Computational Logic

Constraint Logic Programming
Constraints

• Born within AI: e.g. house design

• Constraints used as problem representation:

 The man in yellow does not have green eyes

 The murderer knows no detective will ever wear dark clothes

• A solution is an assignment which agrees with the initial constraints:

 Murderer: López, green eyes, Magnum gun

• Or, alternatively, the solution can also be a set of constraints:

 The murderer is one of those who had met the cabaret entertainer

 (they represent several ground mappings from elements to variables)

• There may be no solution:

 Natural death
A General View

• Ancestors:
 ◦ SKETCHPAD (1963), Waltz’s algorithm (1965?), THINGLAB (1981), MACSYMA (1983), ...

• Constraints in logic languages – the origin of “constraint programming”:
 ◦ General theory developed (Jaffar and Lassez ’97).
 ◦ First, standalone systems developed: clpr, CHIP, ...
 ◦ Now included in many Prologs (e.g., clpr/clpq/clpfd packages in Ciao).

• Constraints in imperative languages:
 ◦ Equation solving libraries (ILOG, GECODE, ...)
 ◦ Timestamping of variables: \(x := x + 1 \) \(\leftrightarrow \) \(x_{i+1} := x_{i} + 1 \) (similar to iterative methods in numerical analysis)

• Constraints in functional languages, via extensions:
 ◦ Evaluation of expressions including free variables.
 ◦ \textit{Absolute Set Abstraction}.

A comparison with classic LP (I)

- Example (plain Prolog): \(q(X, Y, Z):=-Z = f(X, Y).\)

 \[
 \begin{align*}
 &?- q(3, 4, Z).
 &Z = f(3,4) \\
 &?- q(X, Y, f(3,4)).
 &X = 3, \ Y = 4 \\
 &?- q(X, Y, Z).
 &Z = f(X,Y)
 \end{align*}
 \]

- Example (plain Prolog): \(p(X, Y, Z):=-Z \text{ is } X + Y.\)

 \[
 \begin{align*}
 &?- p(3, 4, Z).
 &Z = 7 \\
 &?- p(X, 4, 7).
 &\text{[INSTANTIATION ERROR]} \quad \leftarrow \text{is/2 not reversible, does not work!}
 \end{align*}
 \]
A Comparison with classic LP (II)

- Example (**CLP(R) package**):

```
:- use_package(clpr).
p(X, Y, Z) :- Z =. X + Y.

?- p(3, 4, Z).
Z =. 7

?- p(X, 4, 7).
X =. 3

4 ?- p(X, Y, 7).
X =. 7 - Y ← with clpr arithmetic is reversible!
```
A Comparison with classic LP (III)

• Features in CLP:
 ◇ Domain of computation (reals, integers, booleans, etc).
 Have to meet some conditions.
 ◇ Type of constraints allowed for each domain: e.g. arithmetic constraints
 ($+, \ast, =, \leq, \geq, <, >$)
 ◇ Constraint solving algorithms: simplex, gauss, etc.

• Classical LP can be viewed as a constraint logic language over Herbrand terms
 with a single constraint predicate symbol: $=$
A Comparison with classic LP (IV)

• Advantages:
 ◊ Helps making programs expressive and flexible.
 ◊ May save much coding.
 ◊ In some cases, more efficient than classic LP programs due to solvers typically being very efficiently implemented.
 ◊ Also, efficiency due to search space reduction:
 * LP: generate-and-test.
 * CLP: constrain-and-generate.

• Disadvantages:
 ◊ Complexity of solver algorithms (simplex, gauss, etc) can affect performance.

• Solutions:
 ◊ better algorithms
 ◊ compile-time optimizations (program transformation, global analysis, etc)
 ◊ parallelism
Example of Search Space Reduction

- Using **plain Prolog** (generate–and–test):

```prolog
% Find three consecutive numbers in the p/1 relation.
solution(X, Y, Z) :-
    p(X), p(Y), p(Z),
    test(X, Y, Z).


test(X, Y, Z) :- Y is X + 1, Z is Y + 1.
```

- Query:

```
?- solution(X, Y, Z).
X = 14, Y = 15, Z = 16 ? ;
no
```

- 458 steps (all solutions: 465 steps).
Example of Search Space Reduction

• Using the **CLP(ℜ)** package (generate–and–test):

```prolog
% Find three consecutive numbers in the p/1 relation.
:- use_package(clpr).
solution(X, Y, Z) :-
    p(X), p(Y), p(Z),
    test(X, Y, Z).


test(X, Y, Z) :- Y =. X + 1, Z =. Y + 1.
```

• Query:

```prolog
?- solution(X, Y, Z).
X =. 14, Y =. 15, Z =. 16 ? ;
no
```

• 458 steps (all solutions: 465 steps).
Example of Search Space Reduction

- *Move* `test(X, Y, Z)` *to the beginning* (*constrain–and–generate*):

\[
\begin{align*}
\text{% Find three consecutive numbers in the p/1 relation.} \\
\text{:- use_package(clpr).} \\
\text{solution(X, Y, Z) :-} \\
\text{test(X, Y, Z),} \\
\text{\quad p(X), p(Y), p(Z).} \\
\end{align*}
\]

- *Using plain Prolog*:

\[
\begin{align*}
\text{test(X, Y, Z) :- Y \text{ is } X +1, Z \text{ is } Y +1.} \\
\text{?- solution(X, Y, Z).} \\
\text{\{INSTANTIATION ERROR\}}
\end{align*}
\]

- *Using the CLP(ℜ) package*:

\[
\begin{align*}
\text{test(X, Y, Z) :- Y \text{ =. } X +1, Z \text{ =. } Y +1.} \\
\text{?- solution(X, Y, Z).} \\
\text{X \text{ =. } 14, Y \text{ =. } 15, Z \text{ =. } 16 \ ? ;} \\
\text{no}
\end{align*}
\]

In **6 steps** (and all solutions in **11 steps**)!
Constrain–and–generate Search Tree
Constraint Domains

- The semantics is parameterized by the constraint domain \mathcal{X}: CLP(\mathcal{X}), where $\mathcal{X} \equiv (\Sigma, D, L, T)$:
 - Σ: set of predicate and function symbols, together with their arity
 - $L \subseteq \Sigma$–formulae: constraints
 - D: the set of actual elements in the constraint domain
 - D: meaning of predicate and function symbols (and hence, constraints).
 - T: a first–order theory (axiomatizes some properties of D)

- (D, L) is a constraint domain

- Assumptions:
 - L built upon a first–order language
 - $=$ $\in \Sigma$; $=$ is identity in D
 - There are identically false and identically true constraints in L
 - L is closed w.r.t. renaming, conjunction, and existential quantification
Domains (I)

- \(\Sigma = \{0, 1, +, *, =, <, \leq\}\), \(D = \mathbb{R}\) (the reals), \(\mathcal{D}\) interprets \(\Sigma\) as usual, \(\mathcal{R} = (\mathcal{D}, \mathcal{L})\)

 \(\rightarrow\) **Arithmetic over the reals** ("\(\mathcal{R}\)" domain).
 - Eg.: \(x^2 + 2xy < \frac{y}{x} \land x > 0\) (\(\equiv xxx + xxy + xxy < y \land 0 < x\))
 - Question: is 0 needed? How can it be represented?

- \(\Sigma' = \{0, 1, +, =, <, \leq\}\), \(\mathcal{R}_{Lin} = (\mathcal{D}', \mathcal{L}')\)

 \(\rightarrow\) **Linear arithmetic** ("\(\mathcal{R}_{Lin}\)" domain)
 - Eg.: \(3x - y < 3\) (\(\equiv x + x + x < 1 + 1 + 1 + y\))

- \(\Sigma'' = \{0, 1, +, =\}\), \(\mathcal{R}_{LinEq} = (\mathcal{D}'', \mathcal{L}'')\)

 \(\rightarrow\) **Linear equations** ("\(\mathcal{R}_{LinEq}\)" domain)
 - Eg.: \(3x + y = 5 \land y = 2x\)

- A corresponding set of domains can be defined on the **rationals** ("\(\mathcal{Q}\)" domain)
Domains (II)

- A very special domain:
 - $\Sigma = \{<\text{constant and function symbols}>, =\}$
 - $D = \{\text{finite trees}\}$
 - D interprets Σ as tree constructors
 - Each $f \in \Sigma$ with arity n maps n trees to a tree with root labeled f and whose subtrees are the arguments of the mapping
 - Constraints: syntactic tree equality
 - $\mathcal{FT} = (D, \mathcal{L})$

\rightarrow **Equality constraints over the Herbrand domain** (\mathcal{FT} domain)
 - Eg.: $g(h(Z), Y) = g(Y, h(a))$

- $LP \equiv CLP(\mathcal{FT})$
Domains (III)

- $\Sigma = \{\langle \text{constants} \rangle, \lambda, .., ::, =\}$
- $D = \{\text{finite strings of constants}\}$
- D interprets \cdot as string concatenation, $::$ as string length

→ **Equations over strings of constants** (D domain)
 - Eg.: $X.A.X = X.A$

- $\Sigma = \{0, 1, \neg, \land, =\}$
- $D = \{true, false\}$
- D interprets symbols in Σ as boolean functions
- $BOOL = (D, L)$

→ **Boolean constraints** ($BOOL$ domain)
 - Eg.: $\neg(x \land y) = 1$
CLP(\mathcal{X}) Programs

- Recall that:
 - Σ is a set of predicate and function symbols
 - $\mathcal{L} \subseteq \Sigma$–formulae are the constraints
- $\Pi \subseteq \Sigma$: set of predicate symbols definable by a program
 - Atom: $p(t_1, t_2, \ldots, t_n)$, where $p \in \Pi$ and t_1, t_2, \ldots, t_n are terms
 - Primitive constraint: $p(t_1, t_2, \ldots, t_n)$, where
 t_1, t_2, \ldots, t_n are terms and $p \in \Sigma$ is a predicate symbol
 - Constraint: (first–order) formula built from primitive constraints
- The class of constraints will vary (generally only a subset of formulas are considered constraints)
- A CLP program is a collection of rules of the form $a \leftarrow b_1, \ldots, b_n$ where a is an atom and the b_i’s are atoms or constraints
- A fact is a rule $a \leftarrow c$ where c is a constraint
- A goal (or query) G is a conjunction of constraints and atoms
A case study: CLP(ℜ)

- CLP(ℜ) is a language based on Prolog, with the addition of constraint solving capabilities over the reals (ℜ_{Lin})
 - Uses same execution strategy as standard Prolog (depth-first, left-to-right)
 - Is able to solve directly linear (dis)equations over the reals
 - Non-linear equations are delayed, waiting for them to eventually become linear
 - Most relevant feature w.r.t. Prolog (for our purposes): is/2 disappears, and is subsumed by =/2 and (extended) unification

- Note: CLP(ℜ) is really CLP((ℜ, FT)) — FT is often omitted.

- In modern Prolog systems coexisting with the ISO primitives (is/2, >/2 etc.).

- In Ciao supported in via the clpr package:
 - Uses .=., .>, etc. to distinguish the clpr constraints from the ISO-Prolog arithmetic primitives.
 - I.e., X .= Y + 5, Y .> 1 vs. X is Y + 5, Y > 1
Linear Equations (CLP(\(\mathbb{R}\)) package)

- Vector \(\times\) vector multiplication (dot product):
 \[
 \cdot : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}
 \]
 \[
 (x_1, x_2, \ldots, x_n) \cdot (y_1, y_2, \ldots, y_n) = x_1 \cdot y_1 + \cdots + x_n \cdot y_n
 \]

- Vectors represented as lists of numbers
  ```prolog
  :- use_package(clpr).
  prod([], [], Result) :- Result .==. 0.
  prod([X|Xs], [Y|Ys], Result) :-
      Result .==. X * Y + Rest, prod(Xs, Ys, Rest).
  ```

- Unification becomes constraint solving!
  ```prolog
  ?- prod([2, 3], [4, 5], K).
  K .==. 23
  ?- prod([2, 3], [5, X2], 22).
  X2 .==. 4
  ?- prod([2, 7, 3], [Vx, Vy, Vz], 0).
  Vx .==. -1.5*Vz - 3.5*Vy
  ```

- Any computed answer is, in general, an equation over the variables in the query
Systems of Linear Equations (CLP(\(\mathbb{R}\)))

- Can we solve systems of equations? E.g.,
 \[
 3x + y = 5 \\
 x + 8y = 3
 \]

- Write them down at the top level prompt:
 \[
 ?- \text{prod}([3, 1], [X, Y], 5), \text{prod}([1, 8], [X, Y], 3).
 X \text{ =. } 1.6087, Y \text{ =. } 0.173913
 \]

- A more general predicate can be built mimicking the mathematical vector notation \(A \cdot x = b\):
 \[
 \text{system}(_\text{Vars}, [], []). \\
 \text{system}(\text{Vars}, [\text{Co|Coefs}], [\text{Ind|Indeps}]) :- \text{prod}(\text{Vars}, \text{Co}, \text{Ind}), \text{system}(\text{Vars}, \text{Coefs}, \text{Indeps}).
 \]

- We can now express (and solve) equation systems
 \[
 ?- \text{system}([X, Y], [[3, 1],[1, 8]],[5, 3]). \\
 X \text{ =. } 1.6087, Y \text{ =. } 0.173913
 \]
Non–linear Equations (CLP(ℜ))

• Non–linear equations are delayed

?- sin(X) .==. cos(X).
sin(X) .==. cos(X)

• This is also the case if there exists some procedure to solve them

?- X*X + 2*X + 1 .==. 0.
-2*X - 1 .==. X * X

• Reason: no general solving technique is known. CLP(ℜ) solves only linear (dis)equations.

• Once equations become linear, they are handled properly:

?- X .==. cos(sin(Y)), Y .==. 2+Y*3.
Y .==. -1, X .==. 0.666367

• Disequations are solved using a modified, incremental Simplex

?- X + Y .<=. 4, Y .>=. 4, X .>=. 0.
Y .==. 4, X .==. 0
Fibonacci Revisited (Prolog)

- Fibonacci numbers:

\[
F_0 = 0 \\
F_1 = 1 \\
F_{n+2} = F_{n+1} + F_n
\]

- (The good old) Prolog version:

```prolog
fib(0, 0).
fib(1, 1).
fib(N, F) :-
    N > 1,
    N1 is N - 1,
    N2 is N - 2,
    fib(N1, F1),
    fib(N2, F2),
    F is F1 + F2.
```

- Can only be used with the first argument instantiated to a number
Fibonacci Revisited (CLP(ℜ))

- CLP(ℜ) package version: syntactically similar to the previous one:

```prolog
:- use_package(clpr).
fib(N,N) :- N =.= 0.
fib(N,N) :- N =.= 1.
fib(N,R) :- N >. 1, F1 >=. 0, F2 >=. 0,
            N1 =.= N - 1, N2 =.= N - 2,
            fib(N1,F1), fib(N2,F2),
            R =.= F1 + F2.
```

- Note all constraints included in program (F1 >= 0, F2 >= 0) – good practice!
- Only real numbers and equations used (no data structures, no other constraint system): “pure CLP(ℜ)”
- Semantics greatly enhanced! E.g.

```prolog
?- fib(N, F).
F =.= 0, N =.= 0 ;
F =.= 1, N =.= 1 ;
F =.= 1, N =.= 2 ;
F =.= 2, N =.= 3 ;
```
Analog RLC circuits (CLP(\Re))

- Analysis and synthesis of analog circuits
- RLC network in steady state
- Each circuit is composed either of:
 - A simple component, or
 - A connection of simpler circuits
- For simplicity, we will suppose subnetworks connected only in parallel and series → Ohm’s laws will suffice (other networks need global, i.e., Kirchoff’s laws)
- We want to relate the current (I), voltage (V) and frequency (W) in steady state
- Entry point: $\text{circuit}(C, V, I, W)$ states that:
 - across the network C, the voltage is V, the current is I and the frequency is W
- V and I must be modeled as complex numbers (the imaginary part takes into account the angular frequency)
- Note that Herbrand terms are used to provide data structures
Analog RLC circuits (CLP(\mathbb{R}))

- Complex number $X + Yi$ modeled as $c(X, Y)$

- Basic operations:

  ```prolog
  :- use_package(clpr).

  c_add(c(Re1, Im1), c(Re2, Im2), c(Re12, Im12)) :-
      Re12 == Re1 + Re2,
      Im12 == Im1 + Im2.

  c_mult(c(Re1, Im1), c(Re2, Im2), c(Re3, Im3)) :-
      Re3 == Re1 * Re2 - Im1 * Im2,
      Im3 == Re1 * Im2 + Re2 * Im1.
  ```

 (equality is $c_equal(c(R, I), c(R, I))$, can be left to [extended] unification)
Analog RLC circuits (CLP(ℜ))

- Circuits in series:

```prolog
circuit(series(N1, N2), V, I, W) :-
c_add(V1, V2, V),
circuit(N1, V1, I, W),
circuit(N2, V2, I, W).
```

- Circuits in parallel:

```prolog
circuit(parallel(N1, N2), V, I, W) :-
c_add(I1, I2, I),
circuit(N1, V, I1, W),
circuit(N2, V, I2, W).
```
Analog RLC circuits (CLP(ℜ))

Each basic component can be modeled as a separate unit:

- **Resistor:** \(V = I \times (R + 0i) \)

  ```prolog
  circuit(resistor(R), V, I, _W) :-
      c_mult(I, c(R, 0), V).
  ```

- **Inductor:** \(V = I \times (0 + WLi) \)

  ```prolog
  circuit(inductor(L), V, I, W) :-
      Im .==. W * L,
      c_mult(I, c(0, Im), V).
  ```

- **Capacitor:** \(V = I \times (0 - \frac{1}{WC}i) \)

  ```prolog
  circuit(capacitor(C), V, I, W) :-
      Im .==. -1 / (W * C),
      c_mult(I, c(0, Im), V).
  ```
Analog RLC circuits (CLP(ℜ))

- Example:

\[I = 0.65 \]
\[L = 0.073 \]
\[C = ? \]
\[R = ? \]
\[V = 4.5 \]
\[\omega = 2400 \]
\[I = 0.65 \]
\[L = 0.073 \]

?- circuit(parallel(inductor(0.073),
series(capacitor(C), resistor(R))),
c(4.5, 0), c(0.65, 0), 2400).

R .=. 6.91229, C .=. 0.00152546

?- circuit(C, c(4.5, 0), c(0.65, 0), 2400).
The N Queens Problem

- Problem:
 place N chess queens in a $N \times N$ board such that they do not attack each other

- Data structure: a list holding the column position for each row

- The final solution is a permutation of the list $[1, 2, \ldots, N]$

- E.g.: the solution is represented as $[2, 4, 1, 3]$

- General idea:
 - Start with partial solution
 - Nondeterministically select new queen
 - Check safety of new queen against those already placed
 - Add new queen to partial solution if compatible; start again with new partial solution
The N Queens Problem in Prolog

```prolog
queens(N, Qs) :- queens_list(N, Ns), % E.g., Ns=[4,3,2,1]
                queens(Ns, [], Qs).
queens([], Qs, Qs). % All queens placed!
queens(Unplaced, Placed, Qs) :-
    select(Unplaced, Q, NewUnplaced), % E.g. Q=4, NewU=[3,2,1]
    no_attack(Placed, Q, 1), % Fail if attack
    queens(NewUnplaced, [Q|Placed], Qs). % OK->Choose next q

no_attack([], _Queen, _Nb).
no_attack([Y|Ys], Queen, Nb) :-
    Queen =\= Y + Nb, Queen =\= Y - Nb, Nb1 is Nb + 1,
    no_attack(Ys, Queen, Nb1).

select([X|Ys], X, Ys).
select([Y|Ys], X, [Y|Zs]) :- select(Ys, X, Zs).

queens_list(0, []).
queens_list(N, [N|Ns]) :-
    N > 0, N1 is N - 1, queens_list(N1, Ns).
```
The N Queens Problem in Prolog - search space
The N Queens Problem in CLP(\(\mathbb{R}\))

(in Ciao clpr syntax)

```prolog
:- use_package(clpr).
queens(N,Qs) :- constrain_values(N,N,Qs), place_queens(N,Qs).

constrain_values(0, _N, []). % Constrain before placing
constrain_values(N, Range, [X|Xs]) :-
    N > 0, X > 0, X <= Range, N1 = N - 1,
    constrain_values(N1, Range, Xs), no_attack(Xs, X, 1).

no_attack([], _Queen, _Nb). % Identical to Prolog version
no_attack([Y|Ys], Queen, Nb) :- % but using constraints
    Queen <> Y + Nb, Queen <> Y - Nb, Nb1 = Nb + 1,
    no_attack(Ys, Queen, Nb1).

place_queens(0, _).
place_queens(N, Q) :-
    N > 0,
    member(N, Q),
    N1 = N - 1,
    place_queens(N1, Q).
```

32
The N Queens Problem in CLP(ℜ)

- This last program can attack the problem in its most general instance:

```prolog
?- queens(N,L).
L = [], N =. 0 ;
L = [1], N =. 1 ;
L = [2, 4, 1, 3], N =. 4 ;
L = [3, 1, 4, 2], N =. 4 ;
L = [5, 2, 4, 1, 3], N =. 5 ;
L = [5, 3, 1, 4, 2], N =. 5 ;
L = [3, 5, 2, 4, 1], N =. 5 ;
L = [2, 5, 3, 1, 4], N =. 5
...
```

- Remark: Herbrand terms used to build the data structures

- But also used as constraints (e.g., length of already built list Xs in
no_attack(Xs, X, 1))

- Note that in fact we are using both ℜ and ℱ смысл
The N Queens Problem in CLP(ℜ) – search space
The N Queens Problem in CLP(ℜ)

- CLP(ℜ) generates internally a set of equations for each board size

```prolog
?- constrain_values(4, 4, Qs).
Qs = [_A, _B, _C, _D],
nonzero(_E), _A.=<.4.0, _E.=.3.0+\_A--\_D,
nonzero(_F), _A.>\.0, _F.=.-3.0+\_A--\_D,
nonzero(_G), _B.=<.4.0, _G.=.2.0+\_A--\_C,
nonzero(_H), _B.>.\_0, _H.=.-2.0+\_A--\_C,
nonzero(_I), _C.=<.4.0, _I.=.1+\_A--\_B,
nonzero(_J), _C.>\.0, _J.=.-1+\_A--\_B,
nonzero(_K), _D.=<.4.0, _K.=.2.0+\_B--\_D,
nonzero(_L), _D.>\.0, _L.=.-2.0+\_B--\_D,
nonzero(_M), _M.=.1+\_B--\_C,
nonzero(_N), _N.=.-1+\_B--\_C,
nonzero(_O), _O.=.1+\_C--\_D,
nonzero(_P), _P.=.-1+\_C--\_D
```

The N Queens Problem in CLP(\(\mathbb{R}\))

- Constraints are (incrementally) simplified as new queens are added

```prolog
?- constrain_values(4, 4, Qs), Qs = [3,1|_].
Qs = [_A,_B,_C,_D],
nonzero(_E), _A.=.3.0, _E.=.6.0-_D,
nonzero(_F), _B.=.1.0, _F.=. -_D,
nonzero(_G), _C.<=.4.0, _G.=.5.0-_C,
nonzero(_H), _C.>.0, _H.=.1.0-_C,
nonzero(_I), _D.<=.4.0, _I.=.3.0-_D,
nonzero(_J), _D.>.0, _J.=. -1.0-_D,
nonzero(_K), _K.=.2.0-_C,
nonzero(_L), _L.=. -_C,
nonzero(_M), _M.=.1+_C-_D,
nonzero(_N), _N.=. -1+_C-_D ?
```

- Bad choices are rejected using constraint consistency:

```prolog
?- constrain_values(4, 4, Qs), Qs = [3,2|_].
no
```
Finite Domains (I)

- A **finite domain** constraint solver associates each variable with a finite subset of \(\mathbb{Z} \)

- I.e., \(E \in \{-123, -10..4, 10\} \)

 Can be represented as, e.g.,

 \[
 E :: [-123, -10..4, 10]
 \]

 or as

 \[
 E \text{ in } -123 \lor (-10..4) \lor 10
 \]

 [Eclipse notation]

 [Ciao notation]

- We can:

 - Perform arithmetic operations \((+, -, *, /)\) on the variables
 - Establish linear relationships among arithmetic expressions \((#=, #<, #=\lt)\)

- Those operations / relationships are intended to narrow the domains of the variables

- **Note:** In Ciao this functionality is loaded with a

  ```prolog
  :- use_module(library(clpfd)).
  ```

 directive in the source code.
Finite Domains (II)

Examples:

?- X #= A + B, A in 1..3, B in 3..7.
 X in 4..10, A in 1..3, B in 3..7

- The respective minimums and maximums are added
- There is no unique solution

?- X #= A - B, A in 1..3, B in 3..7.
 X in -6..0, A in 1..3, B in 3..7

- The min value of X is the min value of A minus the max value of B
- (Similar for the maximum values)

?- X #= A - B, A in 1..3, B in 3..7, X #>= 0.
 A = 3, B = 3, X = 0

- Putting more constraints results in a unique solution.
Finite Domains (III)

Some useful primitives in finite domains:

- `domain(Variables, Min, Max)`: A shorthand for several in constraints

- `labeling(Options, VarList)`:
 - instantiates variables in `VarList` to values in their domains
 - `Options` dictates the search order

```prolog
?- domain([X, Y, Z], 1, 1000), X*X+Y*Y #= Z*Z, X #>= Y, labeling([], [X, Y, Z]).
X = 4, Y = 3, Z = 5,
X = 8, Y = 6, Z = 10,
X = 12, Y = 5, Z = 13,
...
```

- `minimize(G, X)`: solve `G` minimizing the value of variable `X`

- This can be used to minimize (c.f., maximize) a solution
A classic example: SEND MORE MONEY

% SEND
% + MORE
% _________
% MONEY

:- use_package(clpfd).

smm([S,E,N,D,M,O,R,Y]) :-
domain([S,E,N,D,M,O,R,Y], 0, 9), % All digits 0..9
0 #< S, 0 #< M, % No leftmost zeros
all_different([S,E,N,D,M,O,R,Y]), % All digits different
S*1000 + E*100 + N*10 + D + %
M*10000 + O*1000 + R*10 + E #= % Arith. constr.
M*10000 + O*1000 + N*100 + E*10 + Y, %
labeling([], [S,E,N,D,M,O,R,Y]). % Instantiate variables
A Project Management Problem (I)

- The job whose dependencies and task lengths are given by this graph...

... should be finished in 10 time units or less.

- Constraints:

```prolog
pn1(A,B,C,D,E,F,G) :-
    domain([A,B,C,D,E,F,G], 0, 10),
    A #>= 0, G #=< 10,
    B #>= A, C #>= A, D #>= A,
    E #>= B + 1, E #>= C + 2,
    F #>= C + 2, F #>= D + 3,
    G #>= E + 4, G #>= F + 1.
```
A Project Management Problem (II)

- Query:

```
?- pn1(A,B,C,D,E,F,G).
A in 0..4, B in 0..5, C in 0..4,
D in 0..6, E in 2..6, F in 3..9, G in 6..10.
```

- Note the slack of the variables

- Some additional constraints must be respected as well, but are not shown by default

- Minimize the total project time:

```
?- minimize(pn1(A,B,C,D,E,F,G), G).
A = 0, B in 0..1, C = 0, D in 0..2,
E = 2, F in 3..5, G = 6
```

- Variables without slack represent critical tasks
A Project Management Problem (III)

- An alternative setting:

- We can accelerate task F at some cost

 \[
 \text{pn2}(A, B, C, D, E, F, G, X) :\neg \\
 \text{domain}([A,B,C,D,E,F,G,X], 0, 10), \\
 A \#>= 0, G \#=< 10, \\
 B \#>= A, C \#>= A, D \#>= A, \\
 E \#>= B + 1, E \#>= C + 2, \\
 F \#>= C + 2, F \#>= D + 3, \\
 G \#>= E + 4, G \#>= F + X. \\
 \]

- We do not want to accelerate it more than needed!

 \rightarrow minimize G and maximize X.

 \[
 A = 0, B \text{ in } 0..1, C = 0, D = 0, \\
 E = 2, F = 3, G = 6, X = 3. \\
 \]
A Project Management Problem (IV)

- We have two independent tasks B and D whose lengths are not fixed:

- We can finish any of B, D in 2 time units at best

- Some shared resource disallows finishing both tasks in 2 time units: they will take 6 time units
A Project Management Problem (V)

- Constraints describing the net:

\[
\text{pn3}(A,B,C,D,E,F,G,X,Y) : - \\
\text{domain([A,B,C,D,E,F,G,X,Y], 0, 10),} \\
A \geq 0, G \leq 10, \\
X \geq 2, Y \geq 2, X + Y = 6, \\
B \geq A, C \geq A, D \geq A, \\
E \geq B + X, E \geq C + 2, \\
F \geq C + 2, F \geq D + Y, \\
G \geq E + 4, G \geq F + 1.
\]

- Query:

\[
?- \text{minimize(pn3(A,B,C,D,E,F,G,X,Y),G).} \\
A = 0, B = 0, C = 0, D \text{ in } 0..1, E = 2, \\
F \text{ in } 4..5, X = 2, Y = 4, G = 6
\]

- I.e., we must devote more resources to task B
- All tasks but F and D are critical now
- Sometimes, \text{minimize/2} not enough to provide best solution (pending constr.):

\[
?- \text{minimize(pn3(A,B,C,D,E,F,G,X,Y),G), labeling([], [D,F]).}
\]
The N-Queens Problem Using Finite Domains (in Ciao clpfd syntax)

- By far, the fastest implementation

```prolog
:- use_package(clpfd).
queens(N, Qs, Type) :-
    constrain_values(N, N, Qs), % Constrain before placing
    all_different(Qs), % Using built-in constraint
    labeling(Type, Qs). % Labeling places the queens
```

```prolog
constrain_values(0, _N, []).
constrain_values(N, Range, [X|Xs]) :-
    N > 0, N1 is N - 1, X in 1 .. Range, % Limits X values
    constrain_values(N1, Range, Xs), no_attack(Xs, X, 1).
```

```prolog
no_attack([], _Queen, _Nb). % Same as CLP(R) version
no_attack([Y|Ys], Queen, Nb) :- % but using clpfd primitives
    Queen #\= Y + Nb, Queen #\= Y - Nb, Nb1 is Nb + 1,
    no_attack(Ys, Queen, Nb1).
```

- Query: `?- queens(20, Q, [ff]).` (Type is the type of labeling desired.)

 \[Q = [1,3,5,14,17,4,16,7,12,18,15,19,6,10,20,11,8,2,13,9] \] ?
CLP(\mathcal{FT}) (a.k.a. Logic Programming)

- Equations over Finite Trees
- Check that two trees are isomorphic (same elements in each level)

```prolog
iso(Tree, Tree).
iso(t(R, I1, D1), t(R, I2, D2)) :-
  iso(I1, D2),
  iso(D1, I2).

?- iso(t(a, b, t(X, Y, Z)), t(a, t(u, v, W), L)).
L=b, X=u, Y=v, Z=W ? ;
L=b, X=u, Y=W, Z=v ? ;
L=b, W=t(_C,_B,_A), X=u, Y=t(_C,_A,_B), Z=v ? ;
L=b, W=t(_E,t(_D,_C,_B),_A), X=u, Y=t(_E,_A,t(_D,_B,_C)), Z=v ?
```
CLP(\texttt{WE})

- Equations over finite strings
- Primitive constraints: concatenation (.), string length (::)
- Find strings meeting some property:

<table>
<thead>
<tr>
<th>Equation 1</th>
<th>Equation 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{?- "123".z = z."231", z::0.}</td>
<td>\texttt{?- "123".z = z."231", z::3.}</td>
</tr>
<tr>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>\texttt{?- "123".z = z."231", z::1.}</td>
<td>\texttt{?- "123".z = z."231", z::4.}</td>
</tr>
<tr>
<td>z = "1"</td>
<td>z = "1231"</td>
</tr>
<tr>
<td>\texttt{?- "123".z = z."231", z::2.}</td>
<td></td>
</tr>
<tr>
<td>no</td>
<td></td>
</tr>
</tbody>
</table>

- These constraint solvers are very complex
- Often incomplete algorithms are used
CLP((\mathcal{WE}, \mathbb{Q}))

- Word equations plus arithmetic over \(\mathbb{Q} \) (rational numbers)
- Prove that the sequence \(x_{i+2} = |x_{i+1}| - x_i \) has a period of length 9 (for any starting \(x_0, x_1 \))
- Strategy: describe the sequence, try to find a subsequence such that the period condition is violated
- Sequence description (syntax is Prolog III slightly modified):

  ```prolog
  seq(<Y, X>). abs(Y, Y) :- Y >= 0.
  seq(<Y1 - X, Y, X>.U) :- abs(Y, -Y) :- Y < 0.
  seq(<Y, X>.U)
  abs(Y, Y1).
  ```
- Query: Is there any 11–element sequence such that the 2–tuple initial seed is different from the 2–tuple final subsequence (the seed of the rest of the sequence)?

  ```prolog
  ?- seq(U.V.W), U::2, V::7, W::2, U#W.
  fail
  ```
Summarizing

- **In general:**
 - Data structures (Herbrand terms) for free
 - Each logical variable may have constraints associated with it (and with other variables)

- **Problem modeling:**
 - Rules represent the problem at a high level
 - Program structure, modularity
 - Recursion used to set up constraints
 - Constraints encode problem conditions
 - Solutions also expressed as constraints

- **Combinatorial search problems:**
 - CLP languages provide backtracking: enumeration is easy
 - Constraints keep the search space manageable

- **Tackling a problem:**
 - Keep an open mind: often new approaches possible
Complex Constraints

- Some complex constraints allow expressing simpler constraints
- May be operationally treated as passive constraints
- E.g.: cardinality operator \(\#(L, [c_1, \ldots, c_n], U) \) meaning that the number of true constraints lies between \(L \) and \(U \) (which can be variables themselves)
 - If \(L = U = n \), all constraints must hold
 - If \(L = U = 1 \), one and only one constraint must be true
 - Constraining \(U = 0 \), we force the conjunction of the negations to be true
 - Constraining \(L > 0 \), the disjunction of the constraints is specified

- Disjunctive constructive constraint: \(c_1 \lor c_2 \)
 - If properly handled, avoids search and backtracking

 - E.g.: \(nz(X) \leftarrow X > 0. \)
 - \(nz(X) \leftarrow X < 0. \)
 - \(nz(X) \leftarrow X < 0 \lor X > 0. \)
Other Primitives

- CLP(\mathcal{X}) systems usually provide additional primitives
- E.g.:
 - `enum(X)` enumerates X inside its current domain
 - `maximize(X)` (c.f. `minimize(X)`) works out maximum (minimum value) for X under the active constraints
 - `delay Goal until Condition` specifies when the variables are instantiated enough so that `Goal` can be effectively executed
 - Its use needs deep knowledge of the constraint system
 - Also widely available in Prolog systems
 - Not really a constraint: control primitive
Implementation Issues: Satisfiability

- Algorithms must be *incremental* in order to be practical
- Incrementality refers to the performance of the algorithm
- It is important that algorithms to decide satisfiability have a good average case behavior
- Common technique: use a *solved form* representation for satisfiable constraints
- Not possible in every domain
- E.g. in \mathcal{FT} constraints are represented in the form $x_1 = t_1(\tilde{y}), \ldots, x_n = t_n(\tilde{y})$, where
 - each $t_i(\tilde{y})$ denotes a term structure containing variables from \tilde{y}
 - no variable x_i appears in \tilde{y}

(i.e., idempotent substitutions, guaranteed by the unification algorithm)
Implementation Issues: Backtracking in CLP(\(\mathcal{X}\))

- Implementation of backtracking more complex than in Prolog
- Need to record changes to constraints
- Constraints typically stored as an association of variable to expression
- Trailing expressions is, in general, costly: cannot be stored at every change
- Avoid trailing when there is no choice point between two successive changes
- A standard technique: use *time stamps* to compare the age of the choice point with the age of the variable at the time of last trailing

\[
\begin{align*}
X < Y + Z, & \quad Y = Z + W \\
X < Y + 4, & \quad Y = 4 + W, \quad Z = 4 \\
X < 9, & \quad Y = 5, \quad Z = 4, \quad W = 1 \\
\text{trail W, timestamp it} \\
\text{trail X, Y, Z, timestamp them} \\
\text{timestamp X, Y, Z, W}
\end{align*}
\]
Implementation Issues: Extensibility

- Constraint domains often implemented now in Prolog-based systems using:
 - Attributed variables [Neumerkel,Holzbaur]:
 * Provide a hook into unification.
 * Allow attaching an attribute to a variable.
 * When unification with that variable occurs, user-defined code is called.
 * Used to implement constraint solvers (and other applications, e.g., distributed execution).
 - Constraint handling rules (CHR):
 * Higher-level abstraction.
 * Allows defining propagation algorithms (e.g., constraint solvers) in a high-level way.
 * Often translated to attributed variable-based low-level code.
Attributed Variables Example: Freeze

- **Primitives:**
 - `attach_attribute(X,C)`
 - `get_attribute(X,C)`
 - `detach_attribute(X)`
 - `update_attribute(X,C)`
 - `verify_attribute(C,T)`
 - `combine_attributes(C1,C2)`

- **Example: Freeze**

```prolog
freeze( X, Goal) :-
    attach_attribute( V, frozen(V,Goal)),
    X = V.

verify_attribute( frozen(Var,Goal), Value) :-
    detach_attribute( Var),
    Var = Value,
    call(Goal).

combine_attributes( frozen(V1,G1), frozen(V2,G2)) :-
    detach_attribute( V1),
    detach_attribute( V2),
    V1 = V2,
    attach_attribute( V1, frozen(V1,(G1,G2))).
```
Programming Tips

- Over-constraining:
 - Seems to be against general advice “do not perform extra work”, but can actually cut more search space
 - Specially useful if infer is weak
 - Or else, if constraints outside the domain are being used

- Use control primitives (e.g., cut) very sparingly and carefully

- Determinacy is more subtle, (partially due to constraints in non–solved form)

- Choosing a clause does not preclude trying other exclusive clauses (as with Prolog and plain unification)

- Compare:

 max(X,Y,X) :- X >. Y.
 max(X,Y,Y) :- X <=. Y.

 with

 max(X,Y,X) :- X >. Y, !.
 max(X,Y,Y) :- X <=. Y.
Some CLP Systems (I)

- CLP defines a class of languages obtained by
 - Specifying the particular constraint system(s)
 - Specifying the *Computation* and *Selection* rules
- Most include also the Herbrand domain with “=”, but then add different domains and/or solver algorithms
- Most use the *Computation* and *Selection* rules of Prolog

CLP(ℜ):
- Linear arithmetic over reals (=, ≤, >)
- Gauss elimination and an adaptation of Simplex

PrologIII:
- Linear arithmetic over rationals (=, ≤, >, ≠), Simplex
- Boolean (=), 2-valued Boolean Algebra
- Infinite (rational) trees (=, ≠)
- Equations over finite strings
Some CLP Systems (II)

• **CHIP:**
 ◦ Linear arithmetic over rationals ($=, \leq, >, \neq$), Simplex
 ◦ Boolean ($=$), larger Boolean algebra (symbolic values)
 ◦ Finite domains
 ◦ User–defined constraints and solver algorithms

• **BNR-Prolog:**
 ◦ Arithmetic over reals (closed intervals) ($=, \leq, >, \neq$), Simplex, propagation techniques
 ◦ Boolean ($=$), 2-valued Boolean algebra
 ◦ Finite domains, consistency techniques under user–defined strategy

• **SICStus 3:**
 ◦ Linear arithmetic over reals ($=, \leq, >, \neq$)
 ◦ Linear arithmetic over rationals ($=, \leq, >, \neq$)
 ◦ Finite domains
Some CLP Systems (III)

- **ECL**PS:
 - Finite domains
 - Linear arithmetic over reals (\(=\), \(\leq\), \(>\), \(\neq\))
 - Linear arithmetic over rationals (\(=\), \(\leq\), \(>\), \(\neq\))

- **clp(FD)/gprolog**:
 - Finite domains

- **RISC–CLP**:
 - Real arithmetic terms: any arithmetic constraint over reals
 - Improved version of Tarski’s quantifier elimination

- **Ciao**:
 - Linear arithmetic over reals (\(=\), \(\leq\), \(>\), \(\neq\))
 - Linear arithmetic over rationals (\(=\), \(\leq\), \(>\), \(\neq\))
 - Finite Domains
 (can be selected on a per-module basis)

- Many Prolog systems now support constraints!