Computational Logic
Constraint Logic Programming
Constraints

- Born within AI: e.g. house design
- Constraints used as problem representation:

 The man in yellow does not have green eyes
 The murderer knows no detective will ever wear dark clothes
 :

- A solution is an assignment which agrees with the initial constraints:
 Murderer: López, green eyes, Magnum gun

- Or, alternatively, the solution can also be a set of constraints:
 The murderer is one of those who had met the cabaret entertainer
 (they represent several ground mappings from elements to variables)

- There may be no solution:
 Natural death
A General View

- Ancestors:
 - SKETCHPAD (1963), THINGLAB (1981), Waltz’s algorithm (1965?), MACSYMA (1983), ...

- Constraints in logic languages – the origin of “constraint programming”:
 - General theory developed.
 - Practical systems, generally based on Prolog + some constraint domain(s).

- Constraints in imperative languages:
 - Equation solving libraries (ILOG)
 - Timestamping of variables: $x := x + 1 \leftrightarrow x_{i+1} := x_i + 1$
 (similar to iterative methods in numerical analysis)

- Constraints in functional languages, via extensions:
 - Evaluation of expressions including free variables.
 - *Absolute Set Abstraction.*
A comparison with LP (I)

- Example (Prolog): \texttt{q(X, Y, Z) :- Z = f(X, Y).}
 \[\text{\textbackslash l} \ ?- \ q(3, 4, Z).\]
 \[Z = f(3,4)\]

- Example (Prolog): \texttt{q(X, Y, f(3,4)).}
 \[\text{\textbackslash l} \ ?- \ q(X, Y, f(3,4)).\]
 \[X = 3, Y = 4\]

- Example (Prolog): \texttt{q(X, Y, Z).}
 \[\text{\textbackslash l} \ ?- \ q(X, Y, Z).\]
 \[Z = f(X,Y)\]

- Example (Prolog): \texttt{p(X, Y, Z) :- Z is X + Y.}
 \[\text{\textbackslash l} \ ?- \ p(3, 4, Z).\]
 \[Z = 7\]

- Example (Prolog): \texttt{p(X, 4, 7).}
 \[\text{\textbackslash l} \ ?- \ p(X, 4, 7).\]
 \{INSTANTIATION ERROR: in expression\}
A Comparison with LP (II)

- Example (CLP(ℜ)): p(X, Y, Z) :- Z = X + Y.

 2 ?- p(3, 4, Z).

 Z = 7
 *** Yes

 3 ?- p(X, 4, 7).

 X = 3
 *** Yes

 4 ?- p(X, Y, 7).

 X = 7 - Y
 *** Yes
A Comparison with LP (III)

- Features in CLP:
 - Domain of computation (reals, integers, booleans, etc).
 Have to meet some conditions.
 - Type of constraints allowed for each domain: e.g. arithmetic constraints
 \((+, *, =, \leq, \geq, <, >)\)
 - Constraint solving algorithms: simplex, gauss, etc.

- LP can be viewed as a constraint logic language over Herbrand terms with a
 single constraint predicate symbol: “=”
A Comparison with LP (IV)

- Advantages:
 - Helps making programs expressive and flexible.
 - May save much coding.
 - In some cases, more efficient than traditional LP programs due to solvers typically being very efficiently implemented.
 - Also, efficiency due to search space reduction:
 - LP: generate-and-test.
 - CLP: constrain-and-generate.

- Disadvantages:
 - Complexity of solver algorithms (simplex, gauss, etc) can affect performance.

- Solutions:
 - better algorithms
 - compile-time optimizations (program transformation, global analysis, etc)
 - parallelism
Example of Search Space Reduction

- **Prolog (generate–and–test):**

  ```prolog
  solution(X, Y, Z) :-
      p(X), p(Y), p(Z),
      test(X, Y, Z).
  ```

  ```prolog
  ```

  ```prolog
  test(X, Y, Z) :- Y is X + 1, Z is Y + 1.
  ```

- **Query:**

  ```prolog
  | ?- solution(X, Y, Z).
  X = 14
  Y = 15
  Z = 16 ? ;
  no
  ```

- **458 steps (all solutions: 465 steps).**
Example of Search Space Reduction

- **CLP(ℜ) (using generate–and–test):**

  ```prolog
  solution(X, Y, Z) :-
      p(X), p(Y), p(Z),
      test(X, Y, Z).
  
  
  test(X, Y, Z) :- Y = X + 1, Z = Y + 1.
  
  Query:
  
  ?- solution(X, Y, Z).
  Z = 16
  Y = 15
  X = 14
  *** Retry? y
  *** No
  
  458 steps (all solutions: 465 steps).
  ```
Generate—and–test Search Tree

A5

Y=14 Y=15

A4 A3 A2 A1

X=15 X=16 X=7 X=3 X=11

Z=14 Z=15 Z=16 Z=3 Z=11

g

B5

Y=14 Y=15 Y=16 Y=7 Y=3 Y=11

B4 B3 B2 B1

B
Example of Search Space Reduction

- **Move** `test(X, Y, Z)` at the beginning (constrain–and–generate):

  ```prolog
  solution(X, Y, Z) :-
      test(X, Y, Z),
      p(X), p(Y), p(Z).
  ```

- **Prolog**: `test(X, Y, Z) :- Y is X + 1, Z is Y + 1.
 ?- solution(X, Y, Z).
 {INSTANTIATION ERROR: in expression}

- **CLP(ℜ)**: `test(X, Y, Z) :- Y = X + 1, Z = Y + 1.
 ?- solution(X, Y, Z).
 Z = 16
 Y = 15
 X = 14
 *** Retry? y
 *** No

- 6 steps (all solutions: 11 steps).
Constrain–and–generate Search Tree
Constraint Domains

- Semantics parameterized by the constraint domain:
 \(\text{CLP}(\mathcal{X}) \), where \(\mathcal{X} \equiv (\Sigma, D, \mathcal{L}, \mathcal{T}) \)
- Signature \(\Sigma \): set of predicate and function symbols, together with their arity
- \(\mathcal{L} \subseteq \Sigma \)–formulae: constraints
- \(D \) is the set of actual elements in the domain
- \(\Sigma \)–structure \(D \): gives the meaning of predicate and function symbols (and hence, constraints).
- \(\mathcal{T} \) a first–order theory (axiomatizes some properties of \(D \))
- \((D, \mathcal{L}) \) is a constraint domain
- Assumptions:
 - \(\mathcal{L} \) built upon a first–order language
 - \(= \in \Sigma \) is identity in \(D \)
 - There are identically false and identically true constraints in \(\mathcal{L} \)
 - \(\mathcal{L} \) is closed w.r.t. renaming, conjunction and existential quantification
Domains (I)

- $\Sigma = \{0, 1, +, \ast, =, <, \leq\}$, $\mathcal{D} = \mathbb{R}$, \mathcal{D} interprets Σ as usual, $\mathcal{R} = (\mathcal{D}, \mathcal{L})$
 - Arithmetic over the reals
 - Eg.: $x^2 + 2xy < \frac{y}{x} \land x > 0$ ($\equiv xxx + xxy + xxy < y \land 0 < x$)
- Question: is 0 needed? How can it be represented?

- Let us assume $\Sigma' = \{0, 1, +, =, <, \leq\}$, $\mathcal{R}_{Lin} = (\mathcal{D}', \mathcal{L}')$
 - Linear arithmetic
 - Eg.: $3x - y < 3$ ($\equiv x + x + x < 1 + 1 + 1 + y$)

- Let us assume $\Sigma'' = \{0, 1, +, =\}$, $\mathcal{R}_{LinEq} = (\mathcal{D}'', \mathcal{L}'')$
 - Linear equations
 - Eg.: $3x + y = 5 \land y = 2x$
Domains (II)

- $\Sigma = \{ \langle \text{constant and function symbols} \rangle, = \}$
- $D = \{ \text{finite trees} \}$
- D interprets Σ as tree constructors
- Each $f \in \Sigma$ with arity n maps n trees to a tree with root labeled f and whose subtrees are the arguments of the mapping
- Constraints: syntactic tree equality
- $_FT = (D, L)$
 - Constraints over the Herbrand domain
 - Eg.: $g(h(Z), Y) = g(Y, h(a))$
- $LP \equiv CLP(FT)$
Domains (III)

- $\Sigma = \{ <\text{constants}>, \lambda, ., ::, = \}$
- $D = \{ \text{finite strings of constants} \}$
- D interprets . as string concatenation, :: as string length
 - Equations over strings of constants
 - Eg.: $X.A.X = X.A$

- $\Sigma = \{ 0, 1, \neg, \land, = \}$
- $D = \{ \text{true, false} \}$
- D interprets symbols in Σ as boolean functions
- $BOOL = (D, \mathcal{L})$
 - Boolean constraints
 - Eg.: $\neg(x \land y) = 1$
CLP(\mathcal{X}) Programs

- Recall that:
 - \Sigma is a set of predicate and function symbols
 - \mathcal{L} \subseteq \Sigma – formulae are the constraints
- \Pi: set of predicate symbols definable by a program
- Atom: \(p(t_1, t_2, \ldots, t_n) \), where \(t_1, t_2, \ldots, t_n \) are terms and \(p \in \Pi \)
- Primitive constraint: \(p(t_1, t_2, \ldots, t_n) \), where \(t_1, t_2, \ldots, t_n \) are terms and \(p \in \Sigma \) is a predicate symbol
- Every constraint is a (first–order) formula built from primitive constraints
- The class of constraints will vary (generally only a subset of formulas are considered constraints)
- A CLP program is a collection of rules of the form \(a \leftarrow b_1, \ldots, b_n \) where \(a \) is an atom and the \(b_i \)'s are atoms or constraints
- A fact is a rule \(a \leftarrow c \) where \(c \) is a constraint
- A goal (or query) \(G \) is a conjunction of constraints and atoms
A case study: CLP(\mathbb{R})

- CLP(\mathbb{R}) is a language based on Prolog, with the addition of constraint solving capabilities over the reals (\mathbb{R}_{Lin})
- CLP(\mathbb{R}) uses the same execution strategy as Prolog (depth-first, left-to-right)
- CLP(\mathbb{R}) is able to solve directly linear (dis)equations over the reals
- Non-linear equations are delayed, waiting for them to eventually become linear
- Most relevant feature w.r.t. Prolog (for our purposes): is/2 disappears, and is subsumed by =/2 and (extended) unification
- Note: CLP(\mathbb{R}) is really CLP((\mathbb{R}, $\mathcal{F}T$)) — $\mathcal{F}T$ is often omitted
Linear Equations (CLP(\mathbb{R}))

- Vector \times vector multiplication (dot product):
 \[\cdot : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R} \]
 \[(x_1, x_2, \ldots, x_n) \cdot (y_1, y_2, \ldots, y_n) = x_1 \cdot y_1 + \cdots + x_n \cdot y_n \]

- Vectors represented as lists of numbers

 prod([], [], 0).
 prod([X|Xs], [Y|Ys], X * Y + Rest) :-
 prod(Xs, Ys, Rest).

- Unification becomes constraint solving!

 ?- prod([2, 3], [4, 5], K).
 K = 23
 ?- prod([2, 3], [5, X2], 22).
 X2 = 4
 ?- prod([2, 7, 3], [Vx, Vy, Vz], 0).
 Vx = -1.5*Vz - 3.5*Vy

- Any computed answer is, in general, an equation over the variables in the query
Systems of Linear Equations (CLP(ℜ))

- Can we solve systems of equations? E.g.,
 \[3x + y = 5 \]
 \[x + 8y = 3 \]

- Write them down at the top level prompt:
  ```prolog
  ?- prod([3, 1], [X, Y], 5), prod([1, 8], [X, Y], 3).
  X = 1.6087, Y = 0.173913
  ```

- A more general predicate can be built mimicking the mathematical vector notation \(A \cdot x = b \):
  ```prolog
  system(_Vars, [], []).
  system(Vars, [Co|Coefs], [Ind|Indeps]) :-
    prod(Vars, Co, Ind),
    system(Vars, Coefs, Indeps).
  ```

- We can now express (and solve) equation systems
  ```prolog
  ?- system([X, Y], [[3, 1],[1, 8]],[5, 3]).
  X = 1.6087, Y = 0.173913
  ```
Non–linear Equations (CLP(ℜ))

- Non–linear equations are delayed
 \(- \sin(X) = \cos(X)\).
 \(\sin(X) = \cos(X)\)

- This is also the case if there exists some procedure to solve them
 \(- X*X + 2*X + 1 = 0.\)
 \(-2*X - 1 = X * X\)

- Reason: no general solving technique is known. CLP(ℜ) solves only linear (dis)equations.

- Once equations become linear, they are handled properly:
 \(- X = \cos(sin(Y)), Y = 2+Y*3.\)
 \(Y = -1, X = 0.666367\)

- Disequations are solved using a modified, incremental Simplex
 \(- X + Y <= 4, Y >= 4, X >= 0.\)
 \(Y = 4, X = 0\)
Fibonacci Revisited (Prolog)

- Fibonacci numbers:
 \[
 F_0 = 0 \\
 F_1 = 1 \\
 F_{n+2} = F_{n+1} + F_n
 \]

- (The good old) Prolog version:

  ```prolog
  fib(0, 0).
  fib(1, 1).
  fib(N, F) :-
    N > 1,
    N1 is N - 1,
    N2 is N - 2,
    fib(N1, F1),
    fib(N2, F2),
    F is F1 + F2.
  ```

- Can only be used with the first argument instantiated to a number
Fibonacci Revisited (CLP(ℜ))

- CLP(ℜ) version: syntactically similar to the previous one
 fib(0, 0).
fib(1, 1).
fib(N, F1 + F2) :-
 N > 1, F1 >= 0, F2 >= 0,
 fib(N - 1, F1), fib(N - 2, F2).

- Note all constraints included in program (F1 >= 0, F2 >= 0) – good practice!
- Only real numbers and equations used (no data structures, no other constraint system): “pure CLP(ℜ)”
- Semantics greatly enhanced! E.g.
 ?- fib(N, F).
 F = 0, N = 0 ;
 F = 1, N = 1 ;
 F = 1, N = 2 ;
 F = 2, N = 3 ;
 F = 3, N = 4 ;
Analog RLC circuits (CLP(ℜ))

- Analysis and synthesis of analog circuits
- RLC network in steady state
- Each circuit is composed either of:
 - A simple component, or
 - A connection of simpler circuits
- For simplicity, we will suppose subnetworks connected only in parallel and series ➔ Ohm’s laws will suffice (other networks need global, i.e., Kirchoff’s laws)
- We want to relate the current (I), voltage (V) and frequency (W) in steady state
- Entry point: circuit(C, V, I, W) states that:
 - across the network C, the voltage is V, the current is I and the frequency is W
- V and I must be modeled as complex numbers (the imaginary part takes into account the angular frequency)
- Note that Herbrand terms are used to provide data structures
Analog RLC circuits (CLP(ℜ))

- Complex number $X + Yi$ modeled as $c(X, Y)$
- Basic operations:

 \[
 \text{c_add}(c(\text{Re1}, \text{Im1}), c(\text{Re2}, \text{Im2}), c(\text{Re1}+\text{Re2}, \text{Im1}+\text{Im2})).
 \]

 \[
 \text{c_mult}(c(\text{Re1}, \text{Im1}), c(\text{Re2}, \text{Im2}), c(\text{Re3}, \text{Im3})) :-
 \]
 \[
 \text{Re3} = \text{Re1} \ast \text{Re2} - \text{Im1} \ast \text{Im2},
 \]
 \[
 \text{Im3} = \text{Re1} \ast \text{Im2} + \text{Re2} \ast \text{Im1}.
 \]

 (equality is \text{c_equal}(c(R, I), c(R, I)), can be left to [extended] unification)
Analog RLC circuits (CLP(ℜ))

• Circuits in series:

\[
circuit(\text{series}(N1, N2), V, I, W) :-
c_add(V1, V2, V),
circuit(N1, V1, I, W),
circuit(N2, V2, I, W).
\]

• Circuits in parallel:

\[
circuit(\text{parallel}(N1, N2), V, I, W) :-
c_add(I1, I2, I),
circuit(N1, V, I1, W),
circuit(N2, V, I2, W).
\]
Analog RLC circuits (CLP(\mathbb{R}))

Each basic component can be modeled as a separate unit:

- **Resistor:** $V = I \times (R + 0i)$

 `circuit(resistor(R), V, I, _W) :-
 c_mult(I, c(R, 0), V).`

- **Inductor:** $V = I \times (0 + WL_i)$

 `circuit(inductor(L), V, I, W) :-
 c_mult(I, c(0, W * L), V).`

- **Capacitor:** $V = I \times (0 - \frac{1}{WC}i)$

 `circuit(capacitor(C), V, I, W) :-
 c_mult(I, c(0, -1 / (W * C)), V).`
Analog RLC circuits (CLP(\mathbb{R}))

- Example:

\[R = ? \quad C = ? \]

![RLC Circuit Diagram]

\[V = 4.5 \]
\[I = 0.65 \]
\[\omega = 2400 \]
\[L = 0.073 \]

?- circuit(parallel(inductor(0.073),
series(capacitor(C), resistor(R))),
c(4.5, 0), c(0.65, 0), 2400).

\[R = 6.91229, \quad C = 0.00152546 \]

?- circuit(C, c(4.5, 0), c(0.65, 0), 2400).
The N Queens Problem

- Problem:
 place N chess queens in a $N \times N$ board such that they do not attack each other
- Data structure: a list holding the column position for each row
- The final solution is a permutation of the list $[1, 2, \ldots, N]$

 ![Diagram of N Queens Problem]

- E.g.: the solution is represented as $[2, 4, 1, 3]$
- General idea:
 - Start with partial solution
 - Nondeterministically select new queen
 - Check safety of new queen against those already placed
 - Add new queen to partial solution if compatible; start again with new partial solution
The N Queens Problem (Prolog)

queens(N, Qs) :- queens_list(N, Ns), queens(Ns, [], Qs).

queens([], Qs, Qs).

queens(Unplaced, Placed, Qs) :-
 select(Unplaced, Q, NewUnplaced), no_attack(Placed, Q, 1),
 queens(NewUnplaced, [Q|Placed], Qs).

no_attack([], _Queen, _Nb).

no_attack([Y|Ys], Queen, Nb) :-
 Queen \= Y + Nb, Queen \= Y - Nb, Nb1 is Nb + 1,
 no_attack(Ys, Queen, Nb1).

select([X|Ys], X, Ys).

select([Y|Ys], X, [Y|Zs]) :- select(Ys, X, Zs).

queens_list(0, []).

queens_list(N, [N|Ns]) :- N > 0, N1 is N - 1, queens_list(N1, Ns).
The N Queens Problem (Prolog)
The N Queens Problem (CLP(ℜ))

queens(N, Qs) :- constrain_values(N, N, Qs), place_queens(N, Qs).

constrain_values(0, _N, []).
constrain_values(N, Range, [X|Xs]) :-
 N > 0, X > 0, X <= Range,
 constrain_values(N - 1, Range, Xs), no_attack(Xs, X, 1).

no_attack([], _Queen, _Nb).
no_attack([Y|Ys], Queen, Nb) :-
 abs(Queen - (Y + Nb)) > 0, % Queen =\= Y + Nb
 abs(Queen - (Y - Nb)) > 0, % Queen =\= Y - Nb
 no_attack(Ys, Queen, Nb + 1).

place_queens(0, _).
place_queens(N, Q) :- N > 0, member(N, Q), place_queens(N - 1, Q).

member(X, [X|_]).
member(X, [_|Xs]) :- member(X, Xs).
The N Queens Problem (CLP(ℜ))

• This last program can attack the problem in its most general instance:

```prolog
?- queens(M,N).
N = [], M = 0 ;
M = [1], M = 1 ;
N = [2, 4, 1, 3], M = 4 ;
N = [3, 1, 4, 2], M = 4 ;
N = [5, 2, 4, 1, 3], M = 5 ;
N = [5, 3, 1, 4, 2], M = 5 ;
N = [3, 5, 2, 4, 1], M = 5 ;
N = [2, 5, 3, 1, 4], M = 5
...
```

• Remark: Herbrand terms used to build the data structures

• But also used as constraints (e.g., length of already built list Xs in no_attack(Xs, X, 1))

• Note that in fact we are using both ℜ and ℱ
The N Queens Problem (CLP(ℜ))
The N Queens Problem (CLP(ℜ))

- CLP(ℜ) generates internally a set of equations for each board size
- They are non-linear and are thus delayed until instantiation wakes them up

?- constrain_values(4, 4, Q).

Q = [_t3, _t5, _t13, _t21]

_t3 <= 4 0 < abs(-_t13 + _t3 - 2)
_t5 <= 4 0 < abs(-_t13 + _t3 + 2)
_t13 <= 4 0 < abs(-_t21 + _t3 - 3)
_t21 <= 4 0 < abs(-_t21 + _t3 + 3)
0 < _t3 0 < abs(-_t13 + _t5 - 1)
0 < _t5 0 < abs(-_t13 + _t5 + 1)
0 < _t13 0 < abs(-_t21 + _t5 - 2)
0 < _t21 0 < abs(-_t21 + _t5 + 2)
0 < abs(-_t5 + _t3 - 1) 0 < abs(-_t21 + _t13 - 1)
0 < abs(-_t5 + _t3 + 1) 0 < abs(-_t21 + _t13 + 1)
The N Queens Problem (CLP(ℜ))

• Constraints are (incrementally) simplified as new queens are added

?- constrain_values(4, 4, Qs), Qs = [3,1|OQs].
OQs = [_t16, _t24]
Qs = [3, 1, _t16, _t24]
_t16 <= 4
_t24 <= 4
0 < _t16
0 < _t24
0 < abs(-_t16 + 1)
0 < abs(-_t16 + 5)
0 < abs(-_t24 + 6)
0 < abs(-_t24 + _t16 - 1)
0 < abs(-_t24 + _t16 + 1)

• Bad choices are rejected using constraint consistency:

?- constrain_values(4, 4, Qs), Qs = [3,2|OQs].
*** No
Finite Domains (I)

- A finite domain constraint solver associates each variable with a finite subset of \(\mathbb{Z} \).

- I.e., \(E \in \{-123, -10..4, 10\} \)
 (represented as \(E :: [-123, -10..4, 10] \) [Eclipse notation] or as \(E \ in \{ -123 \} \setminus (-10..4) \setminus \{10\} \) [SICStus notation])

- We can:
 - Perform arithmetic operations (+, −, *, /) on the variables
 - Establish linear relationships among arithmetic expressions (\# =, \# <, \# =<)

- Those operations / relationships are intended to narrow the domains of the variables

- Note: SICStus requires the use of the
 :- use_module(library(clpfd)).
directive in the source code
Finite Domains (II)

- Example:

 ?- X #= A + B, A in 1..3, B in 3..7.
 X in 4..10, A in 1..3, B in 3..7

- The respective minimums and maximums are added

- There is no unique solution

 ?- X #= A - B, A in 1..3, B in 3..7.
 X in -6..0, A in 1..3, B in 3..7

- The minimum value of \(X \) is the minimum value of \(A \) minus the maximum value of \(B \)

- (Similar for the maximum values)

- Putting more constraints:

 ?- X #= A - B, A in 1..3, B in 3..7, X #>= 0.
 A = 3, B = 3, X = 0
Finite Domains (III)

Some useful primitives in finite domains:

- \texttt{fd_min(X, T)}: the term \(T \) is the minimum value in the domain of the variable \(X \)
- This can be used to minimize (c.f., maximize) a solution

 \[- X \neq A - B, A \text{ in } 1..3, B \text{ in } 3..7, \text{ fd_min}(X, X).\]

 \(A = 1, B = 7, X = -6 \)
- \texttt{domain(Variables, Min, Max)}: A shorthand for several \texttt{in} constraints
- \texttt{labeling(Options, VarList)}:

 \(\diamond \) instantiates variables in \texttt{VarList} to values in their domains

 \(\diamond \) \texttt{Options} dictates the search order

\[- X*Y+Y*Y#=Z*Z, X\geq Y, \text{ domain([X, Y, Z],1,1000)},\text{ labeling([], [X,Y,Z])}.\]

\(X = 4, Y = 3, Z = 5 \)
\(X = 8, Y = 6, Z = 10 \)
\(X = 12, Y = 5, Z = 13 \)

\(\ldots \)
A Project Management Problem (I)

- The job whose dependencies and task lengths are given by: should be finished in 10 time units or less

- Constraints:

\[
\text{pn1}(A, B, C, D, E, F, G) :-
\begin{align*}
A & \geq 0, \quad G \leq 10, \\
B & \geq A, \quad C \geq A, \quad D \geq A, \\
E & \geq B + 1, \quad E \geq C + 2, \\
F & \geq C + 2, \quad F \geq D + 3, \\
G & \geq E + 4, \quad G \geq F + 1.
\end{align*}
\]
A Project Management Problem (II)

- Query:

  ```?- pn1(A,B,C,D,E,F,G).
  A in 0..4, B in 0..5, C in 0..4,
  D in 0..6, E in 2..6, F in 3..9, G in 6..10,```

- Note the slack of the variables

- Some additional constraints must be respected as well, but are not shown by default

- Minimize the total project time:
  
  ```?- pn1(A,B,C,D,E,F,G), fd_min(G, G).
 A = 0, B in 0..1, C = 0, D in 0..2,
 E = 2, F in 3..5, G = 6```

- Variables without slack represent critical tasks
A Project Management Problem (III)

- An alternative setting:

- We can accelerate task F at some cost

$$\text{pn2}(A, B, C, D, E, F, G, X) :-$$

\begin{align*}
A & \geq 0, \quad G \leq 10, \\
B & \geq A, \quad C \geq A, \quad D \geq A, \\
E & \geq B + 1, \quad E \geq C + 2, \\
F & \geq C + 2, \quad F \geq D + 3, \\
G & \geq E + 4, \quad G \geq F + X.
\end{align*}

- We do not want to accelerate it more than needed!

$$?- \text{pn2}(A, B, C, D, E, F, G, X),$$

$$\text{fd}_{\text{min}}(G,G), \text{fd}_{\text{max}}(X,X).$$

A = 0, B in 0..1, C = 0, D = 0,
E = 2, F = 3, G = 6, X = 3
A Project Management Problem (IV)

- We have two independent tasks B and D whose lengths are not fixed:

- We can finish any of B, D in 2 time units at best

- Some shared resource disallows finishing both tasks in 2 time units: they will take 6 time units
A Project Management Problem (V)

• Constraints describing the net:

\[
\text{pn3(A, B, C, D, E, F, G, X, Y)} : - \\
\text{A } \#>= \text{ 0, G } \#=< \text{ 10,} \\
\text{X } \#>= \text{ 2, Y } \#>= \text{ 2, X + Y } \#= \text{ 6,} \\
\text{B } \#>= \text{ A, C } \#>= \text{ A, D } \#>= \text{ A,} \\
\text{E } \#>= \text{ B + X, E } \#>= \text{ C + 2,} \\
\text{F } \#>= \text{ C + 2, F } \#>= \text{ D + Y,} \\
\text{G } \#>= \text{ E + 4, G } \#>= \text{ F + 1.}
\]

• Query: \(?- \text{pn3(A, B, C, D, E, F, G, X, Y)}, \text{fd_min}(G, G). \)
\[
\text{A = 0, B = 0, C = 0, D in 0..1, E = 2, F in 4..5, X = 2, Y = 4, G = 6}
\]

• i.e., we must devote more resources to task \(B\)

• All tasks but \(F\) and \(D\) are critical now

• Sometimes, \(\text{fd_min}/2\) not enough to provide best solution (pending constraints):

\[
\text{pn3(A, B, C, D, E, F, G, X, Y),} \\
\text{labeling([ff, minimize(G)], [A, B, C, D, E, F, G, X, Y])}.
\]
The N-Queens Problem Using Finite Domains (in SICStus Prolog)

- By far, the fastest implementation
  ```prolog
  queens(N, Qs, Type) :-
      constrain_values(N, N, Qs),
      all_different(Qs), % built-in constraint
      labeling(Type, Qs).
  
  constrain_values(0, _N, []).
  constrain_values(N, Range, [X|Xs]) :-
      N > 0, N1 is N - 1, X in 1 .. Range,
      constrain_values(N1, Range, Xs), no_attack(Xs, X, 1).

  no_attack([], _Queen, _Nb).
  no_attack([Y|Ys], Queen, Nb) :-
      Queen #\= Y + Nb, Queen #\= Y - Nb, Nb1 is Nb + 1,
      no_attack(Ys, Queen, Nb1).
  ```

- Query. Type is the type of search desired.
  ```prolog
  ?- queens(20, Q, [ff]).
  Q = [1,3,5,14,17,4,16,7,12,18,15,19,6,10,20,11,8,2,13,9] ?
  ```
CLP(\mathcal{FT}) (a.k.a. Logic Programming)

- Equations over Finite Trees
- Check that two trees are isomorphic (same elements in each level)

\[
\text{iso(Tree, Tree)}.
\text{iso(t(R, I1, D1), t(R, I2, D2)) :-}
\begin{align*}
&\text{iso(I1, D2)}, \\
&\text{iso(D1, I2)}.
\end{align*}
\]

?- iso(t(a, b, t(X, Y, Z)), t(a, t(u, v, W), L)).
L=b, X=u, Y=v, Z=W ? ;
L=b, X=u, Y=W, Z=v ? ;
L=b, W=t(_C,_B,_A), X=u, Y=t(_C,_A,_B), Z=v ? ;
L=b, W=t(_E,t(_D,_C,_B),_A), X=u, Y=t(_E,_A,t(_D,_B,_C)), Z=v ?
CLP(\mathcal{WE})

- Equations over finite strings
- Primitive constraints: concatenation (.), string length (::)
- Find strings meeting some property:

 ?- "123".z = z."231", z::0.
 no

 ?- "123".z = z."231", z::3.
 no

 ?- "123".z = z."231", z::1.
 z = "1"

 ?- "123".z = z."231", z::4.
 z = "1231"

 ?- "123".z = z."231", z::2.
 no

- These constraint solvers are very complex
- Often incomplete algorithms are used
CLP((\(WE, Q\)))

- Word equations plus arithmetic over \(Q\) (rational numbers)
- Prove that the sequence \(x_{i+2} = |x_{i+1}| - x_i\) has a period of length 9 (for any starting \(x_0, x_1\))
- Strategy: describe the sequence, try to find a subsequence such that the period condition is violated
- Sequence description (syntax is Prolog III slightly modified):

  ```prolog
  seq(<Y, X>). abs(Y, Y) :- Y >= 0.
  seq(<Y1 - X, Y, X>.U) :- abs(Y, -Y) :- Y < 0.
  seq(<Y, X>.U)
  abs(Y, Y1).
  ```

- Query: Is there any 11–element sequence such that the 2–tuple initial seed is different from the 2–tuple final subsequence (the seed of the rest of the sequence)?

  ```prolog
  ?- seq(U.V.W), U::2, V::7, W::2, U#W.
  fail
  ```
Summarizing

- **In general:**
 - Data structures (Herbrand terms) for free
 - Each logical variable may have constraints associated with it (and with other variables)

- **Problem modeling:**
 - Rules represent the problem at a high level
 - Program structure, modularity
 - Recursion used to set up constraints
 - Constraints encode problem conditions
 - Solutions also expressed as constraints

- **Combinatorial search problems:**
 - CLP languages provide backtracking: enumeration is easy
 - Constraints keep the search space manageable

- **Tackling a problem:**
 - Keep an open mind: often new approaches possible
Complex Constraints

- Some complex constraints allow expressing simpler constraints
- May be operationally treated as passive constraints
- E.g.: cardinality operator $\#(L, [c_1, \ldots, c_n], U)$ meaning that the number of true constraints lies between L and U (which can be variables themselves)
 - If $L = U = n$, all constraints must hold
 - If $L = U = 1$, one and only one constraint must be true
 - Constraining $U = 0$, we force the conjunction of the negations to be true
 - Constraining $L > 0$, the disjunction of the constraints is specified
- Disjunctive constructive constraint: $c_1 \lor c_2$
 - If properly handled, avoids search and backtracking
 - E.g.: $nz(X) \leftarrow X > 0.$
 $nz(X) \leftarrow X < 0.$
 $nz(X) \leftarrow X < 0 \lor X > 0.$
Other Primitives

- CLP(\mathcal{X}) systems usually provide additional primitives
- E.g.:
 - \texttt{enum(X)} enumerates \texttt{X} inside its current domain
 - \texttt{maximize(X)} (c.f. \texttt{minimize(X)}) works out maximum (minimum value) for \texttt{X} under the active constraints
 - \texttt{delay Goal until Condition} specifies when the variables are instantiated enough so that \texttt{Goal} can be effectively executed
 - Its use needs deep knowledge of the constraint system
 - Also widely available in Prolog systems
 - Not really a constraint: control primitive
Implementation Issues: Satisfiability

- Algorithms must be *incremental* in order to be practical
- Incrementality refers to the performance of the algorithm
- It is important that algorithms to decide satisfiability have a good average case behavior
- Common technique: use a *solved form* representation for satisfiable constraints
- Not possible in every domain
- E.g. in \mathcal{FT} constraints are represented in the form $x_1 = t_1(\tilde{y}), \ldots, x_n = t_n(\tilde{y})$, where
 - each $t_i(\tilde{y})$ denotes a term structure containing variables from \tilde{y}
 - no variable x_i appears in \tilde{y}
 (i.e., idempotent substitutions, guaranteed by the unification algorithm)
Implementation Issues: Backtracking in CLP(\(\mathcal{A}\))

- Implementation of backtracking more complex than in Prolog
- Need to record changes to constraints
- Constraints typically stored as an association of variable to expression
- Trailing expressions is, in general, costly: cannot be stored at every change
- Avoid trailing when there is no choice point between two successive changes
- A standard technique: use *time stamps* to compare the age of the choice point with the age of the variable at the time of last trailing

\[
\begin{align*}
X &< 9, \ Y=5, \ Z=4, \ W=1 & \text{trail } W, \ timestamp \ it \\
X &< Y+4, \ Y=4+W, \ Z=4 & \text{trail } X, \ Y, \ Z, \ timestamp \ them \\
X &< Y+Z, \ Y=Z+W & timestamp \ X, \ Y, \ Z, \ W
\end{align*}
\]
Implementation Issues: Extensibility

- Constraint domains often implemented now in Prolog-based systems using:
 - Attributed variables [Neumerkel, Holzbaur]:
 * Provide a hook into unification.
 * Allow attaching an attribute to a variable.
 * When unification with that variable occurs, user-defined code is called.
 * Used to implement constraint solvers (and other applications, e.g., distributed execution).
 - Constraint handling rules (CHRs):
 * Higher-level abstraction.
 * Allows defining propagation algorithms (e.g., constraint solvers) in a high-level way.
 * Often translated to attributed variable-based low-level code.
Attributed Variables Example: Freeze

● Primitives:

- `attach_attribute(X,C)`
- `get_attribute(X,C)`
- `detach_attribute(X)`
- `update_attribute(X,C)`
- `verify_attribute(C,T)`
- `combine_attributes(C1,C2)`

● Example: Freeze

```prolog
freeze( X, Goal) :-
    attach_attribute( V, frozen(V,Goal)),
    X = V.

verify_attribute( frozen(Var,Goal), Value) :-
    detach_attribute( Var),
    Var = Value,
    call(Goal).

combine_attributes( frozen(V1,G1), frozen(V2,G2)) :-
    detach_attribute( V1),
    detach_attribute( V2),
    V1 = V2,
    attach_attribute( V1, frozen(V1,(G1,G2))).
```
Programming Tips

- Over-constraining:
 - Seems to be against general advice “do not perform extra work”, but can actually cut more space search
 - Specially useful if infer is weak
 - Or else, if constraints outside the domain are being used

- Use control primitives (e.g., cut) very sparingly and carefully

- Determinacy is more subtle, (partially due to constraints in non–solved form)

- Choosing a clause does not preclude trying other exclusive clauses (as with Prolog and plain unification)

- Compare:

 \[
 \begin{align*}
 \text{max}(X,Y,X) & :\ - X > Y. & \text{?– max}(X, Y, Z). \\
 \text{max}(X,Y,Y) & :\ - X \leq Y. & Z = X, Y < X \\
 \text{with} & \quad & \\
 \text{max}(X,Y,X) & :\ - X > Y, !. & \text{?– max}(X, Y, Z). \\
 \text{max}(X,Y,Y) & :\ - X \leq Y. & Z = X, Y < X
 \end{align*}
 \]
Some Real Systems (I)

- CLP defines a class of languages obtained by
 - Specifying the particular constraint system(s)
 - Specifying *Computation* and *Selection* rules
- Most share the Herbrand domain with “=”, but add different domains and/or solver algorithms
- Most use *Computation* and *Selection* rules of Prolog
- **CLP(ℜ):**
 - Linear arithmetic over reals (\(=, \leq, >\))
 - Gauss elimination and an adaptation of Simplex
- **PrologIII:**
 - Linear arithmetic over rationals (\(=, \leq, >, \neq\)), Simplex
 - Boolean (\(=\)), 2-valued Boolean Algebra
 - Infinite (rational) trees (\(=, \neq\))
 - Equations over finite strings
Some Real Systems (II)

- **CHIP:**
 - Linear arithmetic over rationals ($=, \leq, >, \neq$), Simplex
 - Boolean ($=$), larger Boolean algebra (symbolic values)
 - Finite domains
 - User–defined constraints and solver algorithms

- **BNR-Prolog:**
 - Arithmetic over reals (closed intervals) ($=, \leq, >, \neq$), Simplex, propagation techniques
 - Boolean ($=$), 2-valued Boolean algebra
 - Finite domains, consistency techniques under user–defined strategy

- **SICStus 3:**
 - Linear arithmetic over reals ($=, \leq, >, \neq$)
 - Linear arithmetic over rationals ($=, \leq, >, \neq$)
 - Finite domains (in recent versions)
Some Real Systems (III)

- **ECLiPSe:**
 - Finite domains
 - Linear arithmetic over reals ($=, \leq, >, \neq$)
 - Linear arithmetic over rationals ($=, \leq, >, \neq$)

- **clp(FD)/gprolog:**
 - Finite domains

- **RISC–CLP:**
 - Real arithmetic terms: any arithmetic constraint over reals
 - Improved version of Tarski’s quantifier elimination

- **Ciao:**
 - Linear arithmetic over reals ($=, \leq, >, \neq$)
 - Linear arithmetic over rationals ($=, \leq, >, \neq$)
 - Finite Domains (currently interpreted)

(can be selected on a per-module basis)