Computational Logic

Constraint Logic Programming
Constraints

- Born within AI: e.g. house design
- Constraints used as problem representation:

 The man in yellow does not have green eyes

 The murderer knows no detective will ever wear dark clothes

- A solution is an assignment which agrees with the initial constraints:

 Murderer: López, green eyes, Magnum gun

- Or, alternatively, the solution can also be a set of constraints:

 The murderer is one of those who had met the cabaret entertainer

 (they represent several ground mappings from elements to variables)

- There may be no solution:

 Natural death
A General View

- **Ancestors:**
 - SKETCHPAD (1963), Waltz’s algorithm (1965?), THINGLAB (1981), MACSYMA (1983), ...

- **Constraints in logic languages – the origin of “constraint programming”:**
 - General theory developed (Jaffar and Lassez ’97).
 - First, standalone systems developed: clpr, CHIP, ...
 - Now included in many Prologs (e.g., clpr/clpq/clpfd packages in Ciao).

- **Constraints in imperative languages:**
 - Equation solving libraries (ILOG, GECODE, ...)
 - Timestamping of variables:
 - $x := x + 1 \leftrightarrow x_{i+1} := x_i + 1$
 - (similar to iterative methods in numerical analysis)

- **Constraints in functional languages, via extensions:**
 - Evaluation of expressions including free variables.
 - *Absolute Set Abstraction.*
A comparison with classic LP (I)

- Example (**plain Prolog**): \[q(X, Y, Z) :- Z = f(X, Y).\]

  ```prolog
  ?- q(3, 4, Z).
  Z = f(3,4)
  ```

  ```prolog
  ?- q(X, Y, f(3,4)).
  X = 3, Y = 4
  ```

  ```prolog
  ?- q(X, Y, Z).
  Z = f(X,Y)
  ```

- Example (**plain Prolog**): \[p(X, Y, Z) :- Z \text{ is } X + Y.\]

  ```prolog
  ?- p(3, 4, Z).
  Z = 7
  ```

  ```prolog
  ?- p(X, 4, 7).
  \{INSTANTIATION ERROR\} \leftarrow \text{is/2 not reversible, does not work!}
  ```
A Comparison with classic LP (II)

- Example (**CLP(ℤ)** package):

```prolog
:- use_package(clpr).
p(X, Y, Z) :- Z =. X + Y.

?- p(3, 4, Z).
Z =. 7

?- p(X, 4, 7).
X =. 3

4 ?- p(X, Y, 7).
X =. 7 - Y  ← with clpr arithmetic is reversible!
```

← with clpr arithmetic is reversible!
A Comparison with classic LP (III)

- Features in CLP:
 - Domain of computation (reals, integers, booleans, etc).
 Have to meet some conditions.
 - Type of constraints allowed for each domain: e.g. arithmetic constraints $(+, *, =, \leq, \geq, <, >)$
 - Constraint solving algorithms: simplex, gauss, etc.

- Classical LP can be viewed as a constraint logic language over Herbrand terms with a single constraint predicate symbol: $=$
A Comparison with classic LP (IV)

- **Advantages:**
 - Helps making programs expressive and flexible.
 - May save much coding.
 - In some cases, more efficient than classic LP programs due to solvers typically being very efficiently implemented.
 - Also, efficiency due to search space reduction:
 * LP: generate-and-test.
 * CLP: constrain-and-generate.

- **Disadvantages:**
 - Complexity of solver algorithms (simplex, gauss, etc) can affect performance.

- **Solutions:**
 - better algorithms
 - compile-time optimizations (program transformation, global analysis, etc)
 - parallelism
Example of Search Space Reduction

- Using **plain Prolog** (generate–and–test):

  ```prolog
  % Find three consecutive numbers in the p/1 relation.
  solution(X, Y, Z) :-
    p(X), p(Y), p(Z),
    test(X, Y, Z).
  
  
test(X, Y, Z) :- Y is X + 1, Z is Y + 1.
  ```

- Query:

  ```prolog
  ?- solution(X, Y, Z).
  X = 14, Y = 15, Z = 16  ;
  no
  ```

- 458 steps (all solutions: 465 steps).
Example of Search Space Reduction

- Using the **CLP(ℜ) package** (generate–and–test):

  ```prolog
  % Find three consecutive numbers in the p/1 relation.
  :- use_package(clpr).
  solution(X, Y, Z) :-
      p(X), p(Y), p(Z),
      test(X, Y, Z).
  test(X, Y, Z) :- Y =. X + 1, Z =. Y + 1.
  ```

- Query:

  ```prolog
  ?- solution(X, Y, Z).
  X =. 14, Y =. 15, Z =. 16 ? ;
  no
  ```

- 458 steps (all solutions: 465 steps).
Generate–and–test Search Tree

A5
Y=14 Y=15
A4 A3 A2 A1
X=15 X=16 X=7 X=3 X=11 X=14
Z=14 Z=15 Z=16 Z=7 Z=3 Z=11
g
B5
Y=11 Y=3 Y=7 Y=16
B4 B3 B2 B1
B
A
Example of Search Space Reduction

- **Move** `test(X, Y, Z)` **to the beginning** *(constrain–and–generate)*:

% Find three consecutive numbers in the p/1 relation.
```
:- use_package(clpr).
solution(X, Y, Z) :-
    test(X, Y, Z),
    p(X), p(Y), p(Z).
```

- **Using plain Prolog:**

```
test(X, Y, Z):-Y is X +1, Z is Y +1.
?- solution(X, Y, Z).
{INSTANTIATION ERROR}
```

- **Using the CLP(ℜ) package:**

```
test(X, Y, Z):-Y .=. X +1, Z .=. Y +1.
?- solution(X, Y, Z).
X .=. 14, Y .=. 15, Z .=. 16 ? ;
no
```

In **6 steps** (and all solutions in **11 steps**)!
Constrain–and–generate Search Tree
Constraint Domains

• The semantics is parameterized by the constraint domain \mathcal{X}: $\text{CLP}(\mathcal{X})$, where $\mathcal{X} \equiv (\Sigma, D, L, T)$:
 ◦ Σ: set of predicate and function symbols, together with their arity
 ◦ $L \subseteq \Sigma$--formulae: constraints
 ◦ D: the set of actual elements in the constraint domain
 ◦ D: meaning of predicate and function symbols (and hence, constraints).
 ◦ T: a first–order theory (axiomatizes some properties of D)

• (D, L) is a constraint domain

• Assumptions:
 ◦ L built upon a first–order language
 ◦ $\in \in \Sigma$; \in is identity in D
 ◦ There are identically false and identically true constraints in L
 ◦ L is closed w.r.t. renaming, conjunction, and existential quantification
Domains (I)

- $\Sigma = \{0, 1, +, *, =, <, \leq\}$, $D = \mathbb{R}$ (the reals), D interprets Σ as usual, $\mathcal{R} = (D, \mathcal{L})$
 - Arithmetic over the reals (“\mathcal{R}” domain).
 - Eg.: $x^2 + 2xy < \frac{y}{x} \land x > 0$ ($\equiv xxx + xxy + xxy < y \land 0 < x$)
 - Question: is 0 needed? How can it be represented?

- $\Sigma' = \{0, 1, +, =, <, \leq\}$, $\mathcal{R}_{Lin} = (D', \mathcal{L}')$
 - Linear arithmetic (“\mathcal{R}_{Lin}” domain)
 - Eg.: $3x - y < 3$ ($\equiv x + x + x < 1 + 1 + 1 + y$)

- $\Sigma'' = \{0, 1, +, =\}$, $\mathcal{R}_{LinEq} = (D'', \mathcal{L}'')$
 - Linear equations (“\mathcal{R}_{LinEq}” domain)
 - Eg.: $3x + y = 5 \land y = 2x$

- A corresponding set of domains can be defined on the rationals (“\mathcal{Q}” domain)
A very special domain:

- $\Sigma = \{ <\text{constant and function symbols}>, = \}$
- $D = \{ \text{finite trees} \}$
- D interprets Σ as tree constructors
- Each $f \in \Sigma$ with arity n maps n trees to a tree with root labeled f and whose subtrees are the arguments of the mapping
- Constraints: syntactic tree equality
- $\mathcal{FT} = (D, L)$

→ **Equality constraints over the Herbrand domain** (\mathcal{FT} domain)
- Eg.: $g(h(Z), Y) = g(Y, h(a))$

- $\text{LP} \equiv \text{CLP}(\mathcal{FT})$
Domains (III)

- $\Sigma = \{<\text{constants}>, \lambda, ., ::, =\}$
- $D = \{\text{finite strings of constants}\}$
- D interprets $.$ as string concatenation, $::$ as string length

\rightarrow **Equations over strings of constants** (D domain)
- Eg.: $X.A.X = X.A$

- $\Sigma = \{0, 1, \neg, \land, =\}$
- $D = \{true, false\}$
- D interprets symbols in Σ as boolean functions
- $BOOL = (D, \mathcal{L})$

\rightarrow **Boolean constraints** ($BOOL$ domain)
- Eg.: $\neg(x \land y) = 1$
CLP(\mathcal{X}) Programs

- Recall that:
 - Σ is a set of predicate and function symbols
 - $\mathcal{L} \subseteq \Sigma$–formulae are the constraints

- $\Pi \subseteq \Sigma$: set of predicate symbols definable by a program
 - Atom: $p(t_1, t_2, \ldots, t_n)$, where $p \in \Pi$ and t_1, t_2, \ldots, t_n are terms
 - Primitive constraint: $p(t_1, t_2, \ldots, t_n)$, where t_1, t_2, \ldots, t_n are terms and $p \in \Sigma$ is a predicate symbol
 - Constraint: (first–order) formula built from primitive constraints

- The class of constraints will vary (generally only a subset of formulas are considered constraints)

- A CLP program is a collection of rules of the form $a \leftarrow b_1, \ldots, b_n$ where a is an atom and the b_i’s are atoms or constraints

- A fact is a rule $a \leftarrow c$ where c is a constraint

- A goal (or query) G is a conjunction of constraints and atoms
A case study: CLP(ℜ)

• CLP(ℜ) is a language based on Prolog, with the addition of constraint solving capabilities over the reals (ℜ_{Lin})
 - Uses same execution strategy as standard Prolog (depth–first, left–to–right)
 - Is able to solve directly linear (dis)equations over the reals
 - Non–linear equations are delayed, waiting for them to eventually become linear
 - Most relevant feature w.r.t. Prolog (for our purposes): is/2 disappears, and is subsumed by =/2 and (extended) unification

• Note: CLP(ℜ) is really CLP((ℜ, ℱT)) — ℱT is often omitted.

• In modern Prolog systems coexisting with the ISO primitives (is/2, >/2 etc.).

• In Ciao supported in via the clpr package:
 - Uses .=., .>>, etc. to distinguish the clpr constraints from the ISO-Prolog arithmetic primitives.
 - I.e., X .= Y + 5, Y .> 1 vs. X is Y + 5, Y > 1
Linear Equations (CLP(\(\mathbb{R}\)) package)

- Vector \(\times\) vector multiplication (dot product):

 \[
 \cdot : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}

 (x_1, x_2, \ldots, x_n) \cdot (y_1, y_2, \ldots, y_n) = x_1 \cdot y_1 + \cdots + x_n \cdot y_n
 \]

- Vectors represented as lists of numbers

  ```prolog
  :- use_package(clpr).
  prod([], [], Result) :- Result .==. 0.
  prod([X|Xs], [Y|Ys], Result) :-
      Result .==. X * Y + Rest, prod(Xs, Ys, Rest).
  ```

- Unification becomes constraint solving!

  ```prolog
  ?- prod([2, 3], [4, 5], K).
  K .==. 23
  ?- prod([2, 3], [5, X2], 22).
  X2 .==. 4
  ?- prod([2, 7, 3], [Vx, Vy, Vz], 0).
  Vx .==. -1.5*Vz - 3.5*Vy
  ```

- Any computed answer is, in general, an equation over the variables in the query
Systems of Linear Equations (CLP(\(\mathbb{R}\)))

- Can we solve systems of equations? E.g.,

 \[
 \begin{align*}
 3x + y &= 5 \\
 x + 8y &= 3
 \end{align*}
 \]

- Write them down at the top level prompt:

  ```prolog
  ?- prod([3, 1], [X, Y], 5), prod([1, 8], [X, Y], 3).
  X == 1.6087, Y == 0.173913
  ```

- A more general predicate can be built mimicking the mathematical vector notation \(A \cdot x = b\):

  ```prolog
  system(_Vars, [], []).
  system(Vars, [Co|Coefs], [Ind|Indeps]) :-
      prod(Vars, Co, Ind),
      system(Vars, Coefs, Indeps).
  ```

- We can now express (and solve) equation systems

  ```prolog
  ?- system([X, Y], [[3, 1], [1, 8]], [5, 3]).
  X == 1.6087, Y == 0.173913
  ```
Non–linear Equations (CLP(ℜ))

• Non–linear equations are delayed

```prolog
?- sin(X) .==. cos(X).
sin(X) .==. cos(X)
```

• This is also the case if there exists some procedure to solve them

```prolog
?- X*X + 2*X + 1 .==. 0.
-2*X - 1 .==. X * X
```

• Reason: no general solving technique is known. CLP(ℜ) solves only linear (dis)equations.

• Once equations become linear, they are handled properly:

```prolog
?- X .==. cos(sin(Y)), Y .==. 2+Y*3.
Y .==. -1, X .==. 0.666367
```

• Disequations are solved using a modified, incremental Simplex

```prolog
?- X + Y .<==. 4, Y .>=. 4, X .>=. 0.
Y .==. 4, X .==. 0
```
Fibonacci Revisited (Prolog)

- Fibonacci numbers:

\[
\begin{align*}
F_0 &= 0 \\
F_1 &= 1 \\
F_{n+2} &= F_{n+1} + F_n
\end{align*}
\]

- (The good old) Prolog version:

```prolog
fib(0, 0).
fib(1, 1).
fib(N, F) :-
    N > 1,
    N1 is N - 1,
    N2 is N - 2,
    fib(N1, F1),
    fib(N2, F2),
    F is F1 + F2.
```

- Can only be used with the first argument instantiated to a number
Fibonacci Revisited (CLP(ℜ))

- CLP(ℜ) package version: syntactically similar to the previous one:

```
:- use_package(clpr).
fib(N,N) :- N =. 0.
fib(N,N) :- N =. 1.
fib(N,R) :- N >. 1, F1 >=. 0, F2 >=. 0,
            N1 =. N - 1, N2 =. N - 2,
            fib(N1,F1), fib(N2,F2),
            R =. F1 + F2.
```

- Note all constraints included in program (F1 >= 0, F2 >= 0) – good practice!
- Only real numbers and equations used (no data structures, no other constraint system): “pure CLP(ℜ)”
- Semantics greatly enhanced! E.g.

```
?- fib(N, F).
F =. 0, N =. 0 ;
F =. 1, N =. 1 ;
F =. 1, N =. 2 ;
F =. 2, N =. 3 ;
```
Analog RLC circuits (CLP(ℜ))

- Analysis and synthesis of analog circuits
- RLC network in steady state
- Each circuit is composed either of:
 - A simple component, or
 - A connection of simpler circuits
- For simplicity, we will suppose subnetworks connected only in parallel and series \(\rightarrow \) Ohm’s laws will suffice (other networks need global, i.e., Kirchoff’s laws)
- We want to relate the current \((I) \), voltage \((V) \) and frequency \((\bar{W}) \) in steady state
- Entry point: \(\text{circuit}(C, V, I, \bar{W}) \) states that:
 across the network \(C \), the voltage is \(V \), the current is \(I \) and the frequency is \(\bar{W} \)
- \(V \) and \(I \) must be modeled as complex numbers (the imaginary part takes into account the angular frequency)
- Note that Herbrand terms are used to provide data structures
Analog RLC circuits (CLP(ℜ))

- Complex number $X + Yi$ modeled as $c(X, Y)$

- Basic operations:

```prolog
:- use_package(clpr).

c_add(c(Re1, Im1), c(Re2, Im2), c(Re12, Im12)) :-
    Re12 =. Re1+Re2,
    Im12 =. Im1+Im2.

c_mult(c(Re1, Im1), c(Re2, Im2), c(Re3, Im3)) :-
    Re3 =. Re1 * Re2 - Im1 * Im2,
    Im3 =. Re1 * Im2 + Re2 * Im1.

(equality is c_equal(c(R, I), c(R, I)), can be left to [extended] unification)
• Circuits in series:

\[
\text{circuit}(\text{series}(N_1, N_2), V, I, W) :- \\
\quad \text{c_add}(V_1, V_2, V), \\
\quad \text{circuit}(N_1, V_1, I, W), \\
\quad \text{circuit}(N_2, V_2, I, W).
\]

• Circuits in parallel:

\[
\text{circuit}(\text{parallel}(N_1, N_2), V, I, W) :- \\
\quad \text{c_add}(I_1, I_2, I), \\
\quad \text{circuit}(N_1, V, I_1, W), \\
\quad \text{circuit}(N_2, V, I_2, W).
\]
Analog RLC circuits (CLP(ℜ))

Each basic component can be modeled as a separate unit:

- **Resistor**: \( V = I \ast (R + 0i) \)

```prolog
circuit(resistor(R), V, I, _W) :-
 c_mult(I, c(R, 0), V).
```

- **Inductor**: \( V = I \ast (0 + WLi) \)

```prolog
circuit(inductor(L), V, I, W) :-
 Im .==. W * L,
 c_mult(I, c(0, Im), V).
```

- **Capacitor**: \( V = I \ast (0 - \frac{1}{WCi}) \)

```prolog
circuit(capacitor(C), V, I, W) :-
 Im .==. -1 / (W * C),
 c_mult(I, c(0, Im), V).
```
Analog RLC circuits (CLP(ℜ))

- Example:

\[ R = ? \quad C = ? \]

\[ V = 4.5 \quad \omega = 2400 \]

\[ I = 0.65 \]

\[ L = 0.073 \]

?- circuit(parallel(inductor(0.073),
                  series(capacitor(C), resistor(R))),
            c(4.5, 0), c(0.65, 0), 2400).

\[ R \ = \ 6.91229, \ C \ = \ 0.00152546 \]

?- circuit(C, c(4.5, 0), c(0.65, 0), 2400).
The N Queens Problem

- Problem:
  place \( N \) chess queens in a \( N \times N \) board such that they do not attack each other

- Data structure: a list holding the column position for each row

- The final solution is a permutation of the list \([1, 2, \ldots, N]\)

- E.g.: the solution is represented as \([2, 4, 1, 3]\)

- General idea:
  - Start with partial solution
  - Nondeterministically select new queen
  - Check safety of new queen against those already placed
  - Add new queen to partial solution if compatible; start again with new partial solution
The N Queens Problem in Prolog

queens(N, Qs) :- queens_list(N, Ns), % E.g., Ns=[4,3,2,1]
      queens(Ns, [], Qs).

queens([], Qs, Qs). % All queens placed!
queens(Unplaced, Placed, Qs) :-
   select(Unplaced, Q, NewUnplaced), % E.g. Q=4, NewU=[3,2,1]
   no_attack(Placed, Q, 1),
   queens(NewUnplaced, [Q|Placed], Qs).% OK->Choose next q

no_attack([], _Queen, _Nb).
no_attack([Y|Ys], Queen, Nb) :-
   Queen =\= Y + Nb,  Queen =\= Y - Nb,  Nb1 is Nb + 1,
   no_attack(Ys, Queen, Nb1).

select([X|Ys], X, Ys).
select([Y|Ys], X, [Y|Zs]) :- select(Ys, X, Zs).

queens_list(0, []).
queens_list(N, [N|Ns]) :-
   N > 0, N1 is N - 1, queens_list(N1, Ns).
The N Queens Problem in Prolog - search space
The N Queens Problem in CLP(\(\mathbb{R}\))  
(in Ciao clpr syntax)

\[
\text{:- use_package (clpr).}
\]
\[
\text{queens(N,Qs) :- constrain_values(N,N,Qs), place_queens(N,Qs).}
\]

\[
\text{constrain_values(0, _N, []). \quad \% Constrains before placing}
\]
\[
\text{constrain_values(N, Range, [X|Xs]) :-}
\]
\[
\quad N \succ 0, X \succ 0, X \preceq \text{Range}, N1 = N - 1,
\quad \text{constrain_values(N1, Range, Xs), no_attack(Xs, X, 1).}
\]

\[
\text{no_attack([], _Queen, _Nb). \quad \% Identical to Prolog version}
\]
\[
\text{no_attack([Y|Ys], Queen, Nb) :- \% but using constraints}
\]
\[
\quad \text{Queen .\textgreater\textless Y + Nb, Queen .\textgreater\textless Y - Nb, Nb1 = Nb + 1,}
\quad \text{no_attack(Ys, Queen, Nb1).}
\]

\[
\text{place_queens(0, _).}
\]
\[
\text{place_queens(N, Q) :-}
\]
\[
\quad N \succ 0,
\quad \text{member(N, Q),}
\quad N1 = N - 1,
\quad \text{place_queens(N1, Q).}
\]
The N Queens Problem in CLP(ℜ)

- This last program can attack the problem in its most general instance:

```prolog
?- queens(N,L).
L = [], N =. 0 ;
L = [1], N =. 1 ;
L = [2, 4, 1, 3], N =. 4 ;
L = [3, 1, 4, 2], N =. 4 ;
L = [5, 2, 4, 1, 3], N =. 5 ;
L = [5, 3, 1, 4, 2], N =. 5 ;
L = [3, 5, 2, 4, 1], N =. 5 ;
L = [2, 5, 3, 1, 4], N =. 5
...
```

- Remark: Herbrand terms used to build the data structures
- But also used as constraints (e.g., length of already built list Xs in `no_attack(Xs, X, 1)`)
- Note that in fact we are using both ℜ and ℱ concentration
The N Queens Problem in CLP(ℜ) – search space
The N Queens Problem in CLP(\(\mathbb{R}\))

- CLP(\(\mathbb{R}\)) generates internally a set of equations for each board size

```prolog
?- constrain_values(4, 4, Qs).
Qs = [_A, _B, _C, _D],
nonzero(_E), _A=<.4.0, _E=.3.0+_{A-D},
nonzero(_F), _A>.0, _F=-3.0+_{A-D},
nonzero(_G), _B=<.4.0, _G=.2.0+_{A-C},
nonzero(_H), _B>.0, _H=-2.0+_{A-C},
nonzero(_I), _C=<.4.0, _I=1+_{A-B},
nonzero(_J), _C>.0, _J=-1+_{A-B},
nonzero(_K), _D=<.4.0, _K=.2.0+_{B-D},
nonzero(_L), _D>.0, _L=-2.0+_{B-D},
nonzero(_M), _M=1+_{B-C},
nonzero(_N), _N=-1+_{B-C},
nonzero(_O), _O=1+_{C-D},
nonzero(_P), _P=-1+_{C-D}.
```

- `place_queens(4, [\_A, \_B, \_C, \_D])` adds all possible queens in \([\_A, \_B, \_C, \_D]\).
The N Queens Problem in CLP(ℜ)

- Constraints are (incrementally) simplified as new queens are added

```
?- constrain_values(4, 4, Qs), Qs = [3,1|_].
Qs = [_A,_B,_C,_D],
nonzero(_E), _A.=.3.0, _E.=.6.0-_D,
nonzero(_F), _B.=.1.0, _F.=. -_D,
nonzero(_G), _C.=<.4.0, _G.=.5.0-_C,
nonzero(_H), _C.=>.0, _H.=.1.0-_C,
nonzero(_I), _D.=<.4.0, _I.=.3.0-_D,
nonzero(_J), _D.=>.0, _J.=. -1.0-_D,
nonzero(_K), _K.=.2.0-_C,
nonzero(_L), _L.=. -_C,
nonzero(_M), _M.=.1+_C-_D,
nonzero(_N), _N.=. -1+_C-_D ?
```

- Bad choices are rejected using constraint consistency:

```
?- constrain_values(4, 4, Qs), Qs = [3,2|_].
no
```
Finite Domains (I)

- A **finite domain** constraint solver associates each variable with a finite subset of $\mathbb{Z}$

- I.e., $E \in \{-123, -10..4, 10\}$
  
  Can be represented as, e.g.,
  
  $\mathbf{E :: [-123, -10..4, 10]}$  
  [Eclipse notation]

  or as
  
  $\mathbf{E \ \mathrm{in} \ -123 \backslash (\mathrm{-}10..4) \backslash 10}$  
  [Ciao notation]

- We can:
  
  - Perform arithmetic operations (+, -, *, /) on the variables
  - Establish linear relationships among arithmetic expressions (#=, #<, #=<)

- Those operations / relationships are intended to narrow the domains of the variables

- **Note:** In Ciao this functionality is loaded with a
  
  $\mathbf{:- \mathrm{use\_module(library(clpfd)).}}$

  directive in the source code.
Finite Domains (II)

Examples:

?- X != A + B, A in 1..3, B in 3..7.
  X in 4..10, A in 1..3, B in 3..7

- The respective minimums and maximums are added
- There is no unique solution

?- X != A - B, A in 1..3, B in 3..7.
  X in -6..0, A in 1..3, B in 3..7

- The min value of X is the min value of A minus the max value of B
  (Similar for the maximum values)

?- X != A - B, A in 1..3, B in 3..7, X >= 0.
  A = 3, B = 3, X = 0

- Putting more constraints results in a unique solution.
Finite Domains (III)

Some useful primitives in finite domains:

- `domain(Variables, Min, Max)`: A shorthand for several in constraints
- `labeling(Options, VarList)`:
  - instantiates variables in `VarList` to values in their domains
  - `Options` dictates the search order
  ```
 X = 4, Y = 3, Z = 5,
 X = 8, Y = 6, Z = 10,
 X = 12, Y = 5, Z = 13,
 ...
  ```
- `minimize(G, X)`: solve `G` minimizing the value of variable `X`
- This can be used to minimize (c.f., maximize) a solution
A classic example: SEND MORE MONEY

% SEND
% + MORE
% _________
% MONEY

:- use_package(clpfd).

smm([S,E,N,D,M,O,R,Y]) :-
    domain([S,E,N,D,M,O,R,Y], 0, 9), % All digits 0..9
    0 #< S, 0 #< M, % No leftmost zeros
    all_different([S,E,N,D,M,O,R,Y]), % All digits different
    S*1000 + E*100 + N*10 + D + %
    M*1000 + O*100 + R*10 + E #= % Arith. constr.
    M*10000 + O*1000 + N*100 + E*10 + Y, %
    labeling([], [S,E,N,D,M,O,R,Y]). % Instantiate variables
A Project Management Problem (I)

- The job whose dependencies and task lengths are given by this graph...

... should be finished in 10 time units or less.

- Constraints:

\[
pn1(A,B,C,D,E,F,G) :-
\]
\[
domain([A,B,C,D,E,F,G], 0, 10),
\]
\[
A \#>= 0, G \#=< 10,
\]
\[
B \#>= A, C \#>= A, D \#>= A,
\]
\[
E \#>= B + 1, E \#>= C + 2,
\]
\[
F \#>= C + 2, F \#>= D + 3,
\]
\[
G \#>= E + 4, G \#>= F + 1.
\]
A Project Management Problem (II)

- Query:

  ?- pn1(A,B,C,D,E,F,G).
  A in 0..4, B in 0..5, C in 0..4, 
  D in 0..6, E in 2..6, F in 3..9, G in 6..10.

- Note the slack of the variables

- Some additional constraints must be respected as well, but are not shown by default

- Minimize the total project time:

  ?- minimize(pn1(A,B,C,D,E,F,G), G).
  A = 0, B in 0..1, C = 0, D in 0..2,
  E = 2, F in 3..5, G = 6

- Variables without slack represent critical tasks
A Project Management Problem (III)

- An alternative setting:

- We can accelerate task $F$ at some cost

\[\text{pn2}(A, B, C, D, E, F, G, X) :\]
\[\text{domain([A,B,C,D,E,F,G,X], 0, 10}),\]
\[A \#>= 0, G \#=< 10,\]
\[B \#>= A, C \#>= A, D \#>= A,\]
\[E \#>= B + 1, E \#>= C + 2,\]
\[F \#>= C + 2, F \#>= D + 3,\]
\[G \#>= E + 4, G \#>= F + X.\]

- We do not want to accelerate it more than needed!

\[\rightarrow \text{minimize } G \text{ and maximize } X.\]

$A = 0$, $B$ in $0..1$, $C = 0$, $D = 0$,
$E = 2$, $F = 3$, $G = 6$, $X = 3$. 
We have two independent tasks $B$ and $D$ whose lengths are not fixed:

- We can finish any of $B$, $D$ in 2 time units at best.
- Some shared resource disallows finishing both tasks in 2 time units: they will take 6 time units.
• Constraints describing the net:

\[ \text{pn3}(A, B, C, D, E, F, G, X, Y) :\]
\[
\text{domain([A, B, C, D, E, F, G, X, Y], 0, 10),}
\]
\[
A \geq 0, G \leq 10, X \geq 2, Y \geq 2, X + Y = 6, B \geq A, C \geq A, D \geq A, E \geq B + X, E \geq C + 2, F \geq C + 2, F \geq D + Y, G \geq E + 4, G \geq F + 1.\]

• Query:

\[- \text{minimize(pn3(A, B, C, D, E, F, G, X, Y), G)}.\]
\[
A = 0, B = 0, C = 0, D \text{ in } 0..1, E = 2, F \text{ in } 4..5, X = 2, Y = 4, G = 6\]

• I.e., we must devote more resources to task B

• All tasks but F and D are critical now

• Sometimes, \text{minimize/2} not enough to provide best solution (pending constr.):

\[- \text{minimize(pn3(A, B, C, D, E, F, G, X, Y), G)}, \text{ labeling([[],[D,F]])}.\]
The N-Queens Problem Using Finite Domains  (in Ciao clpfd syntax)

- By far, the fastest implementation

```prolog
:- use_package(clpfd).
queens(N, Qs, Type) :-
 constrain_values(N, N, Qs), % Constrain before placing
 all_different(Qs), % Using built-in constraint
 labeling(Type, Qs). % Labeling places the queens

constrain_values(0, _N, []). % Labeling places the queens
constrain_values(N, Range, [X|Xs]) :-
 N > 0, N1 is N - 1, X in 1 .. Range, % Limits X values
 constrain_values(N1, Range, Xs), no_attack(Xs, X, 1).

no_attack([], _Queen, _Nb). % Same as CLP(R) version
no_attack([Y|Ys], Queen, Nb) :- % but using clpfd primitives
 Queen #= Y + Nb, Queen #= Y - Nb, Nb1 is Nb + 1,
 no_attack(Ys, Queen, Nb1).
```

- Query: ?- queens(20, Q, [ff]). (Type is the type of labeling desired.)
  Q = [1,3,5,14,17,4,16,7,12,18,15,19,6,10,20,11,8,2,13,9] ?
CLP(\mathcal{FT}) (a.k.a. Logic Programming)

- Equations over Finite Trees
- Check that two trees are isomorphic (same elements in each level)

\begin{verbatim}
iso(Tree, Tree).
iso(t(R, I1, D1), t(R, I2, D2)) :-
    iso(I1, D2),
    iso(D1, I2).

?- iso(t(a, b, t(X, Y, Z)), t(a, t(u, v, W), L)).
L=b, X=u, Y=v, Z=W ? ;
L=b, X=u, Y=W, Z=v ? ;
L=b, W=t(_C,_B,_A), X=u, Y=t(_C,_A,_B), Z=v ? ;
L=b, W=t(_E,t(_D,_C,_B),_A), X=u, Y=t(_E,_A,t(_D,_B,_C)), Z=v ?
\end{verbatim}
CLP(WE)

- Equations over finite strings
- Primitive constraints: concatenation (.), string length (::)
- Find strings meeting some property:
  
  ```
 ?- "123".Z = Z."231", Z::0.
 no

 ?- "123".Z = Z."231", Z::1.
 Z = "1"

 ?- "123".Z = Z."231", Z::2.
 no

 ?- "123".Z = Z."231", Z::3.
 no

 ?- "123".Z = Z."231", Z::4.
 Z = "1231"
  ```

- These constraint solvers are very complex
- Often incomplete algorithms are used
Word equations plus arithmetic over \( \mathbb{Q} \) (rational numbers)

Prove that the sequence \( x_{i+2} = |x_{i+1}| - x_{i} \) has a period of length 9 (for any starting \( x_0, x_1 \))

Strategy: describe the sequence, try to find a subsequence such that the period condition is violated

Sequence description (syntax is Prolog III slightly modified):

```prolog
seq(<Y, X>).
abs(Y, Y) :- Y >= 0.
seq(<Y1 - X, Y, X>.U) :-
 seq(<Y, X>.U)
 abs(Y, Y1).
```

Query: Is there any 11–element sequence such that the 2–tuple initial seed is different from the 2–tuple final subsequence (the seed of the rest of the sequence)?

```prolog
?- seq(U.V.W), U::2, V::7, W::2, U#W.
fail
```
**Summarizing**

- **In general:**
  - Data structures (Herbrand terms) for free
  - Each logical variable may have constraints associated with it (and with other variables)

- **Problem modeling:**
  - Rules represent the problem at a high level
    - * Program structure, modularity
    - * Recursion used to set up constraints
  - Constraints encode problem conditions
  - Solutions also expressed as constraints

- **Combinatorial search problems:**
  - CLP languages provide backtracking: enumeration is easy
  - Constraints keep the search space manageable

- **Tackling a problem:**
  - Keep an open mind: often new approaches possible
Complex Constraints

- Some complex constraints allow expressing simpler constraints
- May be operationally treated as passive constraints
- E.g.: cardinality operator \( \#(L, [c_1, \ldots, c_n], U) \) meaning that the number of true constraints lies between \( L \) and \( U \) (which can be variables themselves)
  - If \( L = U = n \), all constraints must hold
  - If \( L = U = 1 \), one and only one constraint must be true
  - Constraining \( U = 0 \), we force the conjunction of the negations to be true
  - Constraining \( L > 0 \), the disjunction of the constraints is specified
- Disjunctive constructive constraint: \( c_1 \lor c_2 \)
  - If properly handled, avoids search and backtracking
    - E.g.: \( \text{nz}(X) \leftarrow X > 0. \)
    - \( \text{nz}(X) \leftarrow X < 0. \)
    - \( \text{nz}(X) \leftarrow X < 0 \lor X > 0. \)
Other Primitives

- CLP(\( \mathcal{X} \)) systems usually provide additional primitives

- E.g.:

  - \texttt{enum(X)} enumerates \( X \) inside its current domain
  - \texttt{maximize(X)} (c.f. \texttt{minimize(X)}) works out maximum (minimum value) for \( X \) under the active constraints
  - \texttt{delay Goal until Condition} specifies when the variables are instantiated enough so that \texttt{Goal} can be effectively executed

  * Its use needs deep knowledge of the constraint system
  * Also widely available in Prolog systems
  * Not really a constraint: control primitive
Implementation Issues: Satisfiability

- Algorithms must be *incremental* in order to be practical
- Incrementality refers to the performance of the algorithm
- It is important that algorithms to decide satisfiability have a good average case behavior
- Common technique: use a *solved form* representation for satisfiable constraints
- Not possible in every domain
- E.g. in $\mathcal{FT}$ constraints are represented in the form $x_1 = t_1(\tilde{y}), \ldots, x_n = t_n(\tilde{y})$, where
  - each $t_i(\tilde{y})$ denotes a term structure containing variables from $\tilde{y}$
  - no variable $x_i$ appears in $\tilde{y}$
  (i.e., idempotent substitutions, guaranteed by the unification algorithm)
Implementation Issues: Backtracking in CLP(\(\mathcal{X}\))

- Implementation of backtracking more complex than in Prolog
- Need to record changes to constraints
- Constraints typically stored as an association of variable to expression
- Trailing expressions is, in general, costly: cannot be stored at every change
- Avoid trailing when there is no choice point between two successive changes
- A standard technique: use *time stamps* to compare the age of the choice point with the age of the variable at the time of last trailing

\[
\begin{align*}
X &< Y + Z, \quad Y = Z + W \\
X &< Y + 4, \quad Y = 4 + W, \quad Z = 4 \\
X &< 9, \quad Y = 5, \quad Z = 4, \quad W = 1 \quad \text{trail } W, \text{ timestamp it} \\
X &< Y + Z, \quad Y = Z + W \quad \text{timestamp } X, Y, Z, W
\end{align*}
\]
Implementation Issues: Extensibility

- Constraint domains often implemented now in Prolog-based systems using:
  - Attributed variables [Neumerkel, Holzbaur]:
    * Provide a hook into unification.
    * Allow attaching an attribute to a variable.
    * When unification with that variable occurs, user-defined code is called.
    * Used to implement constraint solvers (and other applications, e.g., distributed execution).
  - Constraint handling rules (CHRs):
    * Higher-level abstraction.
    * Allows defining propagation algorithms (e.g., constraint solvers) in a high-level way.
    * Often translated to attributed variable-based low-level code.
Attributed Variables Example: Freeze

- Primitives:
  - `attach_attribute(X,C)`
  - `get_attribute(X,C)`
  - `detach_attribute(X)`
  - `update_attribute(X,C)`
  - `verify_attribute(C,T)`
  - `combine_attributes(C1,C2)`

- Example: Freeze

```prolog
freeze(X, Goal) :-
 attach_attribute(V, frozen(V,Goal)),
 X = V.

verify_attribute(frozen(Var,Goal), Value) :-
 detach_attribute(Var),
 Var = Value,
 call(Goal).

combine_attributes(frozen(V1,G1), frozen(V2,G2)) :-
 detach_attribute(V1),
 detach_attribute(V2),
 V1 = V2,
 attach_attribute(V1, frozen(V1,(G1,G2))).
```
Programming Tips

• Over-constraining:
  ◦ Seems to be against general advice “do not perform extra work”, but can actually cut more search space
  ◦ Specially useful if infer is weak
  ◦ Or else, if constraints outside the domain are being used

• Use control primitives (e.g., cut) very sparingly and carefully

• Determinacy is more subtle, (partially due to constraints in non–solved form)

• Choosing a clause does not preclude trying other exclusive clauses (as with Prolog and plain unification)

• Compare:

  max(X,Y,X) :- X >. Y.                      ?- max(X, Y, Z).
  max(X,Y,Y) :- X <=. Y.                      Z =. X, Y <. X ;

  with

  max(X,Y,X) :- X >. Y, !.                   ?- max(X, Y, Z).
  max(X,Y,Y) :- X <=. Y.                      Z =. X, Y <. X
Some “Classic” CLP Systems (I)

- CLP defines a class of languages obtained by
  - Specifying the particular constraint system(s)
  - Specifying the *Computation* and *Selection* rules

- Most systems include also the Herbrand domain with “=”, but then add different domains and/or solver algorithms

- Most use the *Computation* and *Selection* rules of Prolog

- **CLP(ℜ):**
  - Linear arithmetic over reals (=, ≤, >)
  - Gaussian elimination and an adaptation of Simplex

- **PrologIII:**
  - Linear arithmetic over rationals (=, ≤, >, ≠), Simplex
  - Boolean (=), 2-valued Boolean Algebra
  - Infinite (rational) trees (=, ≠)
  - Equations over finite strings
Some “Classic” CLP Systems (II)

- **CHIP** (and its successor: the **ILOG** library):
  - CLP(FD), CLP(B), CLP(Q).
  - User–defined constraints and solver algorithms

- **BNR-Prolog / CLP(BNR):**
  - Arithmetic over reals (closed intervals),
  - CLP(FD), CLP(B).

- **RISC–CLP:**
  - Arithmetic constraints over reals, also non-linear

- **clp(FD)/gprolog:**
  - CLP(FD).
Some “Classic” CLP Systems (III)

- **SICStus 3:**
  - CLP(R), CLP(Q), CLP(FD).
  - Attributed variables and CHR for adding domains.

- **ECLiPS:**
  - CLP(R), CLP(Q), CLP(FD).

- **SWI:**
  - CLP(R), CLP(Q), CLP(FD), CLP(B).
  - Attributed variables and CHR for additional domains.

- **Ciao:**
  - CLP(R), CLP(Q), CLP(FD).
  - Attributed variables and CHR for additional domains.
  - Different domains can be activated on a per-module basis (packages).

→ Most Prolog systems now support constraints!