusive clauses (as with Prolog and plain unification)

- Compare:

  ```prolog
  max(X,Y,X) :- X > Y.
  max(X,Y,Y) :- X <= Y.
  ```

 with

  ```prolog
  max(X,Y,X) :- X > Y, !.
  max(X,Y,Y) :- X <= Y.
  ```

  ```prolog
  ?- max(X, Y, Z).
  Z = X, Y < X ;
  ```

  ```prolog
  ?- max(X, Y, Z).
  Z = X, Y < X
  ```
Some Real Systems (I)

- CLP defines a class of languages obtained by
 - Specifying the particular constraint system(s)
 - Specifying **Computation** and **Selection** rules
- Most share the Herbrand domain with “=” , but add different domains and/or solver algorithms
- Most use **Computation** and **Selection** rules of Prolog
- CLP(ℜ):
 - Linear arithmetic over reals (= , ≤ , ≥)
 - Gauss elimination and an adaptation of Simplex
- PrologIII:
 - Linear arithmetic over rationals (= , ≤ , ≥ , ≠), Simplex
 - Boolean (=), 2-valued Boolean Algebra
 - Infinite (rational) trees (= , ≠)
 - Equations over finite strings
Some Real Systems (II)

- **CHIP:**
 - Linear arithmetic over rationals ($=, \leq, >, \neq$), Simplex
 - Boolean ($=)$, larger Boolean algebra (symbolic values)
 - Finite domains
 - User–defined constraints and solver algorithms

- **BNR-Prolog:**
 - Arithmetic over reals (closed intervals) ($=, \leq, >, \neq$), Simplex, propagation techniques
 - Boolean ($=)$, 2-valued Boolean algebra
 - Finite domains, consistency techniques under user–defined strategy

- **SICStus 3:**
 - Linear arithmetic over reals ($=, \leq, >, \neq$)
 - Linear arithmetic over rationals ($=, \leq, >, \neq$)
 - Finite domains (in recent versions)
Some Real Systems (III)

- **ECLiPSe:**
 - Finite domains
 - Linear arithmetic over reals (\(=, \leq, >, \neq\))
 - Linear arithmetic over rationals (\(=, \leq, >, \neq\))

- **clp(FD)/gprolog:**
 - Finite domains

- **RISC–CLP:**
 - Real arithmetic terms: any arithmetic constraint over reals
 - Improved version of Tarski’s quantifier elimination

- **Ciao:**
 - Linear arithmetic over reals (\(=, \leq, >, \neq\))
 - Linear arithmetic over rationals (\(=, \leq, >, \neq\))
 - Finite Domains (currently interpreted)
 (can be selected on a per-module basis)