Computational Logic

Constraint Logic Programming
Constraints

- Born within AI: e.g. house design
- Constraints used as problem representation:

 The man in yellow does not have green eyes
 The murderer knows no detective will ever wear dark clothes

- A solution is an assignment which agrees with the initial constraints:

 Murderer: López, green eyes, Magnum gun

- Or, alternatively, the solution can also be a set of constraints:

 The murderer is one of those who had met the cabaret entertainer
 (they represent several ground mappings from elements to variables)

- There may be no solution:

 Natural death
A General View

- Ancestors:
 - SKETCHPAD (1963), Waltz’s algorithm (1965?), THINGLAB (1981), MACSYMA (1983), ...

- Constraints in logic languages – the origin of “constraint programming”:
 - General theory developed (Jaffar and Lassez ’97).
 - First, standalone systems developed: clpr, CHIP, ...
 - Now included in many Prologs (e.g., clpr/clpq/clpfld packages in Ciao).

- Constraints in imperative languages:
 - Equation solving libraries (ILOG, GECODE, ...)
 - Timestamping of variables: $x := x + 1 \leftrightarrow x_{i+1} := x_i + 1$
 (similar to iterative methods in numerical analysis)

- Constraints in functional languages, via extensions:
 - Evaluation of expressions including free variables.
 - **Absolute Set Abstraction.**
A comparison with classic LP (I)

- **Example (plain Prolog):** \(q(X, Y, Z) :- Z = f(X, Y). \)

\[
\begin{align*}
? & - q(3, 4, Z). \\
& & Z = f(3,4) \\
& - q(X, Y, f(3,4)). \\
& & X = 3, Y = 4 \\
& - q(X, Y, Z). \\
& & Z = f(X,Y)
\end{align*}
\]

- **Example (plain Prolog):** \(p(X, Y, Z) :- Z \text{ is } X + Y. \)

\[
\begin{align*}
? & - p(3, 4, Z). \\
& & Z = 7 \\
? & - p(X, 4, 7). \\
& & \text{INSTANTIATION ERROR} \quad \leftarrow \text{is/2 not reversible, does not work!}
\end{align*}
\]
Example (CLP(ℜ) package):

```prolog
:- use_package(clpr).
p(X, Y, Z) :- Z =. X + Y.

?- p(3, 4, Z).
Z =. 7

?- p(X, 4, 7).
X =. 3

4 ?- p(X, Y, 7).
X =. 7 - Y  ← with clpr arithmetic is reversible!
```

A Comparison with classic LP (II)
A Comparison with classic LP (III)

- Features in CLP:
 - Domain of computation (reals, integers, booleans, etc).
 Have to meet some conditions.
 - Type of constraints allowed for each domain: e.g. arithmetic constraints
 (+, *, =, ≤, ≥, <, >)
 - Constraint solving algorithms: simplex, gauss, etc.

- Classical LP can be viewed as a constraint logic language over Herbrand terms
 with a single constraint predicate symbol: =
A Comparison with classic LP (IV)

• Advantages:
 ◦ Helps making programs expressive and flexible.
 ◦ May save much coding.
 ◦ In some cases, more efficient than classic LP programs due to solvers typically being very efficiently implemented.
 ◦ Also, efficiency due to search space reduction:
 * LP: generate-and-test.
 * CLP: constrain-and-generate.

• Disadvantages:
 ◦ Complexity of solver algorithms (simplex, gauss, etc) can affect performance.

• Solutions:
 ◦ better algorithms
 ◦ compile-time optimizations (program transformation, global analysis, etc)
 ◦ parallelism
Example of Search Space Reduction

- Using **plain Prolog** (generate–and–test):

  ```prolog
  % Find three consecutive numbers in the p/1 relation.
  solution(X, Y, Z) :-
      p(X), p(Y), p(Z),
      test(X, Y, Z).
  test(X, Y, Z) :- Y is X + 1, Z is Y + 1.
  ```

- Query:

  ```prolog
  ?- solution(X, Y, Z).
  X = 14, Y = 15, Z = 16 ? ;
  no
  ```

- 458 steps (all solutions: 465 steps).
Example of Search Space Reduction

- Using the **CLP(ℜ) package** (generate–and–test):

  ```prolog
  % Find three consecutive numbers in the p/1 relation.
  :- use_package(clpr).
  solution(X, Y, Z) :-
      p(X), p(Y), p(Z),
      test(X, Y, Z).


  test(X, Y, Z) :- Y == X + 1, Z == Y + 1.
  ```

- Query:

  ```prolog
  ?- solution(X, Y, Z).
  X == 14, Y == 15, Z == 16 ? ;
  no
  ```

- 458 steps (all solutions: 465 steps).
Generate–and–test Search Tree

X=14

Y=14

A5

Y=15

A4

X=15

X=16

A3

A2

X=3

X=11

A1

Y=16

Z=14

Z=15

Z=16

Z=7

Z=3

Z=11

B5

Y=7

B4

Y=3

B3

Y=11

B2

B1

Z=14

Z=15

Z=16

Z=7

Z=3

Z=11

B

A

B

10
Example of Search Space Reduction

• **Move** \texttt{test(X, Y, Z)} **to the beginning** (constrain–and–generate):

```prolog
% Find three consecutive numbers in the p/1 relation.
:- use_package(clpr).
solution(X, Y, Z) :-
    test(X, Y, Z),
    p(X), p(Y), p(Z).
```

• **Using plain Prolog:**

```prolog
test(X, Y, Z) :- Y is X + 1, Z is Y + 1.
?- solution(X, Y, Z).
{INSTANTIATION ERROR}
```

• **Using the CLP(ℜ) package:**

```prolog
test(X, Y, Z) :- Y =. X + 1, Z =. Y + 1.
?- solution(X, Y, Z).
X =. 14, Y =. 15, Z =. 16 ? ;
no
```

In **6 steps** (and all solutions in **11 steps**)!
Constrain–and–generate Search Tree

\[
g
\]

\[
X=14 \quad X=15 \quad X=16 \quad X=7 \quad X=3 \quad X=11
\]

\[
Y=15 \quad Y=16
\]

\[
Z=16
\]
Constraint Domains

- The semantics is parameterized by the *constraint domain* \(\mathcal{X} \): CLP(\(\mathcal{X} \)), where
 \[\mathcal{X} \equiv (\Sigma, D, L, T) : \]
 - \(\Sigma \): set of *predicate* and *function symbols*, together with their arity
 - \(L \subseteq \Sigma \)–formulae: constraints
 - \(D \): the set of actual elements in the constraint domain
 - \(D \): meaning of predicate and function symbols (and hence, constraints).
 - \(T \): a first–order theory (axiomatizes some properties of \(D \))

- \((D, L)\) is a *constraint domain*

- Assumptions:
 - \(L \) built upon a first–order language
 - \(= \in \Sigma ; = \) is identity in \(D \)
 - There are identically false and identically true constraints in \(L \)
 - \(L \) is closed w.r.t. renaming, conjunction, and existential quantification
Domains (I)

• $\Sigma = \{0, 1, +, *, =, <, \leq\}$, $D = \mathbb{R}$ (the reals), \mathcal{D} interprets Σ as usual, $\mathcal{R} = (\mathcal{D}, \mathcal{L})$
 \rightarrow Arithmetic over the reals ("\mathcal{R}" domain).
 ◦ Eg.: $x^2 + 2xy < \frac{y}{x} \land x > 0$ ($\equiv xxx + xxy + xxy < y \land 0 < x$)
 ◦ Question: is 0 needed? How can it be represented?

• $\Sigma' = \{0, 1, +, =, <, \leq\}$, $\mathcal{R}_{\text{Lin}} = (\mathcal{D}', \mathcal{L}')$
 \rightarrow Linear arithmetic ("\mathcal{R}_{Lin}" domain)
 ◦ Eg.: $3x - y < 3$ ($\equiv x + x + x < 1 + 1 + 1 + y$)

• $\Sigma'' = \{0, 1, +, =\}$, $\mathcal{R}_{\text{LinEq}} = (\mathcal{D}'', \mathcal{L}'')$
 \rightarrow Linear equations ("$\mathcal{R}_{\text{LinEq}}$" domain)
 ◦ Eg.: $3x + y = 5 \land y = 2x$

• A corresponding set of domains can be defined on the rationals ("\mathbb{Q}" domain)
Domains (II)

- A very special domain:
 - $\Sigma = \{ \langle \text{constant and function symbols} \rangle, = \}$
 - $D = \{ \text{finite trees} \}$
 - D interprets Σ as tree constructors
 - Each $f \in \Sigma$ with arity n maps n trees to a tree with root labeled f and whose subtrees are the arguments of the mapping
 - Constraints: syntactic tree equality

$\mathcal{FT} = (D, \mathcal{L})$

→ **Equality constraints over the Herbrand domain** (\mathcal{FT} domain)
 - Eg.: $g(h(Z), Y) = g(Y, h(a))$

- $LP \equiv \text{CLP}(\mathcal{FT})$
Domains (III)

- $\Sigma = \{ \text{<constants>}, \lambda,.,::,= \}$
- $D = \{ \text{finite strings of constants} \}$
- D interprets $.$ as string concatenation, $::$ as string length
 - Equations over strings of constants (D domain)
 - Eg.: $X.A.X = X.A$

- $\Sigma = \{0, 1, \neg, \land, =\}$
- $D = \{ \text{true}, \text{false} \}$
- D interprets symbols in Σ as boolean functions
- $\text{BOOL} = (D, L)$
 - Boolean constraints (BOOL domain)
 - Eg.: $\neg(x \land y) = 1$
CLP(\(\mathcal{X}\)) Programs

- Recall that:
 - \(\Sigma\) is a set of predicate and function symbols
 - \(\mathcal{L} \subseteq \Sigma\) – formulae are the constraints

- \(\Pi \subseteq \Sigma\): set of predicate symbols definable by a program
 - Atom: \(p(t_1, t_2, \ldots, t_n)\), where \(p \in \Pi\) and \(t_1, t_2, \ldots, t_n\) are terms
 - Primitive constraint: \(p(t_1, t_2, \ldots, t_n)\), where \(t_1, t_2, \ldots, t_n\) are terms and \(p \in \Sigma\) is a predicate symbol
 - Constraint: (first–order) formula built from primitive constraints

- The class of constraints will vary (generally only a subset of formulas are considered constraints)

- A CLP program is a collection of rules of the form \(a \leftarrow b_1, \ldots, b_n\) where \(a\) is an atom and the \(b_i\)’s are atoms or constraints

- A fact is a rule \(a \leftarrow c\) where \(c\) is a constraint

- A goal (or query) \(G\) is a conjunction of constraints and atoms
A case study: CLP(ℜ)

• CLP(ℜ) is a language based on Prolog, with the addition of constraint solving capabilities over the reals (ℜLin)
 ◦ Uses same execution strategy as standard Prolog (depth–first, left–to–right)
 ◦ Is able to solve directly linear (dis)equations over the reals
 ◦ Non–linear equations are delayed, waiting for them to eventually become linear
 ◦ Most relevant feature w.r.t. Prolog (for our purposes): is/2 disappears, and is subsumed by =/2 and (extended) unification

• Note: CLP(ℜ) is really CLP((ℜ, ⨆T)) — ⨆T is often omitted.

• In modern Prolog systems coexisting with the ISO primitives (is/2, >/2 etc.).

• In Ciao supported in via the clpr package:
 ◦ Uses .=., .>. etc. to distinguish the clpr constraints from the ISO-Prolog arithmetic primitives.
 ◦ I.e., X .= Y + 5, Y >.1 vs. X is Y + 5, Y >1
Linear Equations (CLP(\mathbb{R}) package)

- Vector \times vector multiplication (dot product):
 $\cdot : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}$
 $(x_1, x_2, \ldots, x_n) \cdot (y_1, y_2, \ldots, y_n) = x_1 \cdot y_1 + \cdots + x_n \cdot y_n$

- Vectors represented as lists of numbers
  ```prolog
  :- use_package(clpr).
  prod([], [], Result) :- Result =. 0.
  prod([X|Xs], [Y|Ys], Result) :-
      Result =. X * Y + Rest, prod(Xs, Ys, Rest).
  ```

- Unification becomes constraint solving!
  ```prolog
  ?- prod([2, 3], [4, 5], K).
  K =. 23
  ?- prod([2, 3], [5, X2], 22).
  X2 =. 4
  ?- prod([2, 7, 3], [Vx, Vy, Vz], 0).
  Vx =. -1.5*Vz - 3.5*Vy
  ```

- Any computed answer is, in general, an equation over the variables in the query
Systems of Linear Equations (CLP(ℜ))

- Can we solve systems of equations? E.g.,
 \[3x + y = 5 \]
 \[x + 8y = 3 \]

- Write them down at the top level prompt:
 \[\texttt{?- prod([3, 1], [X, Y], 5), prod([1, 8], [X, Y], 3).} \]
 \[\texttt{X .=} 1.6087, \texttt{Y .=} 0.173913} \]

- A more general predicate can be built mimicking the mathematical vector notation \(A \cdot x = b \):
 \[\texttt{system(_Vars, [], []).} \]
 \[\texttt{system(Vars, [Co|Coefs], [Ind|Indeps]) :-} \]
 \[\texttt{prod(Vars, Co, Ind),} \]
 \[\texttt{system(Vars, Coefs, Indeps).} \]

- We can now express (and solve) equation systems
 \[\texttt{?- system([X, Y], [[3, 1],[1, 8]],[5, 3]).} \]
 \[\texttt{X .=} 1.6087, \texttt{Y .=} 0.173913} \]
Non–linear Equations (CLP(\(\mathbb{R}\)))

- Non–linear equations are delayed

  ```prolog
  ?- sin(X) .\=. cos(X).
  sin(X) .\=. cos(X).
  ```

- This is also the case if there exists some procedure to solve them

  ```prolog
  ?- X*X + 2*X + 1 .\=. 0.
  -2*X - 1 .\=. X * X
  ```

- Reason: no general solving technique is known. CLP(\(\mathbb{R}\)) solves only linear (dis)equations.

- Once equations become linear, they are handled properly:

  ```prolog
  ?- X .\=. cos(sin(Y)), Y .\=. 2+Y*3.
  Y .\=. -1, X .\=. 0.666367
  ```

- Disequations are solved using a modified, incremental Simplex

  ```prolog
  ?- X + Y .\=<. 4, Y .\>=. 4, X .\>=. 0.
  Y .\=. 4, X .\=. 0
  ```
Fibonacci Revisited (Prolog)

- Fibonacci numbers:

\[
F_0 = 0 \\
F_1 = 1 \\
F_{n+2} = F_{n+1} + F_n
\]

- (The good old) Prolog version:

```prolog
fib(0, 0).
fib(1, 1).
fib(N, F) :-
    N > 1,
    N1 is N - 1,
    N2 is N - 2,
    fib(N1, F1),
    fib(N2, F2),
    F is F1 + F2.
```

- Can only be used with the first argument instantiated to a number
Fibonacci Revisited (CLP(ℜ))

- CLP(ℜ) package version: syntactically similar to the previous one:

```prolog
:- use_package(clpr).
fib(N,N) :- N =:= 0.
fib(N,N) :- N =:= 1.
fib(N,R) :- N > 1, F1 >= 0, F2 >= 0,
            N1 =:= N - 1, N2 =:= N - 2,
            fib(N1,F1), fib(N2,F2),
            R =:= F1 + F2.
```

- Note all constraints included in program (F1 >/= 0, F2 >/= 0) – good practice!
- Only real numbers and equations used (no data structures, no other constraint system): “pure CLP(ℜ)”
- Semantics greatly enhanced! E.g.

```prolog
?- fib(N, F).
F =:= 0, N =:= 0 ;
F =:= 1, N =:= 1 ;
F =:= 1, N =:= 2 ;
F =:= 2, N =:= 3 ;
```
Analog RLC circuits (CLP(\mathbb{R}))

- Analysis and synthesis of analog circuits
- RLC network in steady state
- Each circuit is composed either of:
 - A simple component, or
 - A connection of simpler circuits
- For simplicity, we will suppose subnetworks connected only in parallel and series → Ohm’s laws will suffice (other networks need global, i.e., Kirchoff’s laws)
- We want to relate the current (I), voltage (V) and frequency (\omega) in steady state
- Entry point: \texttt{circuit}(C, V, I, \omega) states that:
 - across the network \(C \), the voltage is \(V \), the current is \(I \) and the frequency is \(\omega \)
- \(V \) and \(I \) must be modeled as complex numbers (the imaginary part takes into account the angular frequency)
- Note that Herbrand terms are used to provide data structures
Analog RLC circuits (CLP(\(\mathbb{R}\)))

- Complex number \(X + Yi\) modeled as \(c(X, Y)\)

- Basic operations:

```prolog
:- use_package(clpr).

c_add(c(Re1, Im1), c(Re2, Im2), c(Re12, Im12)) :-
    Re12 .:=. Re1+Re2,
    Im12 .:=. Im1+Im2.

c_mult(c(Re1, Im1), c(Re2, Im2), c(Re3, Im3)) :-
    Re3 .:=. Re1 * Re2 - Im1 * Im2,
    Im3 .:=. Re1 * Im2 + Re2 * Im1.
```

(equality is \(c_equal(c(R, I), c(R, I))\), can be left to [extended] unification)
Analog RLC circuits (CLP(\(\mathbb{R}\)))

- Circuits in series:
 \[
 \text{circuit}($\text{series}(N1, N2), V, I, W)$:-
 \text{c_add}(V1, V2, V),
 \text{circuit}(N1, V1, I, W),
 \text{circuit}(N2, V2, I, W).
 \]

- Circuits in parallel:
 \[
 \text{circuit}($\text{parallel}(N1, N2), V, I, W)$:-
 \text{c_add}(I1, I2, I),
 \text{circuit}(N1, V, I1, W),
 \text{circuit}(N2, V, I2, W).
 \]
Analog RLC circuits (CLP(R))

Each basic component can be modeled as a separate unit:

- **Resistor:** \(V = I \times (R + 0i) \)

 \[
 \text{circuit}(\text{resistor}(R), V, I, _W) :- \\
 \text{c_mult}(I, c(R, 0), V).
 \]

- **Inductor:** \(V = I \times (0 + WLi) \)

 \[
 \text{circuit}(\text{inductor}(L), V, I, W) :- \\
 \text{Im} == W \times L, \\
 \text{c_mult}(I, c(0, \text{Im}), V).
 \]

- **Capacitor:** \(V = I \times \left(0 - \frac{1}{WC}i\right) \)

 \[
 \text{circuit}(\text{capacitor}(C), V, I, W) :- \\
 \text{Im} == -1 / (W \times C), \\
 \text{c_mult}(I, c(0, \text{Im}), V).
 \]
Analog RLC circuits (CLP(\(\mathbb{R}\)))

- Example:

\[I = 0.65 \quad L = 0.073 \quad C = ? \quad R = ? \quad V = 4.5 \quad \omega = 2400 \quad I = 0.65 \quad L = 0.073 \]

?- circuit(parallel(inductor(0.073),
series(capacitor(C), resistor(R))),
c(4.5, 0), c(0.65, 0), 2400).

\(R = 6.91229 \), \(C = 0.00152546 \)

?- circuit(C, c(4.5, 0), c(0.65, 0), 2400).
The N Queens Problem

- Problem: place N chess queens in a $N \times N$ board such that they do not attack each other
- Data structure: a list holding the column position for each row
- The final solution is a permutation of the list $[1, 2, \ldots, N]$
- E.g.: the solution is represented as $[2, 4, 1, 3]$
- General idea:
 - Start with partial solution
 - Nondeterministically select new queen
 - Check safety of new queen against those already placed
 - Add new queen to partial solution if compatible; start again with new partial solution
The N Queens Problem in Prolog

```prolog
queens(N, Qs) :- queens_list(N, Ns), % E.g., Ns=[4,3,2,1]
             queens(Ns, [], Qs).
queens([], Qs, Qs). % All queens placed!
queens(Unplaced, Placed, Qs) :-
    select(Unplaced, Q, NewUnplaced), % E.g. Q=4, NewU=[3,2,1]
    no_attack(Placed, Q, 1),
    queens(NewUnplaced, [Q|Placed], Qs).% OK->Choose next q

no_attack([], _Queen, _Nb).
no_attack([Y|Ys], Queen, Nb) :-
    Queen =\= Y + Nb, Queen =\= Y - Nb, Nb1 is Nb + 1,
    no_attack(Ys, Queen, Nb1).
select([X|Ys], X, Ys).
select([Y|Ys], X, [Y|Zs]) :- select(Ys, X, Zs).
queens_list(0, []).
queens_list(N, [N|Ns]) :-
    N > 0, N1 is N - 1, queens_list(N1, Ns).
```

30
The N Queens Problem in Prolog - search space
The N Queens Problem in CLP(ℜ) (in Ciao clpr syntax)

:- use_package(clpr).
queens(N,Qs) :- constrain_values(N,N,Qs), place_queens(N,Qs).

constrain_values(0, _N, []). % Constrain before placing
constrain_values(N, Range, [X|Xs]) :-
 N .>. 0, X .>. 0, X .<=. Range, N1 .=. N - 1,
 constrain_values(N1, Range, Xs), no_attack(Xs, X, 1).

no_attack([], _Queen, _Nb). % Identical to Prolog version
no_attack([Y|Ys], Queen, Nb) :- % but using constraints
 Queen .<> Y + Nb, Queen .<> Y - Nb, Nb1 .=. Nb + 1,
 no_attack(Ys, Queen, Nb1).

place_queens(0, _).
place_queens(N, Q) :-
 N .>. 0,
 member(N, Q),
 N1 .=. N - 1,
 place_queens(N1, Q).
This last program can attack the problem in its most general instance:

```
?- queens(N,L).
L = [], N == 0 ;
L = [1], N == 1 ;
L = [2, 4, 1, 3], N == 4 ;
L = [3, 1, 4, 2], N == 4 ;
L = [5, 2, 4, 1, 3], N == 5 ;
L = [5, 3, 1, 4, 2], N == 5 ;
L = [3, 5, 2, 4, 1], N == 5 ;
L = [2, 5, 3, 1, 4], N == 5
...```

Remark: Herbrand terms used to build the data structures

But also used as constraints (e.g., length of already built list \(Xs\) in `no_attack(Xs, X, 1)`)

Note that in fact we are using both \(\mathbb{R}\) and \(\mathcal{FT}\)
The N Queens Problem in CLP(R) – search space
The N Queens Problem in CLP(ℜ)

- CLP(ℜ) generates internally a set of equations for each board size

```prolog
?- constrain_values(4, 4, Qs).
Qs = [A, B, C, D],
nonzero(_E), _A=<.4.0, _E.=.3.0+\text{A--D},
nonzero(_F), _A>\text{.0}, _F.=.\text{3.0+}\text{A--D},
nonzero(_G), _B=<.4.0, _G.=.2.0+\text{A--C},
nonzero(_H), _B>\text{.0}, _H.=.\text{2.0+}\text{A--C},
nonzero(_I), _C=<.4.0, _I.=.1+\text{A--B},
nonzero(_J), _C>\text{.0}, _J.=.\text{1+}\text{A--B},
nonzero(_K), _D=<.4.0, _K.=.2.0+\text{B--D},
nonzero(_L), _D>\text{.0}, _L.=.\text{2.0+}\text{B--D},
nonzero(_M), _M.=.1+\text{B--C},
nonzero(_N), _N.=.\text{1+}\text{B--C},
nonzero(_O), _O.=.\text{1+}\text{C--D},
nonzero(_P), _P.=.\text{1+}\text{C--D}
```

- `place_queens(4, [\text{A, B, C, D}])` adds all possible queens in `[\text{A, B, C, D}]`.
The N Queens Problem in CLP(ℜ)

- Constraints are (incrementally) simplified as new queens are added

```prolog
?- constrain_values(4, 4, Qs), Qs = [3,1|_].
Qs = [A,B,C,D],
nonzero(_E), _A = 3.0, _E = 6.0-D,
nonzero(_F), _B = 1.0, _F = -D,
nonzero(_G), _C <= 4.0, _G = 5.0-C,
nonzero(_H), _C > 0, _H = 1.0-C,
nonzero(_I), _D <= 4.0, _I = 3.0-D,
nonzero(_J), _D > 0, _J = -1.0-D,
nonzero(_K), _K = 2.0-C,
nonzero(_L), _L = -C,
nonzero(_M), _M = 1+C-D,
nonzero(_N), _N = -1+C-D ?
```

- Bad choices are rejected using constraint consistency:

```prolog
?- constrain_values(4, 4, Qs), Qs = [3,2|_].
no
```
Finite Domains (I)

- A *finite domain* constraint solver associates each variable with a finite subset of \( \mathbb{Z} \).

- I.e., \( E \in \{-123, -10..4, 10\} \)
  
  Can be represented as, e.g.,
  
  \[
  E :: [-123, -10..4, 10]
  \]
  
  [Eclipse notation]

  or as
  
  \[
  E \text{ in } -123 \downarrow (-10..4) \uparrow 10
  \]
  
  [Ciao notation]

- We can:
  
  ◦ Perform arithmetic operations (+, −, *, /) on the variables
  ◦ Establish linear relationships among arithmetic expressions (#=, #<, #=<)

- Those operations / relationships are intended to narrow the domains of the variables

- **Note:** In Ciao this functionality is loaded with a
  
  ```
 :- use_module(library(clpfd)).
  ```

  directive in the source code.
Finite Domains (II)

Examples:

\[-X \neq A + B, \ A \text{ in } 1..3, \ B \text{ in } 3..7.
\] \[X \text{ in } 4..10, \ A \text{ in } 1..3, \ B \text{ in } 3..7\]

- The respective minimums and maximums are added
- There is no unique solution

\[-X \neq A - B, \ A \text{ in } 1..3, \ B \text{ in } 3..7.
\] \[X \text{ in } -6..0, \ A \text{ in } 1..3, \ B \text{ in } 3..7\]

- The min value of $X$ is the min value of $A$ minus the max value of $B$
- (Similar for the maximum values)

\[-X \neq A - B, \ A \text{ in } 1..3, \ B \text{ in } 3..7, \ X \geq 0.
\] \[A = 3, \ B = 3, \ X = 0\]

- Putting more constraints results in a unique solution.
Finite Domains (III)

Some useful primitives in finite domains:

• `domain(Variables, Min, Max)`: A shorthand for several in constraints

• `labeling(Options, VarList)`:
  ◦ instantiates variables in `VarList` to values in their domains
  ◦ `Options` dictates the search order

```
?- domain([X, Y, Z],1,1000), X*X+Y*Y #= Z*Z, X #>= Y, labeling([], [X,Y,Z]).
X = 4, Y = 3, Z = 5,
X = 8, Y = 6, Z = 10,
X = 12, Y = 5, Z = 13,
...
```

• `minimize(G, X)`: solve `G` minimizing the value of variable `X`

• This can be used to minimize (c.f., maximize) a solution
A classic example: SEND MORE MONEY

% S E N D
% + M O R E
% __________
% M O N E Y

:- use_package(clpfd).

smm([S,E,N,D,M,O,R,Y]) :-
domain([S,E,N,D,M,O,R,Y], 0, 9), % All digits 0..9
0 #\(< S, 0 #\(< M, % No leftmost zeros
all_different([S,E,N,D,M,O,R,Y]), % All digits different
S*10000 + E*1000 + N*10 + D + %
M*10000 + O*1000 + R*10 + E #\(= % Arith. constr.
M*10000 + O*1000 + N*100 + E*10 + Y, %
labeling([], [S,E,N,D,M,O,R,Y]). % Instantiate variables
A Project Management Problem (I)

- The job whose dependencies and task lengths are given by this graph...

... should be finished in 10 time units or less.

- Constraints:

\[
pn1(A,B,C,D,E,F,G) :-
\]
\[
\text{domain([A,B,C,D,E,F,G], 0, 10),}
\]
\[
A \geq 0, \quad G \leq 10,
\]
\[
B \geq A, \quad C \geq A, \quad D \geq A,
\]
\[
E \geq B + 1, \quad E \geq C + 2,
\]
\[
F \geq C + 2, \quad F \geq D + 3,
\]
\[
G \geq E + 4, \quad G \geq F + 1.
\]
A Project Management Problem (II)

• Query:

```
?- pn1(A,B,C,D,E,F,G).
A in 0..4, B in 0..5, C in 0..4,
D in 0..6, E in 2..6, F in 3..9, G in 6..10.
```

• Note the slack of the variables

• Some additional constraints must be respected as well, but are not shown by default

• Minimize the total project time:

```
?- minimize(pn1(A,B,C,D,E,F,G), G).
A = 0, B in 0..1, C = 0, D in 0..2,
E = 2, F in 3..5, G = 6
```

• Variables without slack represent critical tasks
A Project Management Problem (III)

- An alternative setting:

- We can accelerate task F at some cost

\[
\text{pn2}(A, B, C, D, E, F, G, X) \leftarrow \\
\text{domain}([A,B,C,D,E,F,G,X], 0, 10), \\
A \text{ } #>= \text{ } 0, \text{ } G \text{ } #=< \text{ } 10, \\
B \text{ } #>= \text{ } A, \text{ } C \text{ } #>= \text{ } A, \text{ } D \text{ } #>= \text{ } A, \\
E \text{ } #>= \text{ } B + 1, \text{ } E \text{ } #>= \text{ } C + 2, \\
F \text{ } #>= \text{ } C + 2, \text{ } F \text{ } #>= \text{ } D + 3, \\
G \text{ } #>= \text{ } E + 4, \text{ } G \text{ } #>= \text{ } F + X.
\]

- We do not want to accelerate it more than needed!

\[\rightarrow \text{minimize } G \text{ and maximize } X.\]

\[
\begin{align*}
A &= 0, \text{ } B \text{ in } 0..1, \text{ } C = 0, \text{ } D = 0, \\
E &= 2, \text{ } F = 3, \text{ } G = 6, \text{ } X = 3.
\end{align*}
\]
A Project Management Problem (IV)

- We have two independent tasks $B$ and $D$ whose lengths are not fixed:

- We can finish any of $B$, $D$ in 2 time units at best

- Some shared resource disallows finishing both tasks in 2 time units: they will take 6 time units
A Project Management Problem (V)

- Constraints describing the net:

```prolog
pn3(A,B,C,D,E,F,G,X,Y) :-
 domain([A,B,C,D,E,F,G,X,Y], 0, 10),
 A #>= 0, G #=< 10,
 X #>= 2, Y #>= 2, X + Y #= 6,
 B #>= A, C #>= A, D #>= A,
 E #>= B + X, E #>= C + 2,
 F #>= C + 2, F #>= D + Y,
 G #>= E + 4, G #>= F + 1.
```

- Query:

```prolog
?- minimize(pn3(A,B,C,D,E,F,G,X,Y),G).
A = 0, B = 0, C = 0, D in 0..1, E = 2,
F in 4..5, X = 2, Y = 4, G = 6
```

- I.e., we must devote more resources to task B
- All tasks but F and D are critical now

- Sometimes, `minimize/2` not enough to provide best solution (pending constr.):

```prolog
?- minimize(pn3(A,B,C,D,E,F,G,X,Y),G), labeling([], [D,F]).
```
By far, the fastest implementation:

```prolog
:- use_package(clpfd).
queens(N, Qs, Type) :-
 constrain_values(N, N, Qs),
 all_different(Qs),
 labeling(Type, Qs).

constrain_values(0, _N, []).
constrain_values(N, Range, [X|Xs]) :-
 N > 0, N1 is N - 1, X in 1 .. Range,
 constrain_values(N1, Range, Xs),
 no_attack(Xs, X, 1).

no_attack([], _Queen, _Nb).
no_attack([Y|Ys], Queen, Nb) :-
 Queen #= Y + Nb, Queen #= Y - Nb, Nb1 is Nb + 1,
 no_attack(Ys, Queen, Nb1).
```

Query: `?- queens(20, Q, [ff]).` (Type is the type of labeling desired.)

Q = `[1, 3, 5, 14, 17, 4, 16, 7, 12, 18, 15, 19, 6, 10, 20, 11, 8, 2, 13, 9]`
CLP(\mathcal{FT}) (a.k.a. Logic Programming)

- Equations over Finite Trees
- Check that two trees are isomorphic (same elements in each level)

```prolog
iso(Tree, Tree).
iso(t(R, I1, D1), t(R, I2, D2)) :-
 iso(I1, D2),
 iso(D1, I2).

?- iso(t(a, b, t(X, Y, Z)), t(a, t(u, v, W), L)).
L=b, X=u, Y=v, Z=W ? ;
L=b, X=u, Y=W, Z=v ? ;
L=b, W=t(_C,_B,_A), X=u, Y=t(_C,_A,_B), Z=v ? ;
L=b, W=t(_E,t(_D,_C,_B),_A), X=u, Y=t(_E,_A,t(_D,_B,_C)), Z=v ?
```
CLP(WE)

- Equations over finite strings
- Primitive constraints: concatenation (.), string length (::)
- Find strings meeting some property:

```
?- "123".Z = Z."231", Z::0. no

?- "123".Z = Z."231", Z::1. Z = "1"

?- "123".Z = Z."231", Z::2. no

?- "123".Z = Z."231", Z::3. no

?- "123".Z = Z."231", Z::4. Z = "1231"
```

- These constraint solvers are very complex
- Often incomplete algorithms are used
Word equations plus arithmetic over $\mathbb{Q}$ (rational numbers)

Prove that the sequence $x_{i+2} = |x_{i+1}| - x_i$ has a period of length 9 (for any starting $x_0, x_1$)

Strategy: describe the sequence, try to find a subsequence such that the period condition is violated

Sequence description (syntax is Prolog III slightly modified):

```
seq(<Y, X>). abs(Y, Y) :- Y >= 0.
seq(<Y1 - X, Y, X>.U) :- abs(Y, -Y) :- Y < 0.
 seq(<Y, X>.U) seq(<Y, X>.U)
 abs(Y, Y1).
```

Query: *Is there any 11–element sequence such that the 2–tuple initial seed is different from the 2–tuple final subsequence (the seed of the rest of the sequence)?*

```
?- seq(U.V.W), U::2, V::7, W::2, U#W.
fail
```
Summarizing

- **In general:**
  - Data structures (Herbrand terms) for free
  - Each logical variable may have constraints associated with it (and with other variables)

- **Problem modeling:**
  - Rules represent the problem at a high level
    * Program structure, modularity
    * Recursion used to set up constraints
  - Constraints encode problem conditions
  - Solutions also expressed as constraints

- **Combinatorial search problems:**
  - CLP languages provide backtracking: enumeration is easy
  - Constraints keep the search space manageable

- **Tackling a problem:**
  - Keep an open mind: often new approaches possible
Complex Constraints

- Some complex constraints allow expressing simpler constraints
- May be operationally treated as passive constraints
- E.g.: cardinality operator \( \#(L, [c_1, \ldots, c_n], U) \) meaning that the number of true constraints lies between \( L \) and \( U \) (which can be variables themselves)
  - If \( L = U = n \), all constraints must hold
  - If \( L = U = 1 \), one and only one constraint must be true
  - Constraining \( U = 0 \), we force the conjunction of the negations to be true
  - Constraining \( L > 0 \), the disjunction of the constraints is specified
- Disjunctive constructive constraint: \( c_1 \lor c_2 \)
  - If properly handled, avoids search and backtracking
  - E.g.: 
    \[
    \begin{align*}
    nz(X) & \leftarrow X > 0. \\
    nz(X) & \leftarrow X < 0. \\
    \end{align*}
    \]
    \[
    nz(X) \leftarrow X < 0 \lor X > 0.
    \]
Other Primitives

- CLP(\(\mathcal{X}\)) systems usually provide additional primitives
- E.g.:
  - `\texttt{enum}(X)` enumerates \(X\) inside its current domain
  - `\texttt{maximize}(X)` (c.f. `\texttt{minimize}(X)`) works out maximum (minimum value) for \(X\) under the active constraints
  - `\texttt{delay \ Goal \ until \ Condition}` specifies when the variables are instantiated enough so that \texttt{Goal} can be effectively executed
  - * Its use needs deep knowledge of the constraint system
  - * Also widely available in Prolog systems
  - * Not really a constraint: control primitive
Implementation Issues: Satisfiability

- Algorithms must be *incremental* in order to be practical
- Incrementality refers to the performance of the algorithm
- It is important that algorithms to decide satisfiability have a good average case behavior
- Common technique: use a *solved form* representation for satisfiable constraints
- Not possible in every domain
- E.g. in \( \mathcal{FT} \) constraints are represented in the form \( x_1 = t_1(\tilde{y}), \ldots, x_n = t_n(\tilde{y}) \), where
  - each \( t_i(\tilde{y}) \) denotes a term structure containing variables from \( \tilde{y} \)
  - no variable \( x_i \) appears in \( \tilde{y} \)

(i.e., idempotent substitutions, guaranteed by the unification algorithm)
Implementation Issues: Backtracking in CLP(\(\mathcal{X}\))

- Implementation of backtracking more complex than in Prolog
- Need to record changes to constraints
- Constraints typically stored as an association of variable to expression
- Trailing expressions is, in general, costly: cannot be stored at every change
- Avoid trailing when there is no choice point between two successive changes
- A standard technique: use *time stamps* to compare the age of the choice point with the age of the variable at the time of last trailing

X < Y + Z, Y = Z + W
X < Y + 4, Y = 4 + W, Z = 4
X < 9, Y = 5, Z = 4, W = 1

trail W, timestamp it

trail X, Y, Z, timestamp them

timestamp X, Y, Z, W
Implementation Issues: Extensibility

- Constraint domains often implemented now in Prolog-based systems using:
  - Attributed variables [Neumerkel,Holzbaur]:
    * Provide a hook into unification.
    * Allow attaching an *attribute* to a variable.
    * When unification with that variable occurs, user-defined code is called.
    * Used to implement constraint solvers (and other applications, e.g., distributed execution).
  - Constraint handling rules (CHR):s:
    * Higher-level abstraction.
    * Allows defining propagation algorithms (e.g., constraint solvers) in a high-level way.
    * Often translated to attributed variable-based low-level code.
Attributed Variables Example: Freeze

- **Primitives:**
  - `attach_attribute(X,C)`
  - `get_attribute(X,C)`
  - `detach_attribute(X)`
  - `update_attribute(X,C)`
  - `verify_attribute(C,T)`
  - `combine_attributes(C1,C2)`

- **Example: Freeze**

```prolog
freeze(X, Goal) :-
 attach_attribute(V, frozen(V,Goal)),
 X = V.

verify_attribute(frozen(Var,Goal), Value) :-
 detach_attribute(Var),
 Var = Value,
 call(Goal).

combine_attributes(frozen(V1,G1), frozen(V2,G2)) :-
 detach_attribute(V1),
 detach_attribute(V2),
 V1 = V2,
 attach_attribute(V1, frozen(V1,(G1,G2))).
```
Programming Tips

- Over-constraining:
  - Seems to be against general advice “do not perform extra work”, but can actually cut more search space
  - Specially useful if *infer* is weak
  - Or else, if constraints outside the domain are being used

- Use control primitives (e.g., cut) *very sparingly and carefully*

- Determinacy is more subtle, (partially due to constraints in non–solved form)

- Choosing a clause does not preclude trying other exclusive clauses (as with Prolog and plain unification)

- Compare:

  ```prolog
 max(X, Y, X) :- X >. Y.
 max(X, Y, Y) :- X <=. Y.

 max(X, Y, X) :- X >. Y, !.
 max(X, Y, Y) :- X <=. Y.
  ```

  *with*

  ```prolog
 max(X, Y, X) :- X >. Y, !.
 max(X, Y, Y) :- X <=. Y.
  ```
Some “Classic” CLP Systems (I)

- CLP defines a class of languages obtained by
  - Specifying the particular constraint system(s)
  - Specifying the *Computation* and *Selection* rules

- Most systems include also the Herbrand domain with “=” but then add different domains and/or solver algorithms

- Most use the *Computation* and *Selection* rules of Prolog

- **CLP(\(\mathbb{R}\)):**
  - Linear arithmetic over reals (\(=, \leq, >\))
  - Gaussian elimination and an adaptation of Simplex

- **PrologIII:**
  - Linear arithmetic over rationals (\(=, \leq, >, \neq\)), Simplex
  - Boolean (\(=\)), 2-valued Boolean Algebra
  - Infinite (rational) trees (\(=, \neq\))
  - Equations over finite strings
Some “Classic” CLP Systems (II)

- **CHIP** (and its successor: the **ILOG** library):
  - CLP(FD), CLP(B), CLP(Q).
  - User–defined constraints and solver algorithms

- **BNR-Prolog / CLP(BNR):**
  - Arithmetic over reals (closed intervals),
  - CLP(FD), CLP(B).

- **RISC–CLP:**
  - Arithmetic constraints over reals, also non-linear

- **clp(FD)/gprolog:**
  - CLP(FD).
Some “Classic” CLP Systems (III)

- **SICStus 3:**
  - CLP(R), CLP(Q), CLP(FD).
  - Attributed variables and CHR for adding domains.

- **ECL\textsuperscript{p}S:**
  - CLP(R), CLP(Q), CLP(FD).

- **SWI:**
  - CLP(R), CLP(Q), CLP(FD), CLP(B).
  - Attributed variables and CHR for additional domains.

- **Ciao:**
  - CLP(R), CLP(Q), CLP(FD).
  - Attributed variables and CHR for additional domains.
  - Different domains can be activated on a per-module basis (packages).

→ Most Prolog systems now support constraints!