Computational Logic

Logic Programming:

Model and Fixpoint Semantics
Towards the Model and Fixpoint Semantics

- We have seen previously the operational semantics (SLD-resolution).
- We now present the (declarative) Model Semantics:
 - We define our semantic *domain* (Herbrand interpretations).
 - We introduce the Minimal Herbrand Model.
- And the (also declarative) Fixpoint Semantics.
 - We recall some basic fixpoint theory.
 - Present the T_p operator and the classic fixpoint semantics.
Given a first-order language L, with a non-empty set of variables, constants, function symbols, relation symbols, connectives, quantifiers, etc. and given a syntactic object A,

$$\text{ground}(A) = \{ A\theta | \exists \theta \in \text{Subst}, \text{var}(A\theta) = \emptyset \}$$

i.e. the set of all “ground instances” of A.

- Given L, U_L (Herbrand universe) is the set of all ground terms of L.
- B_L (Herbrand Base) is the set of all ground atoms of L.
- Similarly, for the language L_P associated with a given program P we define U_P, and B_P.
• Program:

\[P = \{ \ p(f(X)) \leftarrow p(X) \ . \
\quad p(a) . \
\quad q(a) . \
\quad q(b) . \ \} \]

• Herbrand universe:

\[U_P = \{ a, b, f(a), f(b), f(f(a)), f(f(b)), \ldots \} \]

• Herbrand base:

\[B_P = \{ p(a), p(b), q(a), q(b), p(f(a)), p(f(b)), q(f(a)), \ldots \} \]
Herbrand Interpretations and Models

• A Herbrand Interpretation is a subset of B_L, i.e. the set of all Herbrand interpretations $I_L = \wp(B_L)$.
 (Note that I_L forms a complete lattice under \subseteq – important for fixpoint operations to be introduced later).

• In previous example: $P = \{ p(f(X)) \leftarrow p(X), p(a), q(a), q(b) \}$
 $U_P = \{ a, b, f(a), f(b), f(f(a)), f(f(b)), \ldots \}$
 $B_P = \{ p(a), p(b), q(a), q(b), p(f(a)), p(f(b)), q(f(a)), \ldots \}$
 $I_P = \text{all subsets of } B_P$

• A Herbrand Model is a Herbrand interpretation which contains all logical consequences of the program.

• The Minimal Herbrand Model H_P is the smallest Herbrand interpretation which contains all logical consequences of the program. (Theorem: it is unique.)

• Example:
 $H_P = \{ q(a), q(b), p(a), p(f(a)), p(f(f(a))), \ldots \}$
Declarative Semantics, Completeness, Correctness

- **Declarative semantics of a logic program P:**
 the set of ground facts which are logical consequences of the program (i.e., H_P).
 (i.e., the *Minimal Herbrand* model (or “least model”) of P).

- **Intended meaning of a logic program P:**
 the set I of ground facts that the user expects to be logical consequences of the program.

- A logic program is *correct* if $H_P \subseteq I$.

- A logic program is *complete* if $I \subseteq H_P$.

- Example:

 father(john,peter).
 father(john,mary).
 mother(mary,mike).
 grandfather(X,Y) ← father(X,Z), father(Z,Y).

 with the usual intended meaning is *correct* but *incomplete*.
Towards a Fixpoint Semantics for LP – Fixpoint Basics

- A **fixpoint** for an operator $T : X \rightarrow X$ is an element of $x \in X$ such that $x = T(x)$.
- If X is a poset, T is monotonic if $\forall x, y \in X, x \leq y \Rightarrow T(x) \leq T(y)$
- If X is a complete lattice and T is monotonic the set of fixpoints of T is also a complete lattice [Tarski]
- The least element of the lattice is the **least fixpoint** of T, denoted $lfp(T)$
- Powers of a monotonic operator (successive applications):
 \[T \uparrow 0(x) = x \]
 \[T \uparrow n(x) = T(T \uparrow (n - 1)(x)) \quad (n \text{ is a successor ordinal}) \]
 \[T \uparrow \omega(x) = \bigsqcup \{ T \uparrow n(x) | n < \omega \} \]
 We abbreviate $T \uparrow \alpha(\bot)$ as $T \uparrow \alpha$
- There is some ω such that $T \uparrow \omega = lfp(T)$. The sequence $T \uparrow 0, T \uparrow 1, ..., lfp(T)$ is the **Kleene sequence** for T
- In a finite lattice the Kleene sequence for a monotonic operator T is finite
Towards a Fixpoint Semantics for LP – Fixpoint Basics (Contd.)

- A subset Y of a poset X is an (ascending) chain iff $\forall y, y' \in Y, y \leq y' \lor y' \leq y$

- A complete lattice X is ascending chain finite (or Noetherian) if all ascending chains are finite

- In an ascending chain finite lattice the Kleene sequence for a monotonic operator T is finite
Lattice Structures

finite

finite_depth

ascending chain finite
A Fixpoint Semantics for Logic Programs

- **Semantic domain**: \(I_L = \wp(B_L) \).
- I.e., the elements of the semantic domain and interpretations (subsets of the Herbrand base).

- **Semantic operator** (defined on programs): the immediate consequences operator, \(T_P \):
 - \(T_P \) is a mapping: \(T_P : I_P \to I_P \) defined by:
 \[
 T_P(I) = \{ A \in B_P \mid \exists C \in \text{ground}(P), C = A \leftarrow L_1, \ldots, L_n \text{ and } L_1, \ldots L_n \in I \}
 \]
 (in particular, if \((A \leftarrow) \in P\), then every element of \(\text{ground}(A) \) is in \(T_P(I) \), \(\forall I \)).

- \(T_P \) is monotonic, so:
 - it has a least fixpoint \(I^* \) so that \(T_P(I^*) = I^* \),
 - this fixpoint can be obtained by applying \(T_P \) iteratively starting from the bottom element of the lattice (the empty interpretation).
A Fixpoint Semantics for Logic Programs: Example 1 (finite)

\[P = \{ \begin{align*}
p(X, a) & \leftarrow q(X).
p(X, Y) & \leftarrow q(X), r(Y).
q(a). & \quad r(b).
q(b). & \quad r(c). \end{align*} \} \]

\[U_P = \{a, b, c\} \]

\[B_P = \{ \begin{align*}
p(a, a), & p(a, b), p(a, c), p(b, a), p(b, b), p(b, c), p(c, a), p(c, b), p(c, c),
q(a), & q(b), q(c),
r(a), & r(b), r(c) \end{align*} \} \]

\[I_P = \text{all subsets of } B_P \]

\[H_P = \{q(a), q(b), r(b), r(c), p(a, a), p(b, a), p(a, b), p(b, b), p(a, c), p(b, c)\} \]

\[T_P \uparrow 0 = \{q(a), q(b), r(b), r(c)\} \]

\[T_P \uparrow 1 = \{q(a), q(b), r(b), r(c)\} \cup \{p(a, a), p(b, a), p(a, b), p(b, b), p(a, c), p(b, c)\} \]

\[T_P \uparrow 2 = T_P \uparrow 1 = \text{lfp}(T_P) = H_P \]
A Fixpoint Semantics for Logic Programs: Example 2 (infinite)

\[P = \{ p(f(X)) \leftarrow p(X). \]
\[\hspace{1cm} p(a). \]
\[\hspace{1cm} q(a). \]
\[\hspace{1cm} q(b). \} \]

\[U_P = \{ a, b, f(a), f(b), f(f(a)), f(f(b)), \ldots \} \]
\[B_P = \{ p(a), p(b), q(a), q(b), p(f(a)), p(f(b)), q(f(a)), \ldots \} \]
\[I_P = \text{all subsets of } B_P \]
\[H_P = \{ q(a), q(b), p(a) \} \cup \{ p(f^n(a)) \mid n \in \mathbb{N} \} \]

where we define \(f^n(a) \) to be \(f \) nested \(n \) times and then applied to \(a \).

(i.e., \(q(a), q(b), p(a), p(f(a)), p(f(f(a))), p(f(f(f(a)))), \ldots \))

\[T_P \uparrow 0 = \{ p(a), q(a), q(b) \} \]
\[T_P \uparrow 1 = \{ p(a), q(a), q(b), p(f(a)) \} \]
\[T_P \uparrow 2 = \{ p(a), q(a), q(b), p(f(a)), p(f(f(a))) \} \]
\[\ldots \]
\[T_P \uparrow \omega = H_P \]
A Fixpoint Semantics for Logic Programs: Example 3 (infinite)

- Example:

\[P = \{ \text{n}at(0). \]
\[\text{n}at(s(X)) \leftarrow \text{n}at(X). \]
\[\text{sum}(0, X, X). \]
\[\text{sum}(s(X), Y, s(Z)) \leftarrow \text{sum}(X, Y, Z). \} \]

\[U_P = \{0\} \cup \{s(x) \mid x \in U_P\} \]

(i.e., \(\{0, s(0), s(s(0)), s(s(s(0))), \ldots\} \)).

\[B_P = \{\text{n}at(x) \mid x \in U_P\} \cup \{\text{sum}(x, y, z) \mid x, y, z \in U_P\} \]

(i.e., \(\{\text{n}at(0), \text{n}at(s(0)), \text{n}at(s(s(0))), \ldots\} \cup \{\text{sum}(0, 0, 0), \text{sum}(s(0), 0, 0), \text{sum}(0, s(0), 0), \text{sum}(0, 0, s(0)), \ldots\} \)).
Constructing the least fixpoint of the T_P operator:

\[
T_P \uparrow 0 = \{nat(0)\} \cup \{sum(0, x, x) \mid x \in U_P\}
\]
\[
T_P \uparrow 1 = T_P \uparrow 0 \cup \{nat(s(0))\}
\]
\[
\quad \cup \{sum(s(0), y, s(y)) \mid y \in U_P\}
\]
\[
T_P \uparrow 2 = T_P \uparrow 1 \cup \{nat(s(s(0)))\}
\]
\[
\quad \cup \{sum(s(s(0)), y, s(s(y))) \mid y \in U_P\}
\]
\[
T_P \uparrow 3 = T_P \uparrow 2 \cup \{nat(s(s(s(0))))\}
\]
\[
\quad \cup \{sum(s(s(s(0))), y, s(s(s(y)))) \mid y \in U_P\}
\]
\[
\ldots
\]
\[
T_P \uparrow \omega = \{nat(x) \mid x \in U_P\} \cup
\{sum(s^n(0), y, s^n(y)) \mid y \in U_P \land n \in \mathcal{N}\}
\]

where we define $s^x(y)$ to be s nested x times and then applied to y.
Semantics – Equivalences

- (Characterization Theorem) [Van Emden and Kowalski]
 A program P has a Herbrand model H_P such that:
 - H_P is the least Herbrand Model of P.
 - H_P is the least fixpoint of T_P ($lfp \ T_P$).
 - $H_P = T_P \uparrow \omega$.

I.e., least model semantics (H_P) ≡ fixpoint semantics ($lfp \ T_P$)

- In addition, there is also an equivalence with the operational semantics (SLD-resolution):
 - SLD-resolution answers “yes” to $a \in B_P \iff a \in H_P$.

- Because it gives us a way to directly build H_P (for finite models), the least fixpoint semantics can in some cases also be an operational semantics (e.g., for datalog in deductive databases).