Computational Logic
Constraint Logic Programming
Constraints

- Constraint: conditions that a solution must satisfy
 - $X + Y = 20$
 - $X \land Y$ is true
 - The third field of the data structure is greater than the second
 - The murderer is one of those who had met the cabaret entertainer

- CLP: LP plus the ability to compute with some form of constraints (which are solved by the system during computation)

- Features of a CLP system:
 - Domain of computation (reals, rationals, integers, booleans, structures, ...)
 - Expressions that can be built (+, *, ∧, ∨)
 - Constraints allowed: equations, disequations, inequations, etc. (=, ≠, ≤, ≥, <, >)
 - Constraint solving algorithms: simplex, gauss, etc.

- Solutions: assignments to variables, or new constraints among variables.
A comparison with classic LP (I)

- Example (plain Prolog): \(q(X, Y, Z) : - Z = f(X, Y) \).

\[
?- q(3, 4, Z).
Z = f(3, 4)
\]

\[
?- q(X, Y, f(3, 4)).
X = 3, Y = 4
\]

\[
?- q(X, Y, Z).
Z = f(X,Y)
\]

- Example (plain Prolog): \(p(X, Y, Z) : - Z \text{ is } X + Y \).

\[
?- p(3, 4, Z).
Z = 7
\]

\[
?- p(X, 4, 7).
\{\text{INSTANTIATION ERROR}\} \leftarrow \text{is/2 not reversible, does not work!}
\]
A Comparison with classic LP (II)

• Example (**CLP**(ℜ) **package**):

```prolog
:- use_package(clpr).
p(X, Y, Z) :- Z =. X + Y.

?- p(3, 4, Z).
Z =. 7

?- p(X, 4, 7).
X =. 3

4 ?- p(X, Y, 7).
X =. 7 - Y ← with clpr arithmetic is reversible!
```
A Comparison with classic LP (III)

- Advantages:
 - Helps making programs expressive and flexible.
 - May save much coding.
 - In some cases, more efficient than classic LP programs due to solvers typically being very efficiently implemented.
 - Also, efficiency due to search space reduction:
 - LP: generate-and-test.
 - CLP: constrain-and-generate.

- Disadvantages:
 - Complexity of solver algorithms (simplex, gauss, etc) can affect performance.

- Solutions:
 - better algorithms
 - compile-time optimizations (program transformation, global analysis, etc)
 - parallelism
Example of Search Space Reduction

- Using **plain Prolog** (generate–and–test):

 % Find three consecutive numbers in the p/1 relation.

 solution(X, Y, Z) :-
 p(X), p(Y), p(Z),
 test(X, Y, Z).

 test(X, Y, Z) :- Y is X + 1, Z is Y + 1.

- Query:

 ?- solution(X, Y, Z).
 X = 14, Y = 15, Z = 16 ? ;
 no

- 458 steps (all solutions: 475 steps).
Example of Search Space Reduction

- Using the **CLP(R) package** (generate–and–test):

 % Find three consecutive numbers in the p/1 relation.
 :- use_package(clpr).
 solution(X, Y, Z) :-
 p(X), p(Y), p(Z),
 test(X, Y, Z).

 test(X, Y, Z) :- Y =. X + 1, Z =. Y + 1.

- Query:

 ?- solution(X, Y, Z).
 X =. 14, Y =. 15, Z =. 16 ? ;
 no

- 458 steps (all solutions: 475 steps).
Generate–and–test Search Tree
Example of Search Space Reduction

- **Move** \(\text{test}(X, Y, Z) \) **to the beginning** *(constrain–and–generate):*

 % Find three consecutive numbers in the p/1 relation.

 \[
 \text{:- use package(clpr).}
 \]

 \[
 \text{solution}(X, Y, Z) :-
 \]

 \[
 \text{test}(X, Y, Z),
 \]

 \[
 \text{p}(X), \text{p}(Y), \text{p}(Z).
 \]

 \[
 \]

- **Using plain Prolog:**

 \[
 \text{test}(X, Y, Z) :- Y \text{ is } X +1, Z \text{ is } Y +1.
 \]

 ?- solution(X, Y, Z).

 {INSTANTIATION ERROR}

- **Using the CLP(\(\mathcal{R}\)) package:**

 \[
 \text{test}(X, Y, Z) :- Y .=. X +1, Z .=. Y +1.
 \]

 ?- solution(X, Y, Z).

 X .=. 14, Y .=. 15, Z .=. 16 ? ;

 no

 In **11 steps** *(and all solutions in 11 steps)!*
Constrain–and–generate Search Tree

\[g \]

\[\begin{align*}
X &= 11 \\
X &= 3 \\
X &= 7 \\
X &= 16 \\
X &= 15 \\
X &= 14 \\
Y &= 16 \\
Y &= 15 \\
Z &= 16
\end{align*} \]
Constraint Systems: CLP(\(\mathcal{X}\))

- The semantics is parameterized by the constraint domain \(\mathcal{X}\): CLP(\(\mathcal{X}\)), where \(\mathcal{X} \equiv (\Sigma, D, L, T)\):
 - \(\Sigma\): set of *predicate* and *function symbols*, together with their arity
 - \(L \subseteq \Sigma\)–formulae: constraints
 - \(D\): the set of actual elements in the constraint domain
 - \(D\): meaning of predicate and function symbols (and hence, constraints).
 - \(T\): a first–order theory (axiomatizes some properties of \(D\))

- (\(D, L\)) is a *constraint domain*

- Assumptions:
 - \(L\) built upon a first–order language
 - \(= \in \Sigma\) and \(=\) is *identity* in \(D\)
 - There are identically false and identically true constraints in \(L\)
 - \(L\) is closed w.r.t. renaming, conjunction, and existential quantification
Constraint Domains (I)

- $\Sigma = \{0, 1, +, *, =, <, \leq\}$, $D = \mathbb{R}$ (the reals), \mathcal{D} interprets Σ as usual, $\mathcal{R} = (\mathcal{D}, \mathcal{L})$
 - Arithmetic over the reals ("\mathcal{R}" domain).
 - Eg.: $x^2 + 2xy < \frac{y}{x} \land x > 0$ ($\equiv xxx + xxy + xxy < y \land 0 < x$)
 - Question: is 0 needed? How can it be represented?

- $\Sigma' = \{0, 1, +, =, <, \leq\}$, $\mathcal{R}_{Lin} = (\mathcal{D}', \mathcal{L}')$
 - Linear arithmetic ("\mathcal{R}_{Lin}" domain)
 - Eg.: $3x - y < 3$ ($\equiv x + x + x < 1 + 1 + 1 + y$)

- $\Sigma'' = \{0, 1, +, =\}$, $\mathcal{R}_{LinEq} = (\mathcal{D}'', \mathcal{L}'')$
 - Linear equations ("\mathcal{R}_{LinEq}" domain)
 - Eg.: $3x + y = 5 \land y = 2x$

- A corresponding set of domains can be defined on the rationals ("\mathcal{Q}" domain)
Constraint Domains (II)

- A very special domain:
 - $\Sigma = \{\text{constant and function symbols}, =\}$
 - $D = \{\text{finite trees}\}$
 - D interprets Σ as tree constructors
 * Each $f \in \Sigma$ with arity n maps n trees to a tree with root labeled f and whose subtrees are the arguments of the mapping
 - Constraints: syntactic tree equality
 - $\mathcal{FT} = (D, L)$

 → **Equality constraints over the Herbrand domain** (\mathcal{FT} domain)
 - Eg.: $g(h(Z), Y) = g(Y, h(a))$

- $\text{LP} \equiv \text{CLP}(\mathcal{FT})$
 - I.e., classical LP can be viewed as constraint logic programming over *Herbrand terms* with a single constraint predicate symbol: \equiv.

Constraint Domains (III)

- $\Sigma = \{ <\text{constants}>, \lambda, :, ::, =\}$
- $D = \{ \text{finite strings of constants} \}$
- \mathcal{D} interprets \cdot as string concatenation, $::$ as string length
 - \rightarrow Equations over strings of constants (\mathcal{D} domain)
 - Eg.: $X.A.X = X.A$

- $\Sigma = \{ 0, 1, \neg, \land, =\}$
- $D = \{ \text{true}, \text{false} \}$
- \mathcal{D} interprets symbols in Σ as boolean functions
- $BOOL = (D, \mathcal{L})$
 - \rightarrow Boolean constraints ($BOOL$ domain)
 - Eg.: $\neg(x \land y) = 1$
CLP(\(\mathcal{X}\)) Programs

- Recall that:
 - \(\Sigma\) is a set of predicate and function symbols
 - \(\mathcal{L} \subseteq \Sigma\)–formulae are the constraints
- \(\Pi \subseteq \Sigma\): set of predicate symbols definable by a program
 - Atom: \(p(t_1, t_2, \ldots, t_n)\), where \(p \in \Pi\) and \(t_1, t_2, \ldots, t_n\) are terms
 - Primitive constraint: \(p(t_1, t_2, \ldots, t_n)\), where \(t_1, t_2, \ldots, t_n\) are terms and \(p \in \Sigma\) is a predicate symbol
 - Constraint: (first–order) formula built from primitive constraints
- The class of constraints will vary (generally only a subset of formulas are considered constraints)
- A CLP program is a collection of rules of the form \(a \leftarrow b_1, \ldots, b_n\) where \(a\) is an atom and the \(b_i\)'s are atoms or constraints
- A fact is a rule \(a \leftarrow c\) where \(c\) is a constraint
- A goal (or query) \(G\) is a conjunction of constraints and atoms
A case study: CLP(ℜ)

- CLP(ℜ): language based on Prolog + constraint solving over the reals (ℜLin)
 ◦ Same execution strategy as standard Prolog (depth-first, left-to-right)
 ◦ Allows linear equations and disequations over the reals
 ◦ Linear constraints are solved; non-linear constraints are passive: delayed until linear or simple checks:
 * \(X \cdot Y = 7 \) becomes linear when \(X \) is assigned a definite value
 * \(X \cdot X + 2 \cdot X + 1 = 0 \) becomes a check when \(X \) is assigned a definite value
 ◦ Prolog arithmetic is subsumed by constraint solving
- Note: CLP(ℜ) is really CLP((ℜ, ℱT)) — ℱT is often omitted.
- Supported in modern Prologs coexisting with the ISO primitives \texttt{is/2}, \texttt{>/2} etc.
- In Ciao, via the \texttt{clpr} package:
 ◦ Uses \texttt{.=/}, \texttt{/>.}, etc. to distinguish the \texttt{clpr} constraints from the ISO-Prolog arithmetic primitives.
 ◦ I.e., \(X \ .=/ Y + 5, \ Y \ ./>. \) vs. \(X \texttt{is} Y + 5, \ Y \texttt{>}1 \)
Linear Equations (CLP(\(\mathbb{R}\)) package)

- Vector \(\times\) vector multiplication (dot product):
 \[
 \cdot : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}
 \]
 \[
 (x_1, x_2, \ldots, x_n) \cdot (y_1, y_2, \ldots, y_n) = x_1 \cdot y_1 + \cdots + x_n \cdot y_n
 \]

- Vectors represented as lists of numbers

  ```prolog
  :- use_package(clpr).
  prod([], [], Result) :- Result .==. 0.
  prod([X|Xs], [Y|Ys], Result) :-
      Result .==. X * Y + Rest, prod(Xs, Ys, Rest).
  ```

- Unification becomes constraint solving!

  ```prolog
  ?- prod([2, 3], [4, 5], K).
  K .==. 23
  ?- prod([2, 3], [5, X2], 22).
  X2 .==. 4
  ?- prod([2, 7, 3], [Vx, Vy, Vz], 0).
  Vx .==. -1.5*Vz - 3.5*Vy
  ```

- Any computed answer is, in general, an equation over the variables in the query
Systems of Linear Equations (CLP(ℜ))

- Can we solve systems of equations? E.g.,

 \[3x + y = 5\]
 \[x + 8y = 3\]

- Write them down at the top level prompt:

 \(\text{?- prod([3, 1], [X, Y], 5), prod([1, 8], [X, Y], 3).} \)
 \(X .=. 1.6087, Y .=. 0.173913\)

- A more general predicate can be built mimicking the mathematical vector notation \(A \cdot x = b\):

 \(\text{system(_Vars, [], []).} \)
 \(\text{system(Vars, [Co|Coefs], [Ind|Indeps]) :-} \)
 \(\text{prod(Vars, Co, Ind),} \)
 \(\text{system(Vars, Coefs, Indeps).} \)

- We can now express (and solve) equation systems

 \(\text{?- system([X, Y], [[3, 1], [1, 8]], [5, 3]).} \)
 \(X .=. 1.6087, Y .=. 0.173913\)
Non–linear Equations (CLP(ℜ))

- Non–linear equations are delayed
 \[\sin(X) = \cos(X) \]

- This is also the case if there exists some procedure to solve them
 \[X^2 + 2X + 1 = 0 \]
 \[-2X - 1 = X^2 \]

- Reason: no general solving technique is known. CLP(ℜ) solves only linear (dis)equations.

- Once equations become linear, they are handled properly:
 \[X = \cos(\sin(Y)), Y = 2+Y^3 \]
 \[Y = -1, X = 0.666367 \]

- Disequations are solved using a modified, incremental Simplex
 \[X + Y \leq 4, Y \geq 4, X \geq 0 \]
 \[Y = 4, X = 0 \]
Fibonacci Revisited (Prolog)

- Fibonacci numbers:

\[
\begin{align*}
F_0 &= 0 \\
F_1 &= 1 \\
F_{n+2} &= F_{n+1} + F_n
\end{align*}
\]

- (The good old) Prolog version:

```
fib(0, 0).
fib(1, 1).
fib(N, F) :-
    N > 1,
    N1 is N - 1,
    N2 is N - 2,
    fib(N1, F1),
    fib(N2, F2),
    F is F1 + F2.
```

- Can only be used with the first argument instantiated to a number
Fibonacci Revisited (CLP(ℜ))

- CLP(ℜ) package version: syntactically similar to the previous one:

```
:- use_package(clpr).
fib(N,N) :- N =. 0.
fib(N,N) :- N =. 1.
fib(N,R) :- N >. 1, F1 >=. 0, F2 >=. 0,
          N1 =. N - 1, N2 =. N - 2,
          fib(N1,F1), fib(N2,F2),
          R =. F1 + F2.
```

- Note all constraints included in program \((F1 \geq 0, F2 \geq 0)\) – good practice!

- Only real numbers and equations used (no data structures, no other constraint system): “pure CLP(ℜ)”

- Semantics greatly enhanced! E.g.:

```
?- fib(N, F).
F =. 0, N =. 0 ;
F =. 1, N =. 1 ;
F =. 1, N =. 2 ;
F =. 2, N =. 3 ;
```
Analog RLC circuits (CLP(ℜ))

- Analysis and synthesis of analog circuits
- RLC network in steady state
- Each circuit is composed either of:
 - A simple component, or
 - A connection of simpler circuits
- For simplicity, we will suppose subnetworks connected only in parallel and series → Ohm’s laws will suffice (other networks need global, i.e., Kirchoff’s laws)
- We want to relate the current (I), voltage (V) and frequency (W) in steady state
- Entry point: circuit(C, V, I, W) states that:
 across the network C, the voltage is V, the current is I and the frequency is W
- V and I must be modeled as complex numbers (the imaginary part takes into account the angular frequency)
- Note that Herbrand terms are used to provide data structures
Analog RLC circuits (CLP(\(\mathbb{R}\)))

- Complex number \(X + Yi\) modeled as \(c(X, Y)\)
- Basic operations:

```prolog
:- use_package(clpr).

c_add(c(Re1, Im1), c(Re2, Im2), c(Re12, Im12)) :-
    Re12 ^= Re1 + Re2,
    Im12 ^= Im1 + Im2.

c_mult(c(Re1, Im1), c(Re2, Im2), c(Re3, Im3)) :-
    Re3 ^= Re1 * Re2 - Im1 * Im2,
    Im3 ^= Re1 * Im2 + Re2 * Im1.
```

(equality is \(c_equal(c(R, I), c(R, I))\), can be left to [extended] unification)
Analog RLC circuits (CLP(ℜ))

- Circuits in series:

  ```prolog
  circuit(series(N1, N2), V, I, W) :-
    c_add(V1, V2, V),
    circuit(N1, V1, I, W),
    circuit(N2, V2, I, W).
  ```

- Circuits in parallel:

  ```prolog
  circuit(parallel(N1, N2), V, I, W) :-
    c_add(I1, I2, I),
    circuit(N1, V, I1, W),
    circuit(N2, V, I2, W).
  ```
Analog RLC circuits (CLP(ℜ))

Each basic component can be modeled as a separate unit:

- **Resistor:** \[V = I \times (R + 0i) \]

  ```
  circuit(resistor(R), V, I, _W) :-
  c_mult(I, c(R, 0), V).
  ```

- **Inductor:** \[V = I \times (0 + WL_i) \]

  ```
  circuit(inductor(L), V, I, W) :-
  Im == W * L,
  c_mult(I, c(0, Im), V).
  ```

- **Capacitor:** \[V = I \times (0 - \frac{1}{WC}i) \]

  ```
  circuit(capacitor(C), V, I, W) :-
  Im == -1 / (W * C),
  c_mult(I, c(0, Im), V).
  ```
Analog RLC circuits (CLP(R))

- Example:

\[
\begin{align*}
R &= _? \\
C &= _?
\end{align*}
\]

\[
\begin{array}{c}
\text{?- circuit(} \text{parallel(} \text{inductor(0.073)}, \\
\text{series(} \text{capacitor(C),} \text{resistor(R))}, \\
\text{c(4.5, 0), c(0.65, 0), 2400).}
\end{array}
\]

\[
\begin{array}{c}
R \ = \ .6.91229, \ C \ = \ .0.00152546
\end{array}
\]

\[
\begin{array}{c}
\text{?- circuit(C,} \ c(4.5, 0), \ c(0.65, 0), \ 2400).\end{array}
\]
The N Queens Problem

- Problem:
 place N chess queens in a $N \times N$ board such that they do not attack each other

- Data structure: a list holding the column position for each row

- The final solution is a permutation of the list $[1, 2, \ldots, N]$

- E.g.: the solution is represented as $[2, 4, 1, 3]$

- General idea:
 - Start with partial solution
 - Nondeterministically select new queen
 - Check safety of new queen against those already placed
 - Add new queen to partial solution if compatible; start again with new partial solution
The N Queens Problem in Prolog

queens(N, Qs) :- queens_list(N, Ns), % E.g., Ns=[4,3,2,1]
 queens(Ns, [], Qs).

queens([], Qs, Qs). % All queens placed!
queens(Unplaced, Placed, Qs) :-
 select(Unplaced, Q, NewUnplaced), % E.g. Q=4, NewU=[3,2,1]
 no_attack(Placed, Q, 1),
 queens(NewUnplaced, [Q|Placed], Qs).% OK->Choose next q

no_attack([], _Queen, _Nb).
no_attack([Y|Ys], Queen, Nb) :-
 Queen =\= Y + Nb, Queen =\= Y - Nb, Nb1 is Nb + 1,
 no_attack(Ys, Queen, Nb1).

select([X|Ys], X, Ys).
select([Y|Ys], X, [Y|Zs]) :- select(Ys, X, Zs).

queens_list(0, []).
queens_list(N, [N|Ns]) :-
 N > 0, N1 is N - 1, queens_list(N1, Ns).
The N Queens Problem in Prolog - search space
The N Queens Problem in CLP(\(\mathcal{R}\))

(in Ciao clpr syntax)

```prolog
:- use_package(clpr).
queens(N,Qs) :- constrain_values(N,N,Qs), place_queens(N,Qs).

constrain_values(0, _N, []). % Constrain before placing
constrain_values(N, Range, [X|Xs]) :-
    N > 0, X > 0, X <= Range, N1 = N - 1,
    constrain_values(N1, Range, Xs), no_attack(Xs, X, 1).

no_attack([], _Queen, _Nb). % Identical to Prolog version
no_attack([Y|Ys], Queen, Nb) :- % but using constraints
    Queen <> Y + Nb, Queen <> Y - Nb, Nb1 = Nb + 1,
    no_attack(Ys, Queen, Nb1).

place_queens(0, _).
place_queens(N, Q) :-
    N > 0,
    member(N, Q),
    N1 = N - 1,
    place_queens(N1, Q).
```
The N Queens Problem in CLP(ℜ)

• This last program can attack the problem in its most general instance:

```
?- queens(N,L).
L = [], N = 0 ;
L = [1], N = 1 ;
L = [2, 4, 1, 3], N = 4 ;
L = [3, 1, 4, 2], N = 4 ;
L = [5, 2, 4, 1, 3], N = 5 ;
L = [5, 3, 1, 4, 2], N = 5 ;
L = [3, 5, 2, 4, 1], N = 5 ;
L = [2, 5, 3, 1, 4], N = 5
...
```

• Remark: Herbrand terms used to build the data structures

• But also used as constraints (e.g., length of already built list Xs in `no_attack(Xs, X, 1)`)

• Note that in fact we are using both ℜ and ℱԹ
The N Queens Problem in CLP(ℜ) – search space
The N Queens Problem in CLP(\(\mathbb{R}\))

- CLP(\(\mathbb{R}\)) generates internally a set of equations for each board size

\(\text{?- constrain_values(4, 4, Qs).}
\)

\(\text{Qs = [_A, _B, _C, _D]},\)

\(\text{nonzero(_E), _A=<.\ 4.\ 0, _E=\ 3.\ 0+_A-_D},\)

\(\text{nonzero(_F), _A>\ .\ 0, _F=\ -3.\ 0+_A-_D},\)

\(\text{nonzero(_G), _B=<.\ 4.\ 0, _G=\ 2.\ 0+_A-_C},\)

\(\text{nonzero(_H), _B>\ .\ 0, _H=\ -2.\ 0+_A-_C},\)

\(\text{nonzero(_I), _C=<.\ 4.\ 0, _I=\ 1+_A-_B},\)

\(\text{nonzero(_J), _C>\ .\ 0, _J=\ -1+_A-_B},\)

\(\text{nonzero(_K), _D=<.\ 4.\ 0, _K=\ 2.\ 0+_B-_D},\)

\(\text{nonzero(_L), _D>\ .\ 0, _L=\ -2.\ 0+_B-_D},\)

\(\text{nonzero(_M), _M=\ 1+_B-_C},\)

\(\text{nonzero(_N), _N=\ -1+_B-_C},\)

\(\text{nonzero(_O), _O=\ 1+_C-_D},\)

\(\text{nonzero(_P), _P=\ -1+_C-_D} \quad ?\)

- \(\text{place_queens(4, [_A, _B, _C, _D])}\) adds all possible queens in \([_A, _B, _C, _D]\).
The N Queens Problem in CLP(\textit{R})

- Constraints are (incrementally) simplified as new queens are added

\[
\text{?- constrain_values(4, 4, Qs), Qs = [3,1|_].}
\]
\[
\text{Qs = [_A,_B,_C,_D],}
\]
\[
\text{nonzero(_E), } _A .= 3.0, \quad _E .= 6.0 - _D, \\
\text{nonzero(_F), } _B .= 1.0, \quad _F .= - _D, \\
\text{nonzero(_G), } _C <= 4.0, \quad _G .= 5.0 - _C, \\
\text{nonzero(_H), } _C > 0, \quad _H .= 1.0 - _C, \\
\text{nonzero(_I), } _D <= 4.0, \quad _I .= 3.0 - _D, \\
\text{nonzero(_J), } _D > 0, \quad _J .= -1.0 - _D, \\
\text{nonzero(_K), } _K .= 2.0 - _C, \\
\text{nonzero(_L), } _L .= - _C, \\
\text{nonzero(_M), } _M .= 1 + _C - _D, \\
\text{nonzero(_N), } _N .= -1 + _C - _D ?}
\]

- Bad choices are rejected using constraint consistency:

\[
\text{?- constrain_values(4, 4, Qs), Qs = [3,2|_].}
\]
\[
\text{no}
\]
Finite Domains (I)

- A *finite domain* constraint solver associates each variable with a finite subset of \(\mathbb{Z} \).

 - Example: \(E \in \{-123, -10..4, 10\} \)

 Can be represented as, e.g.,
 \[
 E :: [-123, -10..4, 10]
 \]
 [Eclipse notation]

 or as
 \[
 E \text{ in } -123 \lor (-10..4) \lor 10
 \]
 [Ciao notation]

- We can:
 - Establish the *domain* of a variable (\(\text{in} \)).
 - Perform arithmetic operations (\(+, -, *, /\)) on the variables.
 - Establish linear relationships among arithmetic expressions (\(#=, #<, #=<\)).

- These operations / relationships narrow the domains of the variables.

- **Note:** In Ciao this functionality is loaded with a

  ```prolog
  :- use_package(clpfd).
  ```

 directive in the source code—or, equivalently, adding in the module declaration:

  ```prolog
  :- module(_, ..., [clpfd]).
  ```
Finite Domains (II)

Examples:

?- X #= A + B, A in 1..3, B in 3..7.
 X in 4..10, A in 1..3, B in 3..7

 • The respective minimums and maximums are added
 • There is no unique solution

?- X #= A - B, A in 1..3, B in 3..7.
 X in -6..0, A in 1..3, B in 3..7

 • The min value of X is the min value of A minus the max value of B
 • (Similar for the maximum values)

?- X #= A - B, A in 1..3, B in 3..7, X #>= 0.
 A = 3, B = 3, X = 0

 • Putting more constraints results in a unique solution.
Finite Domains (III)

Some useful primitives in finite domains:

- `domain(Variables, Min, Max)`: A shorthand for several in constraints

- `labeling(Options, VarList)`:
 - instantiates variables in `VarList` to values in their domains
 - `Options` dictates the search order

```prolog
?- domain([X, Y, Z], 1, 1000), X*X+Y*Y #= Z*Z, X #>= Y, labeling([], [X, Y, Z]).
X = 4, Y = 3, Z = 5,
X = 8, Y = 6, Z = 10,
X = 12, Y = 5, Z = 13,
...
```

- `minimize(G, X)`: solve `G` minimizing the value of variable `X`

- This can be used to minimize (c.f., maximize) a solution
A classic example: SEND MORE MONEY

% S E N D
% + M O R E
% ________
% M O N E Y

:- use_package(clpfd).

smm([S,E,N,D,M,O,R,Y]) :-
 domain([S,E,N,D,M,O,R,Y], 0, 9), % All digits 0..9
 0 #< S, 0 #< M, % No leftmost zeros
 all_different([S,E,N,D,M,O,R,Y]), % All digits different
 S*1000 + E*100 + N*10 + D + %
 M*1000 + O*100 + R*10 + E #= % Arith. constr.
 M*10000 + O*1000 + N*100 + E*10 + Y, %
 labeling([], [S,E,N,D,M,O,R,Y]). % Instantiate variables
A Project Management Problem (I)

- The job whose dependencies and task lengths are given by this graph...

... should be finished in 10 time units or less.

- Constraints:

\[
\text{pn1}(A,B,C,D,E,F,G) :\text{-} \\
\text{domain}([A,B,C,D,E,F,G], 0, 10), \\
A \#>= 0, \ G \#=< 10, \\
B \#>= A, \ C \#>= A, \ D \#>= A, \\
E \#>= B + 1, \ E \#>= C + 2, \\
F \#>= C + 2, \ F \#>= D + 3, \\
G \#>= E + 4, \ G \#>= F + 1.
\]
A Project Management Problem (II)

- Query:

```prolog
?- pn1(A,B,C,D,E,F,G).
A in 0..4, B in 0..5, C in 0..4, 
D in 0..6, E in 2..6, F in 3..9, G in 6..10.
```

- Note the slack of the variables

- Some additional constraints must be respected as well, but are not shown by default

- Minimize the total project time:

```prolog
?- minimize(pn1(A,B,C,D,E,F,G), G).
    A = 0, B in 0..1, C = 0, D in 0..2, 
    E = 2, F in 3..5, G = 6
```

- Variables without slack represent critical tasks
• **An alternative setting:**

• **We can accelerate task F at some cost**

```prolog
pn2(A, B, C, D, E, F, G, X) :-
    domain([A,B,C,D,E,F,G,X], 0, 10),
    A #>= 0, G #=< 10,
    B #>= A, C #>= A, D #>= A,
    E #>= B + 1, E #>= C + 2,
    F #>= C + 2, F #>= D + 3,
    G #>= E + 4, G #>= F + X.
```

• **We do not want to accelerate it more than needed!**

→ minimize \(G \) and maximize \(X \).

\[
\begin{align*}
A &= 0, & B \text{ in } 0..1, & C = 0, & D = 0, \\
E &= 2, & F = 3, & G = 6, & X = 3.
\end{align*}
\]
A Project Management Problem (IV)

• We have two independent tasks \(B \) and \(D \) whose lengths are not fixed:

\[
\begin{array}{c}
\text{A} \\
\text{B} \\
\text{C} \\
\text{D} \\
\text{E} \\
\text{F} \\
\text{G}
\end{array}
\]

• We can finish any of \(B \), \(D \) in 2 time units at best

• Some shared resource disallows finishing both tasks in 2 time units: they will take 6 time units
A Project Management Problem (V)

- Constraints describing the net:

```prolog
pn3(A,B,C,D,E,F,G,X,Y) :-
  domain([A,B,C,D,E,F,G,X,Y], 0, 10),
  A #>= 0, G #=< 10,
  X #>= 2, Y #>= 2, X + Y #= 6,
  B #>= A, C #>= A, D #>= A,
  E #>= B + X, E #>= C + 2,
  F #>= C + 2, F #>= D + Y,
  G #>= E + 4, G #>= F + 1.
```

- Query:

```prolog
?- minimize(pn3(A,B,C,D,E,F,G,X,Y),G).
A = 0, B = 0, C = 0, D in 0..1, E = 2, F in 4..5, X = 2, Y = 4, G = 6
```

- I.e., we must devote more resources to task \(B \)
- All tasks but \(F \) and \(D \) are critical now
- Sometimes, \(\text{minimize/2} \) not enough to provide best solution (pending constr.):

```prolog
?- minimize(pn3(A,B,C,D,E,F,G,X,Y),G), labeling([], [D,F]).
```
The N-Queens Problem Using Finite Domains (in Ciao clpfd syntax)

- By far, the fastest implementation

```prolog
:- use_package(clpfd).
queens(N, Qs, Type) :- % Type is labeling strategy
    constrain_values(N, N, Qs), % Constrain before placing
    all_different(Qs), % Using built-in constraint
    labeling(Type, Qs). % Labeling places the queens

constrain_values(0, _N, []). % Same as CLP(R) version
constrain_values(N, Range, [X|Xs]) :-
    N > 0, N1 is N - 1, X in 1 .. Range, % Limits X values
    constrain_values(N1, Range, Xs), no_attack(Xs, X, 1).

no_attack([], _Queen, _Nb). % Same as CLP(R) version
no_attack([Y|Ys], Queen, Nb) :- % but using clpfd primitives
    Queen #= Y + Nb, Queen #= Y - Nb, Nb1 is Nb + 1,
    no_attack(Ys, Queen, Nb1).
```

- Query: ?- queens(20, Q, [ff]). (Type is the type of labeling desired.)

 Q = [1,3,5,14,17,4,16,7,12,18,15,19,6,10,20,11,8,2,13,9]?
CLP(\(\mathcal{F}\mathcal{T}\)) (a.k.a. Logic Programming)

- Equations over Finite Trees
- Check that two trees are isomorphic (same elements in each level)

```prolog
iso(Tree, Tree).
iso(t(R, I1, D1), t(R, I2, D2)) :-
    iso(I1, D2),
    iso(D1, I2).
```

?- iso(t(a, b, t(X, Y, Z)), t(a, t(u, v, W), L)).
L = b, X = u, Y = v, Z = W ? ;
L = b, X = u, Y = W, Z = v ? ;
L = b, W = t(_C, _B, _A), X = u, Y = t(_C, _A, _B), Z = v ? ;
L = b, W = t(_E, t(_D, _C, _B), _A), X = u, Y = t(_E, _A, t(_D, _B, _C)),
 Z = v ? ;
```
CLP(WE)

- Equations over finite strings
- Primitive constraints: concatenation (.), string length (::)
- Find strings meeting some property:

  ?- "123".Z = Z."231", Z::0.  
  no

  ?- "123".Z = Z."231", Z::3.  
  no

  ?- "123".Z = Z."231", Z::1.  
  Z = "1"

  ?- "123".Z = Z."231", Z::2.  
  no

  ?- "123".Z = Z."231", Z::4.  
  Z = "1231"

- These constraint solvers are very complex
- Often incomplete algorithms are used
Word equations plus arithmetic over $\mathbb{Q}$ (rational numbers)

Prove that the sequence $x_{i+2} = |x_{i+1}| - x_i$ has a period of length 9 (for any starting $x_0, x_1$)

Strategy: describe the sequence, try to find a subsequence such that the period condition is violated

Sequence description (syntax is Prolog III slightly modified):

```prolog
seq(<Y, X>). abs(Y, Y) :- Y >= 0.
seq(<Y1 - X, Y, X>.U) :- abs(Y, -Y) :- Y < 0.
 seq(<Y, X>.U)
 abs(Y, Y1).
```

Query: *Is there any 11–element sequence such that the 2–tuple initial seed is different from the 2–tuple final subsequence (the seed of the rest of the sequence)*?

```prolog
?- seq(U.V.W), U::2, V::7, W::2, U#W.
fail
```
Summarizing

- **In general:**
  - Data structures (Herbrand terms) for free
  - Each logical variable may have constraints associated with it (and with other variables)

- **Problem modeling:**
  - Rules represent the problem at a high level
    - Program structure, modularity
    - Recursion used to set up constraints
  - Constraints encode problem conditions
  - Solutions also expressed as constraints

- **Combinatorial search problems:**
  - CLP languages provide backtracking: enumeration is easy
  - Constraints keep the search space manageable

- **Tackling a problem:**
  - Keep an open mind: often new approaches possible
Complex Constraints

• Some complex constraints allow expressing simpler constraints
• May be operationally treated as passive constraints
• E.g.: cardinality operator \( #(L, [c_1, \ldots, c_n], U) \) meaning that the number of true constraints lies between \( L \) and \( U \) (which can be variables themselves)
  ◦ If \( L = U = n \), all constraints must hold
  ◦ If \( L = U = 1 \), one and only one constraint must be true
  ◦ Constraining \( U = 0 \), we force the conjunction of the negations to be true
  ◦ Constraining \( L > 0 \), the disjunction of the constraints is specified

• Disjunctive constructive constraint: \( c_1 \lor c_2 \)
  ◦ If properly handled, avoids search and backtracking
  ◦ E.g.: \( nz(X) \leftarrow X > 0. \)
  \( nz(X) \leftarrow X < 0. \)
  \( nz(X) \leftarrow X < 0 \lor X > 0. \)
Other Primitives

- CLP(\(\mathcal{X}\)) systems usually provide additional primitives

- E.g.:
  - `enum(X)` enumerates \(X\) inside its current domain
  - `maximize(X)` (c.f. `minimize(X)`) works out maximum (minimum value) for \(X\) under the active constraints
  - `delay Goal until Condition` specifies when the variables are instantiated enough so that `Goal` can be effectively executed
    - * Its use needs deep knowledge of the constraint system
    - * Also widely available in Prolog systems
    - * Not really a constraint: control primitive
Implementation Issues: Satisfiability

• Algorithms must be *incremental* in order to be practical
• Incrementality refers to the performance of the algorithm
• It is important that algorithms to decide satisfiability have a good average case behavior
• Common technique: use a *solved form* representation for satisfiable constraints
• Not possible in every domain
• E.g. in $\mathcal{FT}$ constraints are represented in the form $x_1 = t_1(\tilde{y}), \ldots, x_n = t_n(\tilde{y})$, where
  ◦ each $t_i(\tilde{y})$ denotes a term structure containing variables from $\tilde{y}$
  ◦ no variable $x_i$ appears in $\tilde{y}$

(i.e., idempotent substitutions, guaranteed by the unification algorithm)
Implementation Issues: Backtracking in CLP(\(\mathcal{X}\))

- Implementation of backtracking more complex than in Prolog
- Need to record changes to constraints
- Constraints typically stored as an association of variable to expression
- Trailing expressions is, in general, costly: cannot be stored at every change
- Avoid trailing when there is no choice point between two successive changes
- A standard technique: use *time stamps* to compare the age of the choice point with the age of the variable at the time of last trailing

\[
\begin{align*}
X < 9, & \quad Y = 5, \quad Z = 4, \quad W = 1 \quad \text{trail } W, \text{ timestamp it} \\
X < Y + 4, & \quad Y = 4 + W, \quad Z = 4 \quad \text{trail } X, Y, Z, \text{ timestamp them} \\
X < Y + Z, & \quad Y = Z + W \quad \text{timestamp } X, Y, Z, W
\end{align*}
\]
Constraint domains often implemented now in Prolog-based systems using:

- Attributed variables [Neumerkel, Holzbaur]:
  - Provide a hook into unification.
  - Allow attaching an attribute to a variable.
  - When unification with that variable occurs, user-defined code is called.
  - Used to implement constraint solvers (and other applications, e.g., distributed execution).

- Constraint handling rules (CHR):  
  - Higher-level abstraction.
  - Allows defining propagation algorithms (e.g., constraint solvers) in a high-level way.
  - Often translated to attributed variable-based low-level code.
Attributed Variables Example: Freeze

- **Primitives:**
  - attach_attribute(X,C)
  - get_attribute(X,C)
  - detach_attribute(X)
  - update_attribute(X,C)
  - verify_attribute(C,T)
  - combine_attributes(C1,C2)

- **Example: Freeze**

```prolog
freeze(X, Goal) :-
 attach_attribute(V, frozen(V,Goal)),
 X = V.

verify_attribute(frozen(Var,Goal), Value) :-
 detach_attribute(Var),
 Var = Value,
 call(Goal).

combine_attributes(frozen(V1,G1), frozen(V2,G2)) :-
 detach_attribute(V1),
 detach_attribute(V2),
 V1 = V2,
 attach_attribute(V1, frozen(V1,(G1,G2))).
```
Programming Tips

- Over-constraining:
  - Seems to be against general advice “do not perform extra work”, but can actually cut more search space
  - Specially useful if infer is weak
  - Or else, if constraints outside the domain are being used

- Use control primitives (e.g., cut) very sparingly and carefully

- Determinacy is more subtle, (partially due to constraints in non–solved form)

- Choosing a clause does not preclude trying other exclusive clauses (as with Prolog and plain unification)

- Compare:

  \[
  \begin{align*}
  \text{max}(X, Y, X) & : - X \succ Y. & \text{?- max}(X, Y, Z). \\
  \text{max}(X, Y, Y) & : - X \preceq Y. & Z \ldoteq X, Y \prec X ;
  \end{align*}
  \]

  with

  \[
  \begin{align*}
  \text{max}(X, Y, X) & : - X \succ Y, !. & \text{?- max}(X, Y, Z). \\
  \text{max}(X, Y, Y) & : - X \preceq Y. & Z \ldoteq X, Y \prec X
  \end{align*}
  \]
As mentioned before, CLP defines a class of languages obtained by
- Specifying the particular constraint system(s)
- Specifying the *Computation* and *Selection* rules

Most practical systems include also the Herbrand domain with “=”, but then add different domains and/or solver algorithms

Most use the *Computation* and *Selection* rules of Prolog
Some Classic CLP Systems

- **CLP(ℜ):**
  - Linear arithmetic over reals (\(=, \leq, >\)) – CLP(R)
  - Incremental Gaussian elimination and incremental Simplex

- **PrologIII:**
  - CLP(R)
  - Boolean (\(=\)), 2-valued Boolean Algebra – CLP(B)
  - Infinite (rational) trees (\(=, \neq\))
  - Equations over finite strings – CLP(WE)

- **CHIP** (and its successor: the ILOG library):
  - CLP(FD), CLP(B), CLP(Q)
  - User–defined constraints and solver algorithms

- **BNR-Prolog / CLP(BNR):**
  - Arithmetic over reals (closed intervals); CLP(FD), CLP(B).

- **RISC–CLP:**
  - Arithmetic constraints over reals, also non-linear (using Presburger arithmetic)
Some Current CLP Systems

- **clp(FD)/gprolog:**
  - CLP(FD).

- **SICStus:**
  - CLP(R), CLP(Q), CLP(FD)
  - Attributed variables and CHR for adding domains.

- **ECLiPS:**
  - CLP(R), CLP(Q), CLP(FD).

- **SWI:**
  - CLP(R), CLP(Q), CLP(FD), CLP(B).
  - Attributed variables and CHR for additional domains.

- **Ciao:**
  - CLP(R), CLP(Q), CLP(FD).
  - Attributed variables and CHR for additional domains.
  - Different domains can be activated on a per-module basis (packages).

→ Most Prolog systems now support constraints!
Some origins and other instances

- **Ancestors:**
  - SKETCHPAD (1963), Waltz’s algorithm (1965?), THINGLAB (1981), MACSYMA (1983), ...

- **Constraints in logic languages:** – the origin of “constraint programming”:
  - General theory developed (Jaffar and Lassez ’97).
  - First, standalone systems developed: clpr, CHIP, ...
  - Later, included in mainstream Prolog implementations.
  - Has given to a whole

- **Constraints in imperative languages:**
  - Equation solving libraries (ILOG, GECODE, ...)
  - Timestamping of variables: \( x := x + 1 \) ⇔ \( x_{i+1} := x_i + 1 \)
    (similar to iterative methods in numerical analysis)

- **Constraints in functional languages, via extensions:**
  - Evaluation of expressions including free variables.
  - *Absolute Set Abstraction.*