Computational Logic

Logic Programming:

Model and Fixpoint Semantics
Towards the Model and Fixpoint Semantics

- We have seen previously the operational semantics (SLD-resolution).
- We now present the (declarative) Model Semantics:
 - We define our semantic domain (Herbrand interpretations).
 - We introduce the Minimal Herbrand Model.
- And the (also declarative) Fixpoint Semantics.
 - We recall some basic fixpoint theory.
 - Present the T_P operator and the classic fixpoint semantics.
Declarative Semantics – Herbrand Base and Universe

- Given a first-order language \(L \), with a non-empty set of variables, constants, function symbols, relation symbols, connectives, quantifiers, etc. and given a syntactic object \(A \),

\[
\text{ground}(A) = \{ A\theta | \exists \theta \in \text{Subst}, \text{var}(A\theta) = \emptyset \}
\]

i.e. the set of all “ground instances” of \(A \).

- Given \(L \), \(U_L \) (*Herbrand universe*) is the set of all ground terms of \(L \).

- \(B_L \) (*Herbrand Base*) is the set of all ground atoms of \(L \).

- Similarly, for the language \(L_P \) associated with a given program \(P \) we define \(U_P \), and \(B_P \).
Program:

\[P = \{ \ p(f(X)) \leftarrow p(X) . \
 p(a) . \
 q(a) . \
 q(b) . \ \} \]

Herbrand universe:

\[U_P = \{ a, b, f(a), f(b), f(f(a)), f(f(b)), \ldots \} \]

Herbrand base:

\[B_P = \{ p(a), p(b), q(a), q(b), p(f(a)), p(f(b)), q(f(a)), \ldots \} \]
Herbrand Interpretations and Models

• A Herbrand Interpretation is a subset of B_L, i.e. the set of all Herbrand interpretations $I_L = \mathcal{P}(B_L)$.

(Note that I_L forms a complete lattice under \subseteq – important for fixpoint operations to be introduced later).

• In previous example: $P = \{ p(f(X)) \leftarrow p(X). \ p(a). \ q(a). \ q(b). \}$
$U_P = \{ a, b, f(a), f(b), f(f(a)), f(f(b)), \ldots \}$
$B_P = \{ p(a), p(b), q(a), q(b), p(f(a)), p(f(b)), q(f(a)), \ldots \}$
$I_P = all \ subsets \ of \ B_P$

• A Herbrand Model is a Herbrand interpretation which contains all logical consequences of the program.

• The Minimal Herbrand Model H_P is the smallest Herbrand interpretation which contains all logical consequences of the program. (Theorem: it is unique.)

• Example:
$H_P = \{ q(a), q(b), p(a), p(f(a)), p(f(f(a))), \ldots \}$
Declarative Semantics, Completeness, Correctness

- **Declarative semantics of a logic program** P:
 the set of ground facts which are logical consequences of the program (i.e., H_P).
 (I.e., the *Minimal Herbrand* model (or “least model”) of P).

- **Intended meaning of a logic program** P:
 the set I of ground facts that the user expects to be logical consequences of the program.

- A logic program is **correct** if $H_P \subseteq I$.

- A logic program is **complete** if $I \subseteq H_P$.

- Example:

 father(john,peter).
 father(john,mary).
 mother(mary,mike).
 grandfather(X,Y) ← father(X,Z), father(Z,Y).

 with the usual intended meaning is **correct** but **incomplete**.
Towards a Fixpoint Semantics for LP – Fixpoint Basics

- A *fixpoint* for an operator $T : X \rightarrow X$ is an element of $x \in X$ such that $x = T(x)$.

- If X is a poset, T is monotonic if $\forall x, y \in X, x \leq y \Rightarrow T(x) \leq T(y)$

- If X is a complete lattice and T is monotonic the set of fixpoints of T is also a complete lattice [Tarski]

- The least element of the lattice is the *least fixpoint* of T, denoted $lfp(T)$

- Powers of a monotonic operator (successive applications):

 $$T \uparrow 0(x) = x$$
 $$T \uparrow n(x) = T(T \uparrow (n - 1)(x)) \text{ (} n \text{ is a successor ordinal)}$$
 $$T \uparrow \omega(x) = \bigsqcup \{T \uparrow n(x) \mid n < \omega\}$$

 We abbreviate $T \uparrow \alpha(\bot)$ as $T \uparrow \alpha$

- There is some ω such that $T \uparrow \omega = lfp(T)$. The sequence $T \uparrow 0, T \uparrow 1, ..., lfp(T)$ is the *Kleene sequence* for T

- In a finite lattice the Kleene sequence for a monotonic operator T is finite
Towards a Fixpoint Semantics for LP – Fixpoint Basics (Contd.)

- A subset Y of a poset X is an (ascending) chain iff $\forall y, y' \in Y, y \leq y' \lor y' \leq y$
- A complete lattice X is *ascending chain finite* (or *Noetherian*) if all ascending chains are finite
- In an ascending chain finite lattice the Kleene sequence for a monotonic operator T is finite
Lattice Structures

finite

finite_depth

ascending chain finite
A Fixpoint Semantics for Logic Programs

- **Semantic domain:** \(I_L = \wp(B_L) \).
- I.e., the elements of the semantic domain and *interpretations* (subsets of the Herbrand base).
- **Semantic operator** (defined on programs): the *immediate consequences operator*, \(T_P \):
 - \(T_P \) is a mapping: \(T_P : I_P \rightarrow I_P \) defined by:
 \[
 T_P(I) = \{ A \in B_P \mid \exists C \in \text{ground}(P), C = A \leftarrow L_1, \ldots, L_n \text{ and } L_1, \ldots, L_n \in I \}
 \]
 (in particular, if \((A \leftarrow) \in P\), then every element of \(\text{ground}(A)\) is in \(T_P(I), \forall I\)).
- \(T_P \) is monotonic, so:
 - it has a least fixpoint \(I^* \) so that \(T_P(I^*) = I^* \),
 - this fixpoint can be obtained by applying \(T_P \) iteratively starting from the bottom element of the lattice (the empty interpretation).
A Fixpoint Semantics for Logic Programs: Example 1 (finite)

\[P = \{ p(X, a) \leftarrow q(X). \]
\[p(X, Y) \leftarrow q(X), r(Y). \]
\[q(a). \quad r(b). \]
\[q(b). \quad r(c). \} \]

\[U_P = \{a, b, c\} \]

\[B_P = \{ p(a, a), p(a, b), p(a, c), p(b, a), p(b, b), p(b, c), p(c, a), p(c, b), p(c, c), \]
\[q(a), q(b), q(c), \]
\[r(a), r(b), r(c)\} \]

\[I_P = \text{all subsets of } B_P \]

\[H_P = \{q(a), q(b), r(b), r(c), p(a, a), p(b, b), p(a, b), p(b, a), p(a, c), p(b, c)\} \]

\[T_P \uparrow 0 = \{q(a), q(b), r(b), r(c)\} \]
\[T_P \uparrow 1 = \{q(a), q(b), r(b), r(c)\} \cup \{p(a, a), p(b, a), p(a, b), p(b, b), p(a, c), p(b, c)\} \]
\[T_P \uparrow 2 = T_P \uparrow 1 = \text{lfp}(T_P) = H_P \]
A Fixpoint Semantics for Logic Programs: Example 2 (infinite)

\[
P = \{ \ p(f(X)) \leftarrow p(X). \
\quad p(a).
\quad q(a).
\quad q(b). \ \}
\]

\[
U_P = \{ a, b, f(a), f(b), f(f(a)), f(f(b)), \ldots \}
\]

\[
B_P = \{ p(a), p(b), q(a), q(b), p(f(a)), p(f(b)), q(f(a)), \ldots \}
\]

\[
I_P = \text{all subsets of } B_P
\]

\[
H_P = \{ q(a), q(b), p(a) \} \cup \{ p(f^n(a)) \mid n \in \mathbb{N} \}
\]

where we define \(f^n(a) \) to be \(f \) nested \(n \) times and then applied to \(a \).
(i.e., \(q(a), q(b), p(a), p(f(a)), p(f(f(a))), p(f(f(f(a)))), \ldots \))

\[
T_P \uparrow 0 = \{ p(a), q(a), q(b) \}
\]

\[
T_P \uparrow 1 = \{ p(a), q(a), q(b), p(f(a)) \}
\]

\[
T_P \uparrow 2 = \{ p(a), q(a), q(b), p(f(a)), p(f(f(a))) \}
\]

\[
\ldots
\]

\[
T_P \uparrow \omega = H_P
\]
A Fixpoint Semantics for Logic Programs: Example 3 (infinite)

- Example:

\[P = \{ \text{nat}(0). \]
\[\text{nat}(\text{s}(X)) \leftarrow \text{nat}(X). \]
\[\text{sum}(0, X, X). \]
\[\text{sum}(\text{s}(X), Y, \text{s}(Z)) \leftarrow \text{sum}(X, Y, Z). \} \]

\[U_P = \{0\} \cup \{s(x) \mid x \in U_P\} \]

(i.e., \{0, s(0), s(s(0)), s(s(s(0))), ...\}).

\[B_P = \{\text{nat}(x) \mid x \in U_P\} \cup \{\text{sum}(x, y, z) \mid x, y, z \in U_P\} \]

(i.e., \{\text{nat}(0), \text{nat}(s(0)), \text{nat}(s(s(0))), ...\} \cup
\{\text{sum}(0, 0, 0), \text{sum}(s(0), 0, 0), \text{sum}(0, s(0), 0), \text{sum}(0, 0, s(0)), ...\}).
Constructing the least fixpoint of the T_P operator:

$$T_P \uparrow 0 = \{\text{nat}(0)\} \cup \{\text{sum}(0, x, x) \mid x \in U_P\}$$

$$T_P \uparrow 1 = T_P \uparrow 0 \cup \{\text{nat}(s(0))\}$$

$$\quad \cup \{\text{sum}(s(0), y, s(y)) \mid y \in U_P\}$$

$$T_P \uparrow 2 = T_P \uparrow 1 \cup \{\text{nat}(s(s(0)))\}$$

$$\quad \cup \{\text{sum}(s(s(0)), y, s(s(y))) \mid y \in U_P\}$$

$$T_P \uparrow 3 = T_P \uparrow 2 \cup \{\text{nat}(s(s(s(0))))\}$$

$$\quad \cup \{\text{sum}(s(s(s(0))), y, s(s(y))) \mid y \in U_P\}$$

...

$$T_P \uparrow \omega = \{\text{nat}(x) \mid x \in U_P\} \cup$$

$$\quad \{\text{sum}(s^n(0), y, s^n(y)) \mid y \in U_P \land n \in \mathbb{N}\}$$

where we define $s^x(y)$ to be s nested x times and then applied to y.
Semantics – Equivalences

• (Characterization Theorem) [Van Emden and Kowalski]
 A program P has a Herbrand model H_P such that:
 ◇ H_P is the least Herbrand Model of P.
 ◇ H_P is the least fixpoint of T_P ($lfp \ T_P$).
 ◇ $H_P = T_P \uparrow \omega$.

I.e., least model semantics (H_P) \equiv fixpoint semantics ($lfp \ T_P$)

• In addition, there is also an equivalence with the operational semantics
 (SLD-resolution):
 ◇ SLD-resolution answers “yes” to $a \in B_P$ \iff $a \in H_P$.

• Because it gives us a way to directly build H_P (for finite models), the least fixpoint
 semantics can in some cases also be an operational semantics (e.g., for $datalog$
 in deductive databases).