Computational Logic

Constraint Logic Programming
Constraints

- Constraint: conditions that a solution must satisfy
 - $X + Y = 20$
 - $X \land Y$ is true
 - The third field of the data structure is greater than the second
 - The murderer is one of those who had met the cabaret entertainer

- CLP: LP plus the ability to compute with some form of constraints (which are solved by the system during computation)

- (Additional) features of a CLP system:
 - Domain of computation (reals, rationals, integers, booleans, structures, ...)
 - Expressions that can be built ($+, *, \land, \lor$)
 - Constraints allowed: equations, disequations, inequations, etc. ($=, \neq, \leq, \geq, <, >$)
 - Constraint solving algorithms: simplex, gauss, etc.

- Solutions: assignments to variables, or new constraints among variables.
A comparison with classic LP (I)

- Example (plain Prolog): \(q(X, Y, Z) : - Z = f(X, Y). \)

 ?- q(3, 4, Z).
 Z = f(3,4)

 ?- q(X, Y, f(3,4)).
 X = 3, Y = 4

 ?- q(X, Y, Z).
 Z = f(X,Y)

- Example (plain Prolog): \(p(X, Y, Z) : - Z \text{ is } X + Y. \)

 ?- p(3, 4, Z).
 Z = 7

 ?- p(X, 4, 7).
 {INSTANTIATION ERROR} ← is/2 not reversible, does not work!
A Comparison with classic LP (II)

- Example ([CLP(ℜ) package](#)):

```prolog
:- use_package(clpr).
p(X, Y, Z) :- Z =. X + Y.

?- p(3, 4, Z).
Z =. 7

?- p(X, 4, 7).
X =. 3

4 ?- p(X, Y, 7).
X =. 7 - Y ← with clpr arithmetic is reversible!
```
A Comparison with classic LP (III)

- **Advantages:**
 - Helps making programs expressive and flexible.
 - May save much coding.
 - In some cases, more efficient than classic LP programs due to solvers typically being very efficiently implemented.
 - Also, efficiency due to search space reduction:
 * LP: generate-and-test.
 * CLP: constrain-and-generate.

- **Disadvantages:**
 - Complexity of solver algorithms (simplex, gauss, etc) can affect performance.

- **Some solutions:**
 - Better algorithms.
 - Compile-time optimizations (program transformation, global analysis, etc).
 - Parallelism.
Example of Search Space Reduction

- Using **plain Prolog** (generate–and–test):

\[
\text{solution}(X, Y, Z) :\neg
\]
\[
p(X), p(Y), p(Z),
\]
\[
test(X, Y, Z).
\]

\[
p(11). \ p(3). \ p(7). \ p(16). \ p(15). \ p(14).
\]

\[
test(X, Y, Z) :\neg \ Y \text{ is } X + 1, Z \text{ is } Y + 1.
\]

- Query:

\[
?\text{-} \text{solution}(X, Y, Z).
\]
\[
X = 14, \ Y = 15, \ Z = 16 \ ?;
\]
\[
\text{no}
\]

- 458 steps (all solutions: 475 steps).
Example of Search Space Reduction

- Using the $\text{CLP(\mathbb{R}) package}$ (generate–and–test):

 % Find three consecutive numbers in the p/1 relation.
 :- use_package(clpr).
 solution(X, Y, Z) :-
 p(X), p(Y), p(Z),
 test(X, Y, Z).

 test(X, Y, Z) :- Y =. X + 1, Z =. Y + 1.

- Query:

 ?- solution(X, Y, Z).
 X =. 14, Y =. 15, Z =. 16 ? ;
 no

- 458 steps (all solutions: 475 steps).
Generate–and–test Search Tree
Example of Search Space Reduction

- **Move** `test(X, Y, Z)` **to the beginning** (**constrain–and–generate**):

  ```prolog
  % Find three consecutive numbers in the p/1 relation.
  :- use_package(clpr).
  solution(X, Y, Z) :-
      test(X, Y, Z),
      p(X), p(Y), p(Z).
  ```

- **Using plain Prolog:**
  ```prolog
  test(X, Y, Z) :- Y is X + 1, Z is Y + 1.
  ?- solution(X, Y, Z).
  {INSTANTIATION ERROR}
  ```

- **Using the CLP(ℜ) package:**
  ```prolog
  test(X, Y, Z) :- Y =. X + 1, Z =. Y + 1.
  ?- solution(X, Y, Z).
  X =. 14, Y =. 15, Z =. 16 ? ;
  no
  ```

In **11 steps** (and all solutions in **11 steps**)!
Constrain–and–generate Search Tree
Constraint Systems: CLP(\mathcal{X})

- The semantics is parameterized by the *constraint domain* \mathcal{X}: CLP(\mathcal{X}), where \mathcal{X} \equiv (\Sigma, D, L, T):
 - \Sigma: set of *predicate* and *function symbols*, together with their arity
 - \mathcal{L} \subseteq \Sigma–formulae: constraints
 - D: the set of actual elements in the constraint domain
 - \mathcal{D}: meaning of predicate and function symbols (and hence, constraints).
 - \mathcal{T}: a first–order theory (axiomatizes some properties of \mathcal{D})

- (\mathcal{D}, \mathcal{L}) is a *constraint domain*

- Assumptions:
 - \mathcal{L} built upon a first–order language
 - \equiv \in \Sigma and \equiv is *identity* in \mathcal{D}
 - There are identically false and identically true constraints in \mathcal{L}
 - \mathcal{L} is closed w.r.t. renaming, conjunction, and existential quantification
Constraint Domains (I)

• \(\Sigma = \{0, 1, +, *, =, <, \leq\} \), \(D = \mathbb{R} \) (the reals), \(D \) interprets \(\Sigma \) as usual, \(\mathcal{R} = (D, L) \)

 \textbf{\rightarrow Arithmetic over the reals} ("\(\mathcal{R} \)" domain).

 ◦ Eg.: \(x^2 + 2xy < \frac{y}{x} \land x > 0 \) (\(\equiv xxx + xxy + xxy < y \land 0 < x \))

 ◦ Question: is 0 needed? How can it be represented?

\[\]

• \(\Sigma' = \{0, 1, +, =, <, \leq\} \), \(\mathcal{R}_{Lin} = (D', L') \)

 \textbf{\rightarrow Linear arithmetic} ("\(\mathcal{R}_{Lin} \)" domain)

 ◦ Eg.: \(3x - y < 3 \) (\(\equiv x + x + x < 1 + 1 + 1 + y \))

\[\]

• \(\Sigma'' = \{0, 1, +, =\} \), \(\mathcal{R}_{LinEq} = (D'', L'') \)

 \textbf{\rightarrow Linear equations} ("\(\mathcal{R}_{LinEq} \)" domain)

 ◦ Eg.: \(3x + y = 5 \land y = 2x \)

• A corresponding set of domains can be defined on the \textbf{rationals} ("\(\mathbb{Q} \)" domain)
Constraint Domains (II)

- A very special domain:
 - $\Sigma = \{ \text{constant and function symbols}, = \}$
 - $D = \{ \text{finite trees} \}$
 - D interprets Σ as tree constructors
 - Each $f \in \Sigma$ with arity n maps n trees to a tree with root labeled f and whose subtrees are the arguments of the mapping
 - Constraints: syntactic tree equality
 - $FT = (D, L)$

→ Equality constraints over the Herbrand domain (FT domain)
 - Eg.: $g(h(Z), Y) = g(Y, h(a))$

- $LP \equiv CLP(FT)$
 - I.e., classical LP can be viewed as constraint logic programming over Herbrand terms with a single constraint predicate symbol: \equiv.
Constraint Domains (III)

- $\Sigma = \{\text{<constants>, } \lambda, \ldots, ::, =\}$
- $D = \{\text{finite strings of constants}\}$
- D interprets \cdot as string concatenation, $::$ as string length

\rightarrow **Equations over strings of constants** (D domain)

- Eg.: $X.A.X = X.A$

- $\Sigma = \{0, 1, \neg, \land, =\}$
- $D = \{\text{true, false}\}$
- D interprets symbols in Σ as boolean functions
- $BOOL = (D, L)$

\rightarrow **Boolean constraints** ($BOOL$ domain)

- Eg.: $\neg(x \land y) = 1$
CLP(\mathcal{X}) Programs

- Recall that:
 - Σ is a set of predicate and function symbols
 - $\mathcal{L} \subseteq \Sigma$–formulae are the constraints

- $\Pi \subseteq \Sigma$: set of predicate symbols definable by a program
 - Atom: $p(t_1, t_2, \ldots, t_n)$, where $p \in \Pi$ and t_1, t_2, \ldots, t_n are terms
 - Primitive constraint: $p(t_1, t_2, \ldots, t_n)$, where t_1, t_2, \ldots, t_n are terms and $p \in \Sigma$ is a predicate symbol
 - Constraint: (first–order) formula built from primitive constraints

- The class of constraints will vary (generally only a subset of formulas are considered constraints)

- A CLP program is a collection of rules of the form $a \leftarrow b_1, \ldots, b_n$ where a is an atom and the b_i’s are atoms or constraints

- A fact is a rule $a \leftarrow c$ where c is a constraint

- A goal (or query) G is a conjunction of constraints and atoms
A case study: CLP(ℜ)

- CLP(ℜ): language based on Prolog + constraint solving over the reals (\mathcal{R}_{Lin})
 - Same execution strategy as standard Prolog (depth–first, left–to–right)
 - Allows linear equations and disequations over the reals
 - Linear constraints are solved;
 non-linear constraints are passive: delayed until linear or simple checks:
 * $X*Y = 7$ becomes linear when X is assigned a definite value
 * $X^2 + 2X + 1 = 0$ becomes a check when X is assigned a definite value
 - Prolog arithmetic is subsumed by constraint solving
- Note: CLP(ℜ) is really CLP((ℜ, $\mathcal{F}T$)) — $\mathcal{F}T$ is often omitted.
- Supported in modern Prologs coexisting with the ISO primitives $\text{is}/2$, $>/2$ etc.
- In Ciao, via the clpr package:
 - Uses $.=.$, $>.$, etc. to distinguish the clpr constraints from the ISO-Prolog arithmetic primitives.
 - i.e., $X .=. Y + 5$, $Y .> .1$ vs. $X \text{is} Y + 5$, $Y > 1$
Linear Equations (CLP(\mathbb{R}) package)

- Vector \times vector multiplication (dot product):
 $\cdot : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}$
 $\left(x_1, x_2, \ldots, x_n \right) \cdot \left(y_1, y_2, \ldots, y_n \right) = x_1 \cdot y_1 + \cdots + x_n \cdot y_n$

- Vectors represented as lists of numbers

```prolog
:- use_package(clpr).
prod([], [], Result) :- Result .==. 0.
prod([X|Xs], [Y|Ys], Result) :-
    Result .==. X * Y + Rest, prod(Xs, Ys, Rest).
```

- Unification becomes constraint solving!

```prolog
?- prod([2, 3], [4, 5], K).
K .==. 23
?- prod([2, 3], [5, X2], 22).
X2 .==. 4
?- prod([2, 7, 3], [Vx, Vy, Vz], 0).
Vx .==. -1.5*Vz - 3.5*Vy
```

- Any computed answer is, in general, an equation over the variables in the query
Systems of Linear Equations (CLP(\mathbb{R}))

- Can we solve systems of equations? E.g.,

\[
\begin{align*}
3x + y &= 5 \\
x + 8y &= 3
\end{align*}
\]

- Write them down at the top level prompt:

```prolog
?- prod([3, 1], [X, Y], 5), prod([1, 8], [X, Y], 3).
X == 1.6087, Y == 0.173913
```

- A more general predicate can be built mimicking the mathematical vector notation $A \cdot x = b$:

```prolog
system(_Vars, [], []).

system(Vars, [Co|Coefs], [Ind|Indeps]) :-
    prod(Vars, Co, Ind),
    system(Vars, Coefs, Indeps).
```

- We can now express (and solve) equation systems

```prolog
?- system([X, Y], [[3, 1],[1, 8]],[5, 3]).
X == 1.6087, Y == 0.173913
```
Non–linear Equations (CLP(ℜ))

- Non–linear equations are delayed

\[- \sin(X) \leq \cos(X). \]
\[\sin(X) \leq \cos(X)\]

- This is also the case if there exists some procedure to solve them

\[- X^2 + 2X + 1 \leq 0. \]
\[-2X - 1 \leq X^2\]

- Reason: no general solving technique is known. CLP(ℜ) solves only linear (dis)equations.

- Once equations become linear, they are handled properly:

\[- X \leq \cos(\sin(Y)), Y \leq 2+Y^3. \]
\[Y \leq -1, X \leq 0.666367\]

- Disequations are solved using a modified, incremental Simplex

\[- X + Y \leq 4, Y \geq 4, X \geq 0. \]
\[Y \geq 4, X \leq 0\]
Fibonacci Revisited (Prolog)

- Fibonacci numbers:

\[
\begin{align*}
F_0 &= 0 \\
F_1 &= 1 \\
F_{n+2} &= F_{n+1} + F_n
\end{align*}
\]

- (The good old) Prolog version:

```
fib(0, 0).
fib(1, 1).
fib(N, F) :-
    N > 1,
    N1 is N - 1,
    N2 is N - 2,
    fib(N1, F1),
    fib(N2, F2),
    F is F1 + F2.
```

- Can only be used with the first argument instantiated to a number
Fibonacci Revisited (CLP(ℜ))

- CLP(ℜ) package version: syntactically similar to the previous one:

```
:- use_package(clpr).
fib(N,N) :- N .=. 0.
fib(N,N) :- N .=. 1.
fib(N,R) :- N >. 1, F1 >.= 0, F2 >.= 0,
         N1 .=. N - 1, N2 .=. N - 2,
         fib(N1,F1), fib(N2,F2),
         R .=. F1 + F2.
```

- Note all constraints included in program (F1 >.= 0, F2 >.= 0) – good practice!
- Only real numbers and equations used (no data structures, no other constraint system): “pure CLP(ℜ)”
- Semantics greatly enhanced! E.g.:

```
?- fib(N, F).
F .=. 0, N .=. 0 ;
F .=. 1, N .=. 1 ;
F .=. 1, N .=. 2 ;
F .=. 2, N .=. 3 ;
```
Analog RLC circuits (CLP(ℜ))

- Analysis and synthesis of analog circuits
- RLC network in steady state
- Each circuit is composed either of:
 - A simple component, or
 - A connection of simpler circuits
- For simplicity, we will suppose subnetworks connected only in parallel and series → Ohm’s laws will suffice (other networks need global, i.e., Kirchoff’s laws)
- We want to relate the current (I), voltage (V) and frequency (W) in steady state
- Entry point: circuit(C, V, I, W) states that:
 - across the network C, the voltage is V, the current is I and the frequency is W
- V and I must be modeled as complex numbers (the imaginary part takes into account the angular frequency)
- Note that Herbrand terms are used to provide data structures
Analog RLC circuits (CLP(\mathbb{R}))

- Complex number $X + Yi$ modeled as $c(X, Y)$

- Basic operations:

```prolog
:- use_package(clpr).

c_add(c(Re1, Im1), c(Re2, Im2), c(Re12, Im12)) :-
    Re12 .==. Re1 + Re2,
    Im12 .==. Im1 + Im2.

c_mult(c(Re1, Im1), c(Re2, Im2), c(Re3, Im3)) :-
    Re3 .==. Re1 * Re2 - Im1 * Im2,
    Im3 .==. Re1 * Im2 + Re2 * Im1.
```

(equality is $c_{\text{equal}}(c(R, I), c(R, I))$, can be left to [extended] unification)
Analog RLC circuits (CLP(ℜ))

- Circuits in series:

\[
\text{circuit}(\text{series}(N1, N2), V, I, W) :-
\]
\[
\quad \text{c_add}(V1, V2, V), \\
\quad \text{circuit}(N1, V1, I, W), \\
\quad \text{circuit}(N2, V2, I, W).
\]

- Circuits in parallel:

\[
\text{circuit}(\text{parallel}(N1, N2), V, I, W) :-
\]
\[
\quad \text{c_add}(I1, I2, I), \\
\quad \text{circuit}(N1, V, I1, W), \\
\quad \text{circuit}(N2, V, I2, W).
\]
Analog RLC circuits (CLP(\(\mathbb{R}\)))

Each basic component can be modeled as a separate unit:

- **Resistor:** \(V = I \times (R + 0i)\)

  ```prolog
circuit(resistor(R), V, I, _W) :-
    c_mult(I, c(R, 0), V).
```

- **Inductor:** \(V = I \times (0 + WL i)\)

  ```prolog
circuit(inductor(L), V, I, W) :-
    Im =. W * L,
    c_mult(I, c(0, Im), V).
```

- **Capacitor:** \(V = I \times (0 - \frac{1}{WC} i)\)

  ```prolog
circuit(capacitor(C), V, I, W) :-
    Im =. -1 / (W * C),
    c_mult(I, c(0, Im), V).
```
Analog RLC circuits (CLP(\mathbb{R}))

- Example:

\[I = 0.65 \]
\[L = 0.073 \]
\[C = \text{?} \]
\[R = \text{?} \]
\[V = 4.5 \]
\[\omega = 2400 \]
\[I = 0.65 \]
\[L = 0.073 \]

?- circuit(parallel(inductor(0.073), series(capacitor(C), resistor(R))), c(4.5, 0), c(0.65, 0), 2400).

R = 6.91229, C = 0.00152546

?- circuit(C, c(4.5, 0), c(0.65, 0), 2400).
The N Queens Problem

- Problem:
 place \(N \) chess queens in a \(N \times N \) board such that they do not attack each other
- Data structure: a list holding the column position for each row
- The final solution is a permutation of the list \([1, 2, \ldots, N]\)
- E.g.: the solution is represented as \([2, 4, 1, 3]\)
- General idea:
 - Start with partial solution
 - Nondeterministically select new queen
 - Check safety of new queen against those already placed
 - Add new queen to partial solution if compatible; start again with new partial solution
The N Queens Problem in Prolog

```prolog
queens(N, Qs) :- queens_list(N, Ns), % E.g., Ns=[4,3,2,1]
    queens(Ns, [], Qs).

queens([], Qs, Qs). % All queens placed!
queens(Unplaced, Placed, Qs) :-
    select(Unplaced, Q, NewUnplaced), % E.g. Q=4, NewU=[3,2,1]
    no_attack(Placed, Q, 1),
    queens(NewUnplaced, [Q|Placed], Qs). % OK -> Choose next q

no_attack([], _Queen, _Nb).
no_attack([Y|Ys], Queen, Nb) :-
    Queen =\= Y + Nb, Queen =\= Y - Nb,
    Nb1 is Nb + 1, no_attack(Ys, Queen, Nb1).

select([X|Ys], X, Ys).
select([Y|Ys], X, [Y|Zs]) :- select(Ys, X, Zs).

queens_list(0, [])..
queens_list(N, [N|Ns]) :-
    N > 0, N1 is N - 1, queens_list(N1, Ns).
```
The N Queens Problem in Prolog - search space
The N Queens Problem in CLP(ℜ) (in Ciao clpr syntax)

:- use_package(clpr).

queens(N,Qs) :- constrain_values(N,N,Qs), place_queens(N,Qs).

constrain_values(0, _N, []). % Constrain before placing
constrain_values(I, N, [X|Xs]) :-
 I >. 0,
 X >. 0, X .<=. N, % All queens between 0 and N
 I1 =. I - 1,
 constrain_values(I, N, Xs), no_attack(Xs, X, 1).

no_attack([], _Queen, _Nb). % Identical to Prolog version
no_attack([Y|Ys], Queen, Nb) :- % but using constraints
 Queen .<>. Y + Nb, Queen .<>. Y - Nb,
 Nb1 =. Nb + 1, no_attack(Ys, Queen, Nb1).

place_queens(0, _).
place_queens(N, Q) :-
 N >. 0,
 member(N, Q),
 N1 =. N - 1, place_queens(N1, Q).
The N Queens Problem in CLP(\(\mathbb{R}\))

- This last program can attack the problem in its most general instance:

```prolog
?- queens(N,L).
L = [], N =. 0 ;
L = [1], N =. 1 ;
L = [2, 4, 1, 3], N =. 4 ;
L = [3, 1, 4, 2], N =. 4 ;
L = [5, 2, 4, 1, 3], N =. 5 ;
L = [5, 3, 1, 4, 2], N =. 5 ;
L = [3, 5, 2, 4, 1], N =. 5 ;
L = [2, 5, 3, 1, 4], N =. 5 ...
```

- Remark: Herbrand terms used to build the data structures

- But also used as constraints (e.g., length of already built list \(Xs\) in \texttt{no_attack}(Xs, X, 1))

- Note that in fact we are using both \(\mathbb{R}\) and \(\mathcal{FT}\)
The N Queens Problem in CLP(ℜ) – search space
The N Queens Problem in CLP(ℜ)

- CLP(ℜ) generates internally a set of equations for each board size

```prolog
?- constrain_values(4, 4, Qs).
Qs = [_A, _B, _C, _D],
nonzero(_E), _A.<4.0, _E.=3.0+_A--D,
nonzero(_F), _A>0, _F.= -3.0+_A--D,
nonzero(_G), _B<=4.0, _G.=2.0+_A--C,
nonzero(_H), _B>0, _H.= -2.0+_A--C,
nonzero(_I), _C<=4.0, _I.=1+_A--B,
nonzero(_J), _C>0, _J.= -1+_A--B,
nonzero(_K), _D<=4.0, _K.=2.0+_B--D,
nonzero(_L), _D>0, _L.= -2.0+_B--D,
nonzero(_M), _M.=1+_B--C,
nonzero(_N), _N.= -1+_B--C,
nonzero(_O), _O.=1+_C--D,
nonzero(_P), _P.= -1+_C--D
```

The N Queens Problem in CLP(ℜ)

- Constraints are (incrementally) simplified as new queens are added

```prolog
?- constrain_values(4, 4, Qs), Qs = [3,1|_].
Qs = [_A,_B,_C,_D],
nonzero(_E), _A.=.3.0, _E.=.6.0-_D,
nonzero(_F), _B.=.1.0, _F.=. -_D,
nonzero(_G), _C.=<.4.0, _G.=.5.0-_C,
nonzero(_H), _C.=>.0, _H.=.1.0-_C,
nonzero(_I), _D.=<.4.0, _I.=.3.0-_D,
nonzero(_J), _D.=>.0, _J.=. -1.0-_D,
nonzero(_K), _K.=.2.0-_C,
nonzero(_L), _L.=. -_C,
nonzero(_M), _M.=.1+_C-_D,
nonzero(_N), _N.=. -1+_C-_D ?
```

- Bad choices are rejected using constraint consistency:

```prolog
?- constrain_values(4, 4, Qs), Qs = [3,2|_].
no
```
Finite Domains (I)

- A *finite domain* constraint solver associates each variable with a finite subset of \mathbb{Z}

- Example: $E \in \{-123, -10..4, 10\}$

 Can be represented as, e.g.,

 $E :: [-123, -10..4, 10]$
 or as

 $E \text{ in } -123 \lor (-10..4) \lor 10$

- We can:
 - Establish the *domain* of a variable (*in*).
 - Perform arithmetic operations (+, −, *, /) on the variables
 - Establish linear relationships among arithmetic expressions (#=, #<, #=<)

- These operations / relationships narrow the domains of the variables

- **Note:** In Ciao this functionality is loaded with a

  ```prolog
  :- use_package(clpfd).
  ```
 directive in the source code —or, equivalently, adding in the module declaration:

  ```prolog
  :- module(_,...,[clpfd]).
  ```
Finite Domains (II)

Examples:

?- X #= A + B, A in 1..3, B in 3..7.
X in 4..10, A in 1..3, B in 3..7

- The respective minimums and maximums are added
- There is no unique solution

?- X #= A - B, A in 1..3, B in 3..7.
X in -6..0, A in 1..3, B in 3..7

- The min value of X is the min value of A minus the max value of B
- (Similar for the maximum values)

?- X #= A - B, A in 1..3, B in 3..7, X #>= 0.
A = 3, B = 3, X = 0

- Putting more constraints results in a unique solution.
Finite Domains (III)

Some useful primitives in finite domains:

- `domain(Variables, Min, Max)`: A shorthand for several in constraints

- `labeling(Options, VarList)`:
 - instantiates variables in `VarList` to values in their domains
 - `Options` dictates the search order

```prolog
?- domain([X, Y, Z],1,1000), X*X+Y*Y #= Z*Z, X #>= Y, labeling([], [X,Y,Z]).
X = 4, Y = 3, Z = 5,
X = 8, Y = 6, Z = 10,
X = 12, Y = 5, Z = 13,
...
```

- `minimize(G, X)`: solve `G` minimizing the value of variable `X`
- This can be used to minimize (c.f., maximize) a solution
A classic example: SEND MORE MONEY

% S E N D
% + M O R E
% __________
% M O N E Y

:- use_package(clpfd).

smm([S,E,N,D,M,O,R,Y]) :-
 domain([S,E,N,D,M,O,R,Y], 0, 9), % All digits 0..9
 0 #< S, 0 #< M, % No leftmost zeros
 all_different([S,E,N,D,M,O,R,Y]), % All digits different
 S*1000 + E*100 + N*10 + D + %
 M*1000 + O*100 + R*10 + E #= % Arith. constr.
 M*10000 + O*1000 + N*100 + E*10 + Y, %
 labeling([], [S,E,N,D,M,O,R,Y]). % Instantiate variables
A Project Management Problem (I)

- The job whose dependencies and task lengths are given by this graph...

... should be finished in 10 time units or less.

- Constraints:

\[
pn1(A,B,C,D,E,F,G) :\neg
\]
\[
domain([A,B,C,D,E,F,G], 0, 10),
\]
\[
A \#>= 0, G \#=< 10,
\]
\[
B \#>= A, C \#>= A, D \#>= A,
\]
\[
E \#>= B + 1, E \#>= C + 2,
\]
\[
F \#>= C + 2, F \#>= D + 3,
\]
\[
G \#>= E + 4, G \#>= F + 1.
\]
A Project Management Problem (II)

- Query:

  ```
  ?- pn1(A,B,C,D,E,F,G).
  A in 0..4, B in 0..5, C in 0..4,
  D in 0..6, E in 2..6, F in 3..9, G in 6..10.
  ```

- Note the slack of the variables

- Some additional constraints must be respected as well, but are not shown by default

- Minimize the total project time:

  ```
  ?- minimize(pn1(A,B,C,D,E,F,G), G).
  A = 0, B in 0..1, C = 0, D in 0..2,
  E = 2, F in 3..5, G = 6
  ```

- Variables without slack represent critical tasks
A Project Management Problem (III)

- An alternative setting:

- We can accelerate task \(F \) at some cost

\[
\text{pn2(}A, B, C, D, E, F, G, X\text{)} :- \\
\text{domain([}A,B,C,D,E,F,G,X\text{], 0, 10),} \\
A \#>= 0, G \#=< 10, \\
B \#>= A, C \#>= A, D \#>= A, \\
E \#>= B + 1, E \#>= C + 2, \\
F \#>= C + 2, F \#>= D + 3, \\
G \#>= E + 4, G \#>= F + X.
\]

- We do not want to accelerate it more than needed!

\[\rightarrow \text{minimize} \ G \text{ and maximize} \ X.\]

\[\begin{align*}
A &= 0, B \text{ in } 0..1, C = 0, D = 0, \\
E &= 2, F = 3, G = 6, X = 3.
\end{align*}\]
A Project Management Problem (IV)

- We have two independent tasks \(B \) and \(D \) whose lengths are not fixed:

![Diagram showing the relationship between tasks A, B, C, D, E, F, and G.]

- We can finish any of \(B \), \(D \) in 2 time units at best.

- Some shared resource disallows finishing both tasks in 2 time units: they will take 6 time units.
A Project Management Problem (V)

- Constraints describing the net:

```
?· minimize(pn3(A,B,C,D,E,F,G,X,Y),G).
A = 0, B = 0, C = 0, D in 0..1, E = 2,
F in 4..5, X = 2, Y = 4, G = 6
```

- Query:

```
?- minimize(pn3(A,B,C,D,E,F,G,X,Y),G), labeling([], [D,F]).
```

- I.e., we must devote more resources to task B
- All tasks but F and D are critical now
- Sometimes, `minimize/2` not enough to provide best solution (pending constr.):
The N-Queens Problem Using Finite Domains (in Ciao clpfd syntax)

• By far, the fastest implementation

```prolog
:- use_package(clpfd).
queens(N, Qs, Type) :- % Type is labeling strategy
  constrain_values(N, N, Qs), % Constrain before placing
  all_different(Qs), % Using built-in constraint
  labeling(Type,Qs). % Labeling places the queens

constrain_values(0, _N, []). % Same as CLP(R) version
constrain_values(N, NMax, [X|Xs]) :-
  N > 0, N1 is N - 1, X in 1 .. NMax, % Limits X values
  constrain_values(N1, NMax, Xs), no_attack(Xs, X, 1).

no_attack([], _Queen, _Nb). % Same as CLP(R) version
no_attack([Y|Ys], Queen, Nb) :- % but using clpfd primitives
  Queen #= Y + Nb, Queen #= Y - Nb, Nb1 is Nb + 1,
  no_attack(Ys, Queen, Nb1).
```

• Query: `?- queens(20, Q, [ff]).` (Type is the type of labeling desired.)

 Q = [1,3,5,14,17,4,16,7,12,18,15,19,6,10,20,11,8,2,13,9] ?
CLP(\mathcal{F}T) (a.k.a. Logic Programming)

- Equations over Finite Trees
- Check that two trees are isomorphic (same elements in each level)

```prolog
iso(Tree, Tree).
iso(t(R, I1, D1), t(R, I2, D2)) :-
    iso(I1, D2),
    iso(D1, I2).

?- iso(t(a, b, t(X, Y, Z)), t(a, t(u, v, W), L)).
L=b, X=u, Y=v, Z=W ;
L=b, X=u, Y=W, Z=v ;
L=b, W=t(_C,_B,_A), X=u, Y=t(_C,_A,_B), Z=v ;
L=b, W=t(_E,t(_D,_C,_B),_A), X=u, Y=t(_E,_A,t(_D,_B,_C)), Z=v ?
```

45
CLP(\(\mathcal{WE}\))

- Equations over finite strings
- Primitive constraints: concatenation (.), string length (::)
- Find strings meeting some property:

<table>
<thead>
<tr>
<th>Command</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>?- "123".Z = Z."231", Z::0.</td>
<td>no</td>
</tr>
</tbody>
</table>
| ?- "123".Z = Z."231", Z::1. | Z = "1"
| ?- "123".Z = Z."231", Z::2. | no |
| ?- "123".Z = Z."231", Z::3. | no |
| ?- "123".Z = Z."231", Z::4. | Z = "1231"

- These constraint solvers are very complex
- Often incomplete algorithms are used
Word equations plus arithmetic over \mathbb{Q} (rational numbers)

Prove that the sequence $x_{i+2} = |x_{i+1}| - x_i$ has a period of length 9 (for any starting x_0, x_1)

Strategy: describe the sequence, try to find a subsequence such that the period condition is violated

Sequence description (syntax is Prolog III slightly modified):

```
seq(<Y, X>).
abs(Y, Y) :- Y >= 0.
seq(<Y1 - X, Y, X>.U) :-
    seq(<Y, X>.U)
    abs(Y, Y1).
```

Query: Is there any 11–element sequence such that the 2–tuple initial seed is different from the 2–tuple final subsequence (the seed of the rest of the sequence)?

```
?- seq(U.V.W), U::2, V::7, W::2, U#W.
fail
```
Summarizing

- **In general:**
 - Data structures (Herbrand terms) for free
 - Each logical variable may have constraints associated with it (and with other variables)

- **Problem modeling:**
 - Rules represent the problem at a high level
 - Program structure, modularity
 - Recursion used to set up constraints
 - Constraints encode problem conditions
 - Solutions also expressed as constraints

- **Combinatorial search problems:**
 - CLP languages provide backtracking: enumeration is easy
 - Constraints keep the search space manageable

- **Tackling a problem:**
 - Keep an open mind: often new approaches possible
Complex Constraints

- Some complex constraints allow expressing simpler constraints
- May be operationally treated as passive constraints
- E.g.: cardinality operator $\#(L, [c_1, \ldots, c_n], U)$ meaning that the number of true constraints lies between L and U (which can be variables themselves)
 - If $L = U = n$, all constraints must hold
 - If $L = U = 1$, one and only one constraint must be true
 - Constraining $U = 0$, we force the conjunction of the negations to be true
 - Constraining $L > 0$, the disjunction of the constraints is specified
- Disjunctive constructive constraint: $c_1 \lor c_2$
 - If properly handled, avoids search and backtracking
 - E.g.: $nz(X) \leftarrow X > 0$.
 \[nz(X) \leftarrow X < 0. \]
 \[nz(X) \leftarrow X < 0 \lor X > 0. \]
Other Primitives

- CLP(\(\mathcal{X} \)) systems usually provide additional primitives
- E.g.:
 - `enum(X)` enumerates \(X \) inside its current domain
 - `maximize(X)` (c.f. `minimize(X)`) works out maximum (minimum value) for \(X \) under the active constraints
 - `delay Goal until Condition` specifies when the variables are instantiated enough so that `Goal` can be effectively executed
 * Its use needs deep knowledge of the constraint system
 * Also widely available in Prolog systems
 * Not really a constraint: control primitive
Implementation Issues: Satisfiability

- Algorithms must be *incremental* in order to be practical
- Incrementality refers to the performance of the algorithm
- It is important that algorithms to decide satisfiability have a good average case behavior
- Common technique: use a *solved form* representation for satisfiable constraints
- Not possible in every domain
- E.g. in \mathcal{FT} constraints are represented in the form $x_1 = t_1(\tilde{y}), \ldots, x_n = t_n(\tilde{y})$, where
 - each $t_i(\tilde{y})$ denotes a term structure containing variables from \tilde{y}
 - no variable x_i appears in \tilde{y}
 (i.e., idempotent substitutions, guaranteed by the unification algorithm)
Implementation Issues: Backtracking in CLP(\mathcal{X})

- Implementation of backtracking more complex than in Prolog
- Need to record changes to constraints
- Constraints typically stored as an association of variable to expression
- Trailing expressions is, in general, costly: cannot be stored at every change
- Avoid trailing when there is no choice point between two successive changes
- A standard technique: use *time stamps* to compare the age of the choice point with the age of the variable at the time of last trailing

\[
\begin{align*}
X < Y + Z, & \quad Y = Z + W \\
X < Y + 4, & \quad Y = 4 + W, \quad Z = 4 \\
X < 9, & \quad Y = 5, \quad Z = 4, \quad W = 1 \\
& \text{trail } W, \text{ timestamp it} \\
& \text{trail } X, \ Y, \ Z, \text{ timestamp them} \\
& \text{timestamp } X, \ Y, \ Z, \ W
\end{align*}
\]
Implementation Issues: Extensibility

- Constraint domains often implemented now in Prolog-based systems using:

 ◇ Attributed variables [Neumerkel, Holzbaur]:
 * Provide a hook into unification.
 * Allow attaching an attribute to a variable.
 * When unification with that variable occurs, user-defined code is called.
 * Used to implement constraint solvers (and other applications, e.g., distributed execution).

 ◇ Constraint handling rules (CHR):
 * Higher-level abstraction.
 * Allows defining propagation algorithms (e.g., constraint solvers) in a high-level way.
 * Often translated to attributed variable-based low-level code.
Attributed Variables Example: Freeze

- **Primitives:**
 - `attach_attribute(X,C)`
 - `get_attribute(X,C)`
 - `detach_attribute(X)`
 - `update_attribute(X,C)`
 - `verify_attribute(C,T)`
 - `combine_attributes(C1,C2)`

- **Example: Freeze**

```
freeze( X, Goal) :-
    attach_attribute( V, frozen(V,Goal)),
    X = V.

verify_attribute( frozen(Var,Goal), Value) :-
    detach_attribute( Var),
    Var = Value,
    call(Goal).

combine_attributes( frozen(V1,G1), frozen(V2,G2)) :-
    detach_attribute( V1),
    detach_attribute( V2),
    V1 = V2,
    attach_attribute( V1, frozen(V1,(G1,G2))).
```
Programming Tips

- Over-constraining:
 - Seems to be against general advice “do not perform extra work”, but can actually cut more search space
 - Specially useful if infer is weak
 - Or else, if constraints outside the domain are being used

- Use control primitives (e.g., cut) very sparingly and carefully

- Determinacy is more subtle, (partially due to constraints in non–solved form)

- Choosing a clause does not preclude trying other exclusive clauses (as with Prolog and plain unification)

- Compare:

 \[
 \begin{align*}
 \text{max}(X, Y, X) & \leftarrow X \succ Y. \\
 \text{max}(X, Y, Y) & \leftarrow X \preceq Y. \\
 \end{align*}
 \]

 with

 \[
 \begin{align*}
 \text{max}(X, Y, X) & \leftarrow X \succ Y,
 !. \\
 \text{max}(X, Y, Y) & \leftarrow X \preceq Y. \\
 \end{align*}
 \]
As mentioned before, CLP defines a class of languages obtained by

- Specifying the particular constraint system(s)
- Specifying the *Computation* and *Selection* rules

Most practical systems include also the Herbrand domain with “=” but then add different domains and/or solver algorithms.

Most use the *Computation* and *Selection* rules of Prolog.
Some Classic CLP Systems

• **CLP(ℜ):**
 - Linear arithmetic over reals (\(=, \leq, >\)) – CLP(R)
 - Incremental Gaussian elimination and incremental Simplex

• **PrologIII:**
 - CLP(R)
 - Boolean \((=)\), 2-valued Boolean Algebra – CLP(B)
 - Infinite (rational) trees \((=, \neq)\)
 - Equations over finite strings – CLP(WE)

• **CHIP** (and its successor: the **ILOG** library):
 - CLP(FD), CLP(B), CLP(Q)
 - User–defined constraints and solver algorithms

• **BNR-Prolog / CLP(BNR):**
 - Arithmetic over reals (closed intervals); CLP(FD), CLP(B).

• **RISC–CLP:**
 - Arithmetic constraints over reals, also non-linear
 (using Presburger arithmetic)
Some Current CLP Systems

- **clp(FD)/gprolog:**
 - CLP(FD).

- **SICStus:**
 - CLP(R), CLP(Q), CLP(FD)
 - Attributed variables and CHR for adding domains.

- **ECLiPS:**
 - CLP(R), CLP(Q), CLP(FD).

- **SWI:**
 - CLP(R), CLP(Q), CLP(FD), CLP(B).
 - Attributed variables and CHR for additional domains.

- **Ciao:**
 - CLP(R), CLP(Q), CLP(FD).
 - Attributed variables and CHR for additional domains.
 - Different domains can be activated on a per-module basis (packages).

→ Most Prolog systems now support constraints!
Some origins and other instances

- **Ancestors:**
 - SKETCHPAD (1963), Waltz’s algorithm (1965?), THINGLAB (1981), MACSYMA (1983), ...

- **Constraints in logic languages:** – the origin of “constraint programming”:
 - General theory developed (Jaffar and Lassez ’97).
 - First, standalone systems developed: clpr, CHIP, ...
 - Later, included in mainstream Prolog implementations.
 - Has given to a whole

- **Constraints in imperative languages:**
 - Equation solving libraries (ILOG, GECODE, ...)
 - Timestamping of variables: \(x := x + 1 \) \(\leftrightarrow \) \(x_{i+1} := x_i + 1 \)
 (similar to iterative methods in numerical analysis)

- **Constraints in functional languages, via extensions:**
 - Evaluation of expressions including free variables.
 - *Absolute Set Abstraction.*