Computational Logic

Constraint Logic Programming
Constraints

- Constraint: conditions that a solution must satisfy
 - \(X + Y = 20 \)
 - \(X \land Y \) is true
 - The third field of the data structure is greater than the second
 - The murderer is one of those who had met the cabaret entertainer

- CLP: LP plus the ability to compute with some form of constraints (which are solved by the system during computation)

- Features of a CLP system:
 - Domain of computation (reals, rationals, integers, booleans, structures, …)
 - *Expressions* that can be built \((+, *, \land, \lor)\)
 - *Constraints* allowed: equations, disequations, inequations, etc.
 \((=, \neq, \leq, \geq, <, >)\)
 - *Constraint solving algorithms*: simplex, gauss, etc.

- Solutions: assignments to variables, or new constraints among variables.
A comparison with classic LP (I)

- Example (**plain Prolog**): \(q(X, Y, Z) :- Z = f(X, Y). \)

  ```prolog
  |- q(3, 4, Z).
  Z = f(3,4)
  
  |- q(X, Y, f(3,4)).
  X = 3, Y = 4
  
  |- q(X, Y, Z).
  Z = f(X,Y)
  ```

- Example (**plain Prolog**): \(p(X, Y, Z) :- Z \text{ is } X + Y. \)

  ```prolog
  |- p(3, 4, Z).
  Z = 7
  
  |- p(X, 4, 7).
  {INSTANTIATION ERROR}  \( \leftarrow \) is/2 not reversible, does not work!
  ```
A Comparison with classic LP (II)

- Example (CLP(ℜ) package):

```prolog
:- use_package(clpr).
p(X, Y, Z) :- Z =. X + Y.

?- p(3, 4, Z).
Z =. 7

?- p(X, 4, 7).
X =. 3

4 ?- p(X, Y, 7).
X =. 7 - Y ← with clpr arithmetic is reversible!
```
A Comparison with classic LP (III)

- **Advantages:**
 - Helps making programs expressive and flexible.
 - May save much coding.
 - In some cases, more efficient than classic LP programs due to solvers typically being very efficiently implemented.
 - Also, efficiency due to search space reduction:
 - LP: generate-and-test.
 - CLP: constrain-and-generate.

- **Disadvantages:**
 - Complexity of solver algorithms (simplex, gauss, etc) can affect performance.

- **Solutions:**
 - better algorithms
 - compile-time optimizations (program transformation, global analysis, etc)
 - parallelism
Example of Search Space Reduction

- Using **plain Prolog** (generate–and–test):

  ```prolog
  % Find three consecutive numbers in the p/1 relation.
  solution(X, Y, Z) :-
      p(X), p(Y), p(Z),
      test(X, Y, Z).
  test(X, Y, Z) :- Y is X + 1, Z is Y + 1.
  ```

- Query:

  ```prolog
  ?- solution(X, Y, Z).
  X = 14, Y = 15, Z = 16 ? ;
  no
  ```

- 458 steps (all solutions: 475 steps).
Example of Search Space Reduction

- Using the **CLP(\mathbb{R})** package (generate–and–test):

  ```prolog
  % Find three consecutive numbers in the p/1 relation.
  :- use_package(clpr).
  solution(X, Y, Z) :-
    p(X), p(Y), p(Z),
    test(X, Y, Z).


  test(X, Y, Z) :- Y == X + 1, Z == Y + 1.
  
  Query:
  
  ?- solution(X, Y, Z).
  X == 14, Y == 15, Z == 16 ? ;
  no
  
  458 steps (all solutions: 475 steps).
  ```
Generate–and–test Search Tree

```
g
X=11  X=3  X=7  X=16  X=15
A1    A2    A3    A4    A5

Y=11  Y=3  Y=7  Y=16  Y=15
Y=14
B1    B2    B3    B4    B5

Z=11  Z=3  Z=7  Z=16  Z=15  Z=14
```

A
B
Example of Search Space Reduction

- **Move** \texttt{test(X, Y, Z)} **to the beginning** (constrain–and–generate):
 \%
 Find three consecutive numbers in the \texttt{p/1} relation.

 \begin{verbatim}
 :- use_package(clpr).
 solution(X, Y, Z) :-
 test(X, Y, Z),
 p(X), p(Y), p(Z).
 \end{verbatim}

- Using **plain Prolog**: \texttt{test(X, Y, Z):-Y is X +1, Z is Y +1.}
 \begin{verbatim}
 ?- solution(X, Y, Z).
 \{INSTANTIATION ERROR\}
 \end{verbatim}

- Using the **CLP(\texttt{ℜ}) package**: \texttt{test(X, Y, Z):-Y =. X +1, Z =. Y +1.}
 \begin{verbatim}
 ?- solution(X, Y, Z).
 X =. 14, Y =. 15, Z =. 16 ? ;
 no
 \end{verbatim}

In **11 steps** (and all solutions in **11 steps**)!
Constrain–and–generate Search Tree

```
g
X=11  X=3  X=7  X=16  X=15  X=14
     /    |    |    |    |    |
    Y=16  Y=15 |
         /    |    |
        Z=16 |
```
Constraint Systems: \(\text{CLP}(\mathcal{X}) \)

- The semantics is parameterized by the *constraint domain* \(\mathcal{X} \):
 \(\text{CLP}(\mathcal{X}) \), where \(\mathcal{X} \equiv (\Sigma, D, L, T) \):
 - \(\Sigma \): set of *predicate* and *function symbols*, together with their arity
 - \(L \subseteq \Sigma \)–formulae: constraints
 - \(D \): the set of actual elements in the constraint domain
 - \(D \): meaning of predicate and function symbols (and hence, constraints).
 - \(T \): a first–order theory (axiomatizes some properties of \(D \))

- \((D, L)\) is a *constraint domain*

- Assumptions:
 - \(L \) built upon a first–order language
 - \(= \in \Sigma \) and \(= \) is *identity* in \(D \)
 - There are identically false and identically true constraints in \(L \)
 - \(L \) is closed w.r.t. renaming, conjunction, and existential quantification
Constraint Domains (I)

- $\Sigma = \{0, 1, +, *, =, <, \leq\}$, $D = \mathbb{R}$ (the reals), D interprets Σ as usual, $\mathcal{R} = (D, \mathcal{L})$
 - Arithmetic over the reals ("\mathcal{R}" domain).
 - Eg.: $x^2 + 2xy < \frac{y}{x} \land x > 0$ ($\equiv xxx + xxy + xxy < y \land 0 < x$)
 - Question: is 0 needed? How can it be represented?

- $\Sigma' = \{0, 1, +, =, <, \leq\}$, $\mathcal{R}_{Lin} = (D', \mathcal{L}')$
 - Linear arithmetic ("\mathcal{R}_{Lin}" domain)
 - Eg.: $3x - y < 3$ ($\equiv x + x + x < 1 + 1 + 1 + y$)

- $\Sigma'' = \{0, 1, +, =\}$, $\mathcal{R}_{LinEq} = (D'', \mathcal{L}'')$
 - Linear equations ("\mathcal{R}_{LinEq}" domain)
 - Eg.: $3x + y = 5 \land y = 2x$

- A corresponding set of domains can be defined on the rationals ("\mathbb{Q}" domain)
Constraint Domains (II)

- A very special domain:
 - $\Sigma = \{ \text{<constant and function symbols>}, = \}$
 - $D = \{ \text{finite trees} \}$
 - D interprets Σ as tree constructors
 * Each $f \in \Sigma$ with arity n maps n trees to a tree with root labeled f and whose subtrees are the arguments of the mapping
 - Constraints: syntactic tree equality
 - $\mathcal{FT} = (D, \mathcal{L})$

 → **Equality constraints over the Herbrand domain** (\mathcal{FT} domain)
 - Eg.: $g(h(Z), Y) = g(Y, h(a))$

- LP \equiv CLP(\mathcal{FT})
 - I.e., classical LP can be viewed as constraint logic programming over *Herbrand terms* with a single *constraint predicate symbol*: \equiv.
Constraint Domains (III)

- $\Sigma = \{<constants>, \lambda, _, ::, =\}$
- $D = \{\text{finite strings of constants}\}$
- D interprets $_$ as string concatenation, $::$ as string length
 → Equations over strings of constants (D domain)
 ◦ Eg.: $X.A.X = X.A$

- $\Sigma = \{0, 1, \neg, \land, =\}$
- $D = \{true, false\}$
- D interprets symbols in Σ as boolean functions
- $BOOL = (D, L)$
 → Boolean constraints ($BOOL$ domain)
 ◦ Eg.: $\neg(x \land y) = 1$
CLP(\(\mathcal{L}\)) Programs

- Recall that:
 - \(\Sigma\) is a set of predicate and function symbols
 - \(\mathcal{L} \subseteq \Sigma\)–formulae are the constraints

- \(\Pi \subseteq \Sigma\): set of predicate symbols definable by a program
 - Atom: \(p(t_1, t_2, \ldots, t_n)\), where \(p \in \Pi\) and \(t_1, t_2, \ldots, t_n\) are terms
 - Primitive constraint: \(p(t_1, t_2, \ldots, t_n)\), where \(t_1, t_2, \ldots, t_n\) are terms and \(p \in \Sigma\) is a predicate symbol
 - Constraint: (first–order) formula built from primitive constraints

- The class of constraints will vary (generally only a subset of formulas are considered constraints)

- A CLP program is a collection of rules of the form \(a \leftarrow b_1, \ldots, b_n\) where \(a\) is an atom and the \(b_i\)’s are atoms or constraints

- A fact is a rule \(a \leftarrow c\) where \(c\) is a constraint

- A goal (or query) \(G\) is a conjunction of constraints and atoms
A case study: CLP(ℜ)

- CLP(ℜ): language based on Prolog + constraint solving over the reals (ℜLin)
 - Same execution strategy as standard Prolog (depth–first, left–to–right)
 - Allows linear equations and disequations over the reals
 - Linear constraints are solved; non-linear constraints are passive: delayed until linear or simple checks:
 * $X \cdot Y = 7$ becomes linear when X is assigned a definite value
 * $X \cdot X + 2 \cdot X + 1 = 0$ becomes a check when X is assigned a definite value
 - Prolog arithmetic is subsumed by constraint solving
- Note: CLP(ℜ) is really CLP((ℜ, ℱT)) — ℱT is often omitted.
- Supported in modern Prologs coexisting with the ISO primitives is/2, >/2 etc.
- In Ciao, via the clpr package:
 - Uses .=., .>. etc. to distinguish the clpr constraints from the ISO-Prolog arithmetic primitives.
 - I.e., $X .= . Y + 5$, $Y .> . 1$ vs. $X \text{ is } Y + 5$, $Y > 1$
Linear Equations (CLP(ℜ) package)

- Vector × vector multiplication (dot product):
 \[\cdot : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R} \]
 \[(x_1, x_2, \ldots, x_n) \cdot (y_1, y_2, \ldots, y_n) = x_1 \cdot y_1 + \cdots + x_n \cdot y_n\]

- Vectors represented as lists of numbers

  ```prolog
  :- use_package(clpr).
  prod([], [], Result) :- Result .=. 0.
  prod([X|Xs], [Y|Ys], Result) :-
      Result .=. X * Y + Rest, prod(Xs, Ys, Rest).
  ```

- Unification becomes constraint solving!

  ```prolog
  ?- prod([2, 3], [4, 5], K).
  K .=. 23
  ?- prod([2, 3], [5, X2], 22).
  X2 .=. 4
  ?- prod([2, 7, 3], [Vx, Vy, Vz], 0).
  Vx .=. -1.5*Vz - 3.5*Vy
  ```

- Any computed answer is, in general, an equation over the variables in the query
Systems of Linear Equations (CLP(ℜ))

- Can we solve systems of equations? E.g.,

\[3x + y = 5\]
\[x + 8y = 3\]

- Write them down at the top level prompt:

```prolog
?- prod([3, 1], [X, Y], 5), prod([1, 8], [X, Y], 3).
X = 1.6087, Y = 0.173913
```

- A more general predicate can be built mimicking the mathematical vector notation \(A \cdot x = b\):

```prolog
system(_Vars, [], []).
\n\nsystem(Vars, [Co|Coefs], [Ind|Indeps]) :-
    prod(Vars, Co, Ind),
    \n    system(Vars, Coefs, Indeps).
```

- We can now express (and solve) equation systems

```prolog
?- system([X, Y], [[3, 1], [1, 8]], [5, 3]).
X = 1.6087, Y = 0.173913
```
Non–linear Equations (CLP(ℜ))

- Non–linear equations are delayed

\[- \sin(X) \implies \cos(X) \]
\[\sin(X) \implies \cos(X)\]

- This is also the case if there exists some procedure to solve them

\[- X^2 + 2X + 1 = 0.\]
\[-2X - 1 = X^2\]

- Reason: no general solving technique is known. CLP(ℜ) solves only linear (dis)equations.

- Once equations become linear, they are handled properly:

\[- X \implies \cos(\sin(Y)), Y \implies 2 + Y^3.\]
\[Y \implies -1, X \implies 0.666367\]

- Disequations are solved using a modified, incremental Simplex

\[- X + Y \leq 4, Y \geq 4, X \geq 0.\]
\[Y \geq 4, X \geq 0\]
Fibonacci Revisited (Prolog)

- Fibonacci numbers:

\[
\begin{align*}
F_0 & = 0 \\
F_1 & = 1 \\
F_{n+2} & = F_{n+1} + F_n
\end{align*}
\]

- (The good old) Prolog version:

```prolog
fib(0, 0).
fib(1, 1).
fib(N, F) :-
    N > 1,
    N1 is N - 1,
    N2 is N - 2,
    fib(N1, F1),
    fib(N2, F2),
    F is F1 + F2.
```

- Can only be used with the first argument instantiated to a number
Fibonacci Revisited (CLP(ℜ))

- CLP(ℜ) package version: syntactically similar to the previous one:

```prolog
:- use_package(clpr).
fib(N,N) :- N =. 0.
fib(N,N) :- N =. 1.
fib(N,R) :- N >. 1, F1 >=. 0, F2 >=. 0,
         N1 =. N - 1, N2 =. N - 2,
         fib(N1,F1), fib(N2,F2),
         R =. F1 + F2.
```

- Note all constraints included in program (F1 >= 0, F2 >= 0) – good practice!
- Only real numbers and equations used (no data structures, no other constraint system): “pure CLP(ℜ)”
- Semantics greatly enhanced! E.g.:

```
?- fib(N, F).
F =. 0, N =. 0 ;
F =. 1, N =. 1 ;
F =. 1, N =. 2 ;
F =. 2, N =. 3 ;
```
Analog RLC circuits (CLP(ℜ))

- Analysis and synthesis of analog circuits
- RLC network in steady state
- Each circuit is composed either of:
 - A simple component, or
 - A connection of simpler circuits
- For simplicity, we will suppose subnetworks connected only in parallel and series → Ohm’s laws will suffice (other networks need global, i.e., Kirchoff’s laws)
- We want to relate the current (I), voltage (V) and frequency (W) in steady state
- Entry point: circuit(C, V, I, W) states that:
 across the network C, the voltage is V, the current is I and the frequency is W
- V and I must be modeled as complex numbers (the imaginary part takes into account the angular frequency)
- Note that Herbrand terms are used to provide data structures
Analog RLC circuits (CLP(ℜ))

- Complex number \(X + Y i \) modeled as \(\text{c}(X, Y) \)

- Basic operations:

```prolog
:- use_package(clpr).

c_add(c(Re1, Im1), c(Re2, Im2), c(Re12, Im12)) :-
    Re12 == Re1 + Re2,
    Im12 == Im1 + Im2.

c_mult(c(Re1, Im1), c(Re2, Im2), c(Re3, Im3)) :-
    Re3 == Re1 * Re2 - Im1 * Im2,
    Im3 == Re1 * Im2 + Re2 * Im1.
```

(equality is \(\text{c} = \text{c}(R, I), \text{c}(R, I) \)), can be left to [extended] unification)
Analog RLC circuits (CLP(\mathbb{R}))

- Circuits in series:

```prolog
circuit(series(N1, N2), V, I, W) :-
    c_add(V1, V2, V),
    circuit(N1, V1, I, W),
    circuit(N2, V2, I, W).
```

- Circuits in parallel:

```prolog
circuit(parallel(N1, N2), V, I, W) :-
    c_add(I1, I2, I),
    circuit(N1, V, I1, W),
    circuit(N2, V, I2, W).
```
Analog RLC circuits (CLP(ℜ))

Each basic component can be modeled as a separate unit:

- **Resistor:** \(V = I \times (R + 0i) \)

  ```prolog
  circuit(resistor(R), V, I, _W) :-
  c_mult(I, c(R, 0), V).
  ```

- **Inductor:** \(V = I \times (0 + WLi) \)

  ```prolog
  circuit(inductor(L), V, I, W) :-
  Im =. W * L,
  c_mult(I, c(0, Im), V).
  ```

- **Capacitor:** \(V = I \times (0 - \frac{1}{WC}i) \)

  ```prolog
  circuit(capacitor(C), V, I, W) :-
  Im =. -1 / (W * C),
  c_mult(I, c(0, Im), V).
  ```
Analog RLC circuits (CLP(R))

Example:

\[R = ?, \quad C = ? \]

\[V = 4.5, \quad \omega = 2400 \]

\[I = 0.65, \quad L = 0.073 \]

?- circuit(parallel(inductor(0.073),
series(capacitor(C), resistor(R))),
c(4.5, 0), c(0.65, 0), 2400).

\[R = 6.91229, \quad C = 0.00152546 \]

?- circuit(C, c(4.5, 0), c(0.65, 0), 2400).
The N Queens Problem

- Problem:
 place N chess queens in a $N \times N$ board such that they do not attack each other

- Data structure: a list holding the column position for each row

- The final solution is a permutation of the list $[1, 2, \ldots, N]$

 ![Diagram of queens on a chessboard]

- E.g.: the solution is represented as $[2, 4, 1, 3]$

- General idea:
 - Start with partial solution
 - Nondeterministically select new queen
 - Check safety of new queen against those already placed
 - Add new queen to partial solution if compatible; start again with new partial solution
The N Queens Problem in Prolog

queens(N, Qs) :- queens_list(N, Ns), % E.g., Ns=[4,3,2,1]
 queens(Ns, [], Qs).

queens([], Qs, Qs). % All queens placed!
queens(Unplaced, Placed, Qs) :-
 select(Unplaced, Q, NewUnplaced), % E.g. Q=4, NewU=[3,2,1]
 no_attack(Placed, Q, 1),
 queens(NewUnplaced, [Q|Placed], Qs).% OK->Choose next q

no_attack([], _Queen, _Nb).
no_attack([Y|Ys], Queen, Nb) :-
 Queen =\= Y + Nb, Queen =\= Y - Nb, Nb1 is Nb + 1,
 no_attack(Ys, Queen, Nb1).

select([X|Ys], X, Ys).
select([Y|Ys], X, [Y|Zs]) :- select(Ys, X, Zs).

queens_list(0, []).
queens_list(N, [N|Ns]) :-
 N > 0, N1 is N - 1, queens_list(N1, Ns).
The N Queens Problem in Prolog - search space
The N Queens Problem in CLP(\(\mathbb{R}\)) (in Ciao clpr syntax)

:- use_package(clpr).
queens(N,Qs) :- constrain_values(N,N,Qs), place_queens(N,Qs).

constrain_values(0, _N, []). % Constrain before placing
constrain_values(N, Range, [X|Xs]) :-
 N > 0, X > 0, X <= Range, N1 = N - 1,
 constrain_values(N1, Range, Xs), no_attack(Xs, X, 1).

no_attack([], _Queen, _Nb). % Identical to Prolog version
no_attack([Y|Ys], Queen, Nb) :- % but using constraints
 Queen <> Y + Nb, Queen <> Y - Nb, Nb1 = Nb + 1,
 no_attack(Ys, Queen, Nb1).

place_queens(0, _).
place_queens(N, Q) :-
 N > 0,
 member(N, Q),
 N1 = N - 1,
 place_queens(N1, Q).
The N Queens Problem in CLP(\(\mathcal{R}\))

- This last program can attack the problem in its most general instance:

```prolog
?- queens(N,L).
L = [], N == 0 ;
L = [1], N == 1 ;
L = [2, 4, 1, 3], N == 4 ;
L = [3, 1, 4, 2], N == 4 ;
L = [5, 2, 4, 1, 3], N == 5 ;
L = [5, 3, 1, 4, 2], N == 5 ;
L = [3, 5, 2, 4, 1], N == 5 ;
L = [2, 5, 3, 1, 4], N == 5
...
```

- Remark: Herbrand terms used to build the data structures

- But also used as constraints (e.g., length of already built list \(Xs\) in \(\text{no_attack}(Xs, X, 1)\))

- Note that in fact we are using both \(\mathcal{R}\) and \(\mathcal{FT}\)
The N Queens Problem in CLP(ℜ) – search space
The N Queens Problem in CLP(ℜ)

- CLP(ℜ) generates internally a set of equations for each board size

```prolog
?- constrain_values(4, 4, Qs).
Qs = [_A, _B, _C, _D],
nonzero(_E), _A=<.4.0, _E.=.3.0+_A-_D,
nonzero(_F), _A>.0, _F.=.-3.0+_A-_D,
nonzero(_G), _B=<.4.0, _G.=.2.0+_A-_C,
nonzero(_H), _B>.0, _H.=.-2.0+_A-_C,
nonzero(_I), _C=<.4.0, _I.=.1+_A-_B,
nonzero(_J), _C>.0, _J.=.-1+_A-_B,
nonzero(_K), _D=<.4.0, _K.=.2.0+_B-_D,
nonzero(_L), _D>.0, _L.=.-2.0+_B-_D,
nonzero(_M), _M.=.1+_B-_C,
nonzero(_N), _N.=.-1+_B-_C,
nonzero(_O), _O.=.1+_C-_D,
nonzero(_P), _P.=.-1+_C-_D
```

The N Queens Problem in CLP(\(\mathbb{R}\))

- Constraints are (incrementally) simplified as new queens are added

```prolog
?- constrain_values(4, 4, Qs), Qs = [3,1|_].
Qs = [_A,_B,_C,_D],
nonzero(_E), _A.=3.0, _E.=6.0-_D,
nonzero(_F), _B.=1.0, _F.=-_D,
nonzero(_G), _C=<4.0, _G.=5.0-_C,
nonzero(_H), _C>0, _H.=1.0-_C,
nonzero(_I), _D=<4.0, _I.=3.0-_D,
nonzero(_J), _D>0, _J.=1.0-_D,
nonzero(_K), _K.=2.0-_C,
nonzero(_L), _L.=-_C,
nonzero(_M), _M.=1+_C-_D,
nonzero(_N), _N.=1+_C-_D ?
```

- Bad choices are rejected using constraint consistency:

```prolog
?- constrain_values(4, 4, Qs), Qs = [3,2|_].
no
```
Finite Domains (I)

- A *finite domain* constraint solver associates each variable with a finite subset of \(\mathbb{Z} \).
- Example: \(E \in \{-123, -10..4, 10\} \)

 Can be represented as, e.g., \(E :: [-123, -10..4, 10] \)
 or as \(E \text{ in } -123 \lor (-10..4) \lor 10 \)
 [Eclipse notation]
 [Ciao notation]

- We can:
 - Establish the *domain* of a variable (\texttt{in}).
 - Perform arithmetic operations (\(+, -, *, / \)) on the variables
 - Establish linear relationships among arithmetic expressions (\(#=, #<, #=< \))

- These operations / relationships narrow the domains of the variables

- **Note:** In Ciao this functionality is loaded with a

  ```prolog
  :- use_package(clpfd).
  ```

 directive in the source code —or, equivalently, adding in the module declaration:

  ```prolog
  :- module(_,...,[clpfd]).
  ```
Finite Domains (II)

Examples:

?- X #= A + B, A in 1..3, B in 3..7.
X in 4..10, A in 1..3, B in 3..7

- The respective minimums and maximums are added
- There is no unique solution

?- X #= A - B, A in 1..3, B in 3..7.
X in -6..0, A in 1..3, B in 3..7

- The min value of X is the min value of A minus the max value of B
- (Similar for the maximum values)

?- X #= A - B, A in 1..3, B in 3..7, X #>= 0.
 A = 3, B = 3, X = 0

- Putting more constraints results in a unique solution.
Finite Domains (III)

Some useful primitives in finite domains:

- `domain(Variables, Min, Max)`: A shorthand for several constraints

- `labeling(Options, VarList)`:
 - instantiates variables in `VarList` to values in their domains
 - `Options` dictates the search order

```
?- domain([X, Y, Z], 1, 1000), X*X + Y*Y #= Z*Z, X #>= Y,  
   labeling([], [X, Y, Z]).
X = 4, Y = 3, Z = 5,  
X = 8, Y = 6, Z = 10,  
X = 12, Y = 5, Z = 13,  
...
```

- `minimize(G, X)`: solve `G` minimizing the value of variable `X`

- This can be used to minimize (c.f., maximize) a solution
A classic example: **SEND MORE MONEY**

% S E N D
% + M O R E
% _________
% M O N E Y

:- use_package(clpfd).

\[
\text{smm}([S,E,N,D,M,O,R,Y]) :-
\]
\[
\begin{align*}
\text{domain}([S,E,N,D,M,O,R,Y], 0, 9), & \quad \% \text{All digits 0..9} \\
0 #< S, 0 #< M, & \quad \% \text{No leftmost zeros} \\
\text{all_different}([S,E,N,D,M,O,R,Y]), & \quad \% \text{All digits different} \\
S*10000 + E*100 + N*10 + D + & \quad \% \\
M*10000 + O*1000 + R*10 + E #= & \quad \% \text{Arith. constr.} \\
M*10000 + O*1000 + N*100 + E*10 + Y, & \quad \% \\
\text{labeling}([], [S,E,N,D,M,O,R,Y]). & \quad \% \text{Instantiate variables}
\end{align*}
\]
A Project Management Problem (I)

- The job whose dependencies and task lengths are given by this graph...

... should be finished in 10 time units or less.

- Constraints:

\[
\text{pn1}(A,B,C,D,E,F,G) :-
\text{domain}([A,B,C,D,E,F,G], 0, 10),
A \#>= 0, G \#=< 10,
B \#>= A, C \#>= A, D \#>= A,
E \#>= B + 1, E \#>= C + 2,
F \#>= C + 2, F \#>= D + 3,
G \#>= E + 4, G \#>= F + 1.
\]
A Project Management Problem (II)

• Query:

```prolog
?- pn1(A,B,C,D,E,F,G).
A in 0..4, B in 0..5, C in 0..4,
D in 0..6, E in 2..6, F in 3..9, G in 6..10.
```

• Note the slack of the variables

• Some additional constraints must be respected as well, but are not shown by default

• Minimize the total project time:

```prolog
?- minimize(pn1(A,B,C,D,E,F,G), G).
A = 0, B in 0..1, C = 0, D in 0..2,
E = 2, F in 3..5, G = 6
```

• Variables without slack represent critical tasks
A Project Management Problem (III)

- An alternative setting:

- We can accelerate task F at some cost

\[
\text{pn2}(A, B, C, D, E, F, G, X) :-
\]
\[
\text{domain}([A,B,C,D,E,F,G,X], 0, 10),
\]
\[
A \#>= 0, G \#=< 10,
\]
\[
B \#>= A, C \#>= A, D \#>= A,
\]
\[
E \#>= B + 1, E \#>= C + 2,
\]
\[
F \#>= C + 2, F \#>= D + 3,
\]
\[
G \#>= E + 4, G \#>= F + X.
\]

- We do not want to accelerate it more than needed!

\rightarrow minimize G and maximize X.

\[
A = 0, B \text{ in } 0..1, C = 0, D = 0,
\]
\[
E = 2, F = 3, G = 6, X = 3.
\]
A Project Management Problem (IV)

- We have two independent tasks B and D whose lengths are not fixed:

$$
\begin{align*}
&B \\
&0 \\
&1 \quad 2 \\
&X \quad Y \\
&0 \\
&D \\
&0 \quad G \\
&4 \quad E \\
&1 \quad F
\end{align*}
$$

- We can finish any of B, D in 2 time units at best

- Some shared resource disallows finishing both tasks in 2 time units: they will take 6 time units
A Project Management Problem (V)

- Constraints describing the net:

\[
\text{pn3}(A,B,C,D,E,F,G,X,Y) :- \\
\text{domain([A,B,C,D,E,F,G,X,Y], 0, 10)}, \\
A \geq 0, \ G \leq 10, \\
X \geq 2, \ Y \geq 2, \ X + Y = 6, \\
B \geq A, \ C \geq A, \ D \geq A, \\
E \geq B + X, \ E \geq C + 2, \\
F \geq C + 2, \ F \geq D + Y, \\
G \geq E + 4, \ G \geq F + 1.
\]

- Query:

\[\text{?- minimize(pn3(A,B,C,D,E,F,G,X,Y),G).}\]
\[A = 0, \ B = 0, \ C = 0, \ D \text{ in } 0..1, \ E = 2, \ F \text{ in } 4..5, \ X = 2, \ Y = 4, \ G = 6\]

- I.e., we must devote more resources to task B
- All tasks but F and D are critical now
- Sometimes, minimize/2 not enough to provide best solution (pending constr.):

\[\text{?- minimize(pn3(A,B,C,D,E,F,G,X,Y),G), labeling([], [D,F]).}\]
The N-Queens Problem Using Finite Domains (in Ciao clpfd syntax)

- By far, the fastest implementation

```ciao
:- use_package(clpfd).
queens(N, Qs, Type) :-
    constrain_values(N, N, Qs), % Constrain before placing
    all_different(Qs), % Using built-in constraint
    labeling(Type, Qs). % Labeling places the queens
```

```ciao
constrain_values(0, _N, []).
constrain_values(N, Range, [X|Xs]) :-
    N > 0, N1 is N - 1, X in 1 .. Range, % Limits X values
    constrain_values(N1, Range, Xs), no_attack(Xs, X, 1).
```

```ciao
no_attack([], _Queen, _Nb). % Same as CLP(R) version
no_attack([Y|Ys], Queen, Nb) :- % but using clpfd primitives
    Queen #= Y + Nb, Queen #= Y - Nb, Nb1 is Nb + 1,
    no_attack(Ys, Queen, Nb1).
```

- Query: `?- queens(20, Q, [ff]).` (Type is the type of labeling desired.)

  ```ciao
  Q = [1, 3, 5, 14, 17, 4, 16, 7, 12, 18, 15, 19, 6, 10, 20, 11, 8, 2, 13, 9] ?
  ```
• Equations over Finite Trees

• Check that two trees are isomorphic (same elements in each level)

```prolog
iso(Tree, Tree).
iso(t(R, I1, D1), t(R, I2, D2)) :-
    iso(I1, D2),
    iso(D1, I2).

?- iso(t(a, b, t(X, Y, Z)), t(a, t(u, v, W), L)).
L = b, X = u, Y = v, Z = W ? ;
L = b, X = u, Y = W, Z = v ? ;
L = b, W = t(_C, _B, _A), X = u, Y = t(_C, _A, _B), Z = v ? ;
L = b, W = t(_E, t(_D, _C, _B), _A), X = u, Y = t(_E, _A, t(_D, _B, _C)), Z = v ?
```
CLP(\(WE\))

- Equations over finite strings
- Primitive constraints: concatenation (.), string length (::)
- Find strings meeting some property:

 | ?- "123".Z = Z."231", Z::0. | ?- "123".Z = Z."231", Z::3. |
 | no | no |
 | Z = "1"
 | Z = "1231"
 | no |
 | ?- "123".Z = Z."231", Z::2. |
 | no |

- These constraint solvers are very complex
- Often incomplete algorithms are used
Word equations plus arithmetic over \(\mathbb{Q} \) (rational numbers)

Prove that the sequence \(x_{i+2} = |x_{i+1}| - x_i \) has a period of length 9 (for any starting \(x_0, x_1 \))

Strategy: describe the sequence, try to find a subsequence such that the period condition is violated

Sequence description (syntax is Prolog III slightly modified):

```prolog
seq(<Y, X>).
abs(Y, Y) :- Y >= 0.
seq(<Y1 - X, Y, X>.U) :- abs(Y, -Y) :- Y < 0.
  seq(<Y, X>.U)
  abs(Y, Y1).
```

Query: *Is there any 11–element sequence such that the 2–tuple initial seed is different from the 2–tuple final subsequence (the seed of the rest of the sequence)?*

```prolog
?- seq(U.V.W), U::2, V::7, W::2, U#W.
fail
```
Summarizing

- **In general:**
 - Data structures (Herbrand terms) for free
 - Each logical variable may have constraints associated with it (and with other variables)

- **Problem modeling:**
 - Rules represent the problem at a high level
 * Program structure, modularity
 * Recursion used to set up constraints
 - Constraints encode problem conditions
 - Solutions also expressed as constraints

- **Combinatorial search problems:**
 - CLP languages provide backtracking: enumeration is easy
 - Constraints keep the search space manageable

- **Tackling a problem:**
 - Keep an open mind: often new approaches possible
Complex Constraints

- Some complex constraints allow expressing simpler constraints
- May be operationally treated as passive constraints
- E.g.: cardinality operator \(\#(L, [c_1, \ldots, c_n], U) \) meaning that the number of true constraints lies between \(L \) and \(U \) (which can be variables themselves)
 - If \(L = U = n \), all constraints must hold
 - If \(L = U = 1 \), one and only one constraint must be true
 - Constraining \(U = 0 \), we force the conjunction of the negations to be true
 - Constraining \(L > 0 \), the disjunction of the constraints is specified

- Disjunctive constructive constraint: \(c_1 \lor c_2 \)
 - If properly handled, avoids search and backtracking
 - E.g.:
 \[

 nz(X) \leftarrow X > 0. \\
 nz(X) \leftarrow X < 0. \\

 nz(X) \leftarrow X < 0 \lor X > 0.

 \]
Other Primitives

- CLP(\(\mathcal{X}\)) systems usually provide additional primitives
- E.g.:
 - \texttt{enum(X)} enumerates \(X\) inside its current domain
 - \texttt{maximize(X)} (c.f. \texttt{minimize(X)}) works out maximum (minimum value) for \(X\) under the active constraints
 - \texttt{delay Goal until Condition} specifies when the variables are instantiated enough so that \texttt{Goal} can be effectively executed
 * Its use needs deep knowledge of the constraint system
 * Also widely available in Prolog systems
 * Not really a constraint: control primitive
Implementation Issues: Satisfiability

- Algorithms must be *incremental* in order to be practical
- Incrementality refers to the performance of the algorithm
- It is important that algorithms to decide satisfiability have a good average case behavior
- Common technique: use a *solved form* representation for satisfiable constraints
- Not possible in every domain
- E.g. in \mathcal{FT} constraints are represented in the form $x_1 = t_1(\tilde{y}), \ldots, x_n = t_n(\tilde{y})$, where
 - each $t_i(\tilde{y})$ denotes a term structure containing variables from \tilde{y}
 - no variable x_i appears in \tilde{y}

(i.e., idempotent substitutions, guaranteed by the unification algorithm)
Implementation Issues: Backtracking in CLP(\(\mathcal{X}\))

- Implementation of backtracking more complex than in Prolog
- Need to record changes to constraints
- Constraints typically stored as an association of variable to expression
- Trailing expressions is, in general, costly: cannot be stored at every change
- Avoid trailing when there is no choice point between two successive changes
- A standard technique: use *time stamps* to compare the age of the choice point with the age of the variable at the time of last trailing

\[
\begin{align*}
X < Y + Z, & \quad Y = Z + W \\
& \text{trail } W, \text{ timestamp it} \\
X < Y + 4, & \quad Y = 4 + W, \quad Z = 4 \\
& \text{trail } X, \ Y, \ Z, \ \text{timestamp them} \\
X < Y + Z, & \quad Y = Z + W \\
& \text{timestamp } X, \ Y, \ Z, \ W
\end{align*}
\]
Implementation Issues: Extensibility

- Constraint domains often implemented now in Prolog-based systems using:
 - Attributed variables [Neumerkel, Holzbaur]:
 * Provide a hook into unification.
 * Allow attaching an attribute to a variable.
 * When unification with that variable occurs, user-defined code is called.
 * Used to implement constraint solvers (and other applications, e.g., distributed execution).
 - Constraint handling rules (CHRs):
 * Higher-level abstraction.
 * Allows defining propagation algorithms (e.g., constraint solvers) in a high-level way.
 * Often translated to attributed variable-based low-level code.
Attributed Variables Example: Freeze

- **Primitives:**
 - attach_attribute(X,C)
 - get_attribute(X,C)
 - detach_attribute(X)
 - update_attribute(X,C)
 - verify_attribute(C,T)
 - combine_attributes(C1,C2)

- **Example: Freeze**

```prolog
freeze( X, Goal) :-
    attach_attribute( V, frozen(V,Goal)),
    X = V.

verify_attribute( frozen(Var,Goal), Value) :-
    detach_attribute( Var),
    Var = Value,
    call(Goal).

combine_attributes( frozen(V1,G1), frozen(V2,G2)) :-
    detach_attribute( V1),
    detach_attribute( V2),
    V1 = V2,
    attach_attribute( V1, frozen(V1,(G1,G2))).
```
Programming Tips

• Over-constraining:
 ◦ Seems to be against general advice “do not perform extra work”, but can actually cut more search space
 ◦ Specially useful if infer is weak
 ◦ Or else, if constraints outside the domain are being used

• Use control primitives (e.g., cut) very sparingly and carefully

• Determinacy is more subtle, (partially due to constraints in non–solved form)

• Choosing a clause does not preclude trying other exclusive clauses (as with Prolog and plain unification)

• Compare:

<table>
<thead>
<tr>
<th>max(X,Y,X) :- X .> . Y.</th>
<th>max(X,Y,Y) :- X .<= . Y.</th>
</tr>
</thead>
<tbody>
<tr>
<td>?- max(X, Y, Z).</td>
<td>Z .= . X, Y .< . X;</td>
</tr>
</tbody>
</table>

with

<table>
<thead>
<tr>
<th>max(X,Y,X) :- X .> . Y, !.</th>
<th>max(X,Y,Y) :- X .<= . Y.</th>
</tr>
</thead>
<tbody>
<tr>
<td>?- max(X, Y, Z).</td>
<td>Z .= . X, Y .< . X</td>
</tr>
</tbody>
</table>
CLP Systems

- As mentioned before, CLP defines a class of languages obtained by
 - Specifying the particular constraint system(s)
 - Specifying the *Computation* and *Selection* rules
- Most practical systems include also the Herbrand domain with “=”, but then add different domains and/or solver algorithms
- Most use the *Computation* and *Selection* rules of Prolog
Some Classic CLP Systems

- **CLP(R):**
 - Linear arithmetic over reals (\(=, \leq, >\)) – CLP(R)
 Incremental Gaussian elimination and incremental Simplex

- **PrologIII:**
 - CLP(R)
 - Boolean (\(=\)), 2-valued Boolean Algebra – CLP(B)
 - Infinite (rational) trees (\(=, \neq\))
 - Equations over finite strings – CLP(WE)

- **CHIP** (and its successor: the ILOG library):
 - CLP(FD), CLP(B), CLP(Q)
 - User–defined constraints and solver algorithms

- **BNR-Prolog / CLP(BNR):**
 - Arithmetic over reals (closed intervals); CLP(FD), CLP(B).

- **RISC–CLP:**
 - Arithmetic constraints over reals, also non-linear
 (using Presburger arithmetic)
Some Current CLP Systems

- **clp(FD)/gprolog:**
 - CLP(FD).

- **SICStus:**
 - CLP(R), CLP(Q), CLP(FD)
 - Attributed variables and CHR for adding domains.

- **ECLiPS:**
 - CLP(R), CLP(Q), CLP(FD).

- **SWI:**
 - CLP(R), CLP(Q), CLP(FD), CLP(B).
 - Attributed variables and CHR for additional domains.

- **Ciao:**
 - CLP(R), CLP(Q), CLP(FD).
 - Attributed variables and CHR for additional domains.
 - Different domains can be activated on a per-module basis (packages).

→ Most Prolog systems now support constraints!
Some origins and other instances

- Ancestors:
 - SKETCHPAD (1963), Waltz’s algorithm (1965?), THINGLAB (1981), MACSYMA (1983), ...

- Constraints in logic languages: – the origin of “constraint programming”:
 - General theory developed (Jaffar and Lassez ’97).
 - First, standalone systems developed: clpr, CHIP, ...
 - Later, included in mainstream Prolog implementations.
 - Has given to a whole

- Constraints in imperative languages:
 - Equation solving libraries (ILOG, GECODE, ...)
 - Timestamping of variables: $x := x + 1 \iff x_{i+1} := x_i + 1$
 (similar to iterative methods in numerical analysis)

- Constraints in functional languages, via extensions:
 - Evaluation of expressions including free variables.
 - Absolute Set Abstraction.