Computational Logic

Logic Programming:

Model and Fixpoint Semantics
Towards the Model and Fixpoint Semantics

- We have seen previously the operational semantics (SLD-resolution).
- We now present the (declarative) Model Semantics:
 - We define our semantic domain (Herbrand interpretations).
 - We introduce the Minimal Herbrand Model.
- And the (also declarative) Fixpoint Semantics.
 - We recall some basic fixpoint theory.
 - Present the T_P operator and the classic fixpoint semantics.
Given a first-order language L, with a non-empty set of variables, constants, function symbols, relation symbols, connectives, quantifiers, etc. and given a syntactic object A,

$$\text{ground}(A) = \{A\theta | \exists \theta \in \text{Subst}, \text{var}(A\theta) = \emptyset\}$$

i.e. the set of all “ground instances” of A.

- Given L, U_L (Herbrand universe) is the set of all ground terms of L.
- B_L (Herbrand Base) is the set of all ground atoms of L.
- Similarly, for the language L_P associated with a given program P we define U_P, and B_P.
Declarative Semantics – Herbrand Base and Universe (example)

- Program:

\[P = \{ p(f(X)) \leftarrow p(X). \]
\[p(a). \]
\[q(a). \]
\[q(b). \} \]

- Herbrand universe:

\[U_P = \{ a, b, f(a), f(b), f(f(a)), f(f(b)), \ldots \} \]

- Herbrand base:

\[B_P = \{ p(a), p(b), q(a), q(b), p(f(a)), p(f(b)), q(f(a)), \ldots \} \]
A *Herbrand Interpretation* is a subset of B_L, i.e. the set of all Herbrand interpretations $I_L = \mathcal{P}(B_L)$.

(Note that I_L forms a *complete lattice* under \subseteq – important for fixpoint operations to be introduced later).

In previous example: $P = \{ p(f(X)) \leftarrow p(X). \ p(a). \ q(a). \ q(b). \}$

$U_P = \{a, b, f(a), f(b), f(f(a)), f(f(b)), \ldots\}$

$B_P = \{p(a), p(b), q(a), q(b), p(f(a)), p(f(b)), q(f(a)), \ldots\}$

$I_P = \text{all subsets of } B_P$

A *Herbrand Model* is a Herbrand interpretation which contains all logical consequences of the program.

The *Minimal Herbrand Model* H_P is the smallest Herbrand interpretation which contains all logical consequences of the program. (Theorem: it is unique.)

Example:

$H_P = \{q(a), q(b), p(a), p(f(a)), p(f(f(a))), \ldots\}$
• **Declarative semantics of a logic program \(P \):**
 the set of ground facts which are logical consequences of the program (i.e., \(H_P \)).
 (i.e., the *Minimal Herbrand* model (or “least model”) of \(P \)).

• **Intended meaning of a logic program \(P \):**
 the set \(I \) of ground facts that the user expects to be logical consequences of the program.

• A logic program is *correct* if \(H_P \subseteq I \).

• A logic program is *complete* if \(I \subseteq H_P \).

• Example:

 father(john,peter).
 father(john,mary).
 mother(mary,mike).
 grandfather(X,Y) ← father(X,Z), father(Z,Y).

 with the usual intended meaning is *correct* but *incomplete*.
Towards a Fixpoint Semantics for LP – Fixpoint Basics

- A fixpoint for an operator $T : X \rightarrow X$ is an element of $x \in X$ such that $x = T(x)$.
- If X is a poset, T is monotonic if $\forall x, y \in X, x \leq y \Rightarrow T(x) \leq T(y)$
- If X is a complete lattice and T is monotonic the set of fixpoints of T is also a complete lattice [Tarski]
- The least element of the lattice is the least fixpoint of T, denoted $lfp(T)$
- Powers of a monotonic operator (successive applications):
 $T \uparrow 0(x) = x$
 $T \uparrow n(x) = T(T \uparrow (n - 1)(x))(n \text{ is a successor ordinal})$
 $T \uparrow \omega(x) = \bigsqcup\{T \uparrow n(x) | n < \omega\}$
 We abbreviate $T \uparrow \alpha(\bot)$ as $T \uparrow \alpha$
- There is some ω such that $T \uparrow \omega = lfp(T)$. The sequence $T \uparrow 0, T \uparrow 1, ..., lfp(T)$ is the Kleene sequence for T
- In a finite lattice the Kleene sequence for a monotonic operator T is finite
Towards a Fixpoint Semantics for LP – Fixpoint Basics (Contd.)

- A subset Y of a poset X is an (ascending) chain iff $\forall y, y' \in Y, y \leq y' \lor y' \leq y$
- A complete lattice X is *ascending chain finite* (or *Noetherian*) if all ascending chains are finite
- In an ascending chain finite lattice the Kleene sequence for a monotonic operator T is finite
Lattice Structures

finite

```
  d
 / 
|   |
a   b
 / 
|   |
c
```

finite_depth

```
  1
 / 
|   |
2   3
 / 
|   |
4
```

ascending chain finite
A Fixpoint Semantics for Logic Programs

- **Semantic domain**: $I_L = \wp(B_L)$.
- I.e., the elements of the semantic domain and **interpretations** (subsets of the Herbrand base).
- **Semantic operator** (defined on programs): the **immediate consequences operator**, T_P:
 - T_P is a mapping: $T_P : I_P \rightarrow I_P$ defined by:
 $$T_P(I) = \{ A \in B_P \mid \exists C \in \text{ground}(P), C = A \leftarrow L_1, \ldots, L_n \text{ and } L_1, \ldots L_n \in I \}$$
 (in particular, if $(A \leftarrow) \in P$, then every element of ground(A) is in $T_P(I)$, $\forall I$).
- T_P is monotonic, so:
 - it has a least fixpoint I^* so that $T_P(I^*) = I^*$,
 - this fixpoint can be obtained by applying T_P iteratively starting from the bottom element of the lattice (the empty interpretation).
A Fixpoint Semantics for Logic Programs: Example 1 (finite)

\[P = \{ \text{ } p(X, a) \leftarrow q(X). \text{ } \]
\[\text{ } p(X, Y) \leftarrow q(X), r(Y). \text{ } \]
\[\text{ } q(a). \text{ } r(b). \text{ } \]
\[\text{ } q(b). \text{ } r(c). \text{ } \} \]

\[U_P = \{a, b, c\} \]
\[B_P = \{ \text{ } p(a, a), p(a, b), p(a, c), p(b, a), p(b, b), p(b, c), p(c, a), p(c, b), p(c, c), \]
\[\text{ } q(a), q(b), q(c), \]
\[\text{ } r(a), r(b), r(c) \} \]

\[I_P = \text{all subsets of } B_P \]
\[H_P = \{q(a), q(b), r(b), r(c), p(a, a), p(b, a), p(a, b), p(b, b), p(a, c), p(b, c)\} \]

\[T_P \uparrow 0 = \{q(a), q(b), r(b), r(c)\} \]
\[T_P \uparrow 1 = \{q(a), q(b), r(b), r(c)\} \cup \{p(a, a), p(b, a), p(a, b), p(b, b), p(a, c), p(b, c)\} \]
\[T_P \uparrow 2 = T_P \uparrow 1 = \text{lfp}(T_P) = H_P \]
A Fixpoint Semantics for Logic Programs: Example 2 (infinite)

\[P = \{ p(f(X)) \leftarrow p(X). \]
\[p(a). \]
\[q(a). \]
\[q(b). \} \]

\[U_P = \{ a, b, f(a), f(b), f(f(a)), f(f(b)), \ldots \} \]
\[B_P = \{ p(a), p(b), q(a), q(b), p(f(a)), p(f(b)), q(f(a)), \ldots \} \]
\[I_P = \text{all subsets of} \ B_P \]
\[H_P = \{ q(a), q(b), p(a) \} \cup \{ p(f^n(a)) \mid n \in \mathbb{N} \} \]

where we define \(f^n(a) \) to be \(f \) nested \(n \) times and then applied to \(a \).

(i.e., \(q(a), q(b), p(a), p(f(a)), p(f(f(a))), p(f(f(f(a)))), \ldots \))

\[T_P \uparrow 0 = \{ p(a), q(a), q(b) \} \]
\[T_P \uparrow 1 = \{ p(a), q(a), q(b), p(f(a)) \} \]
\[T_P \uparrow 2 = \{ p(a), q(a), q(b), p(f(a)), p(f(f(a))) \} \]
\[\ldots \]
\[T_P \uparrow \omega = H_P \]
• Example:

\[P = \{ \text{nat}(0). \]
\[\quad \text{nat}(s(X)) \leftarrow \text{nat}(X). \]
\[\text{sum}(0, X, X). \]
\[\text{sum}(s(X), Y, s(Z)) \leftarrow \text{sum}(X, Y, Z). \} \]

\[U_P = \{0\} \cup \{s(x) \mid x \in U_P\} \]

(i.e., \{0, s(0), s(s(0)), s(s(s(0))), \ldots\}).

\[B_P = \{\text{nat}(x) \mid x \in U_P\} \cup \{\text{sum}(x, y, z) \mid x, y, z \in U_P\} \]

(i.e., \{\text{nat}(0), \text{nat}(s(0)), \text{nat}(s(s(0))), \ldots\} \cup
\{\text{sum}(0, 0, 0), \text{sum}(s(0), 0, 0), \text{sum}(0, s(0), 0), \text{sum}(0, 0, s(0)), \ldots\}).
Constructing the least fixpoint of the T_P operator:

\[
T_P \uparrow 0 = \{\text{nat}(0)\} \cup \{\text{sum}(0, x, x) \mid x \in U_P\}
\]
\[
T_P \uparrow 1 = T_P \uparrow 0 \cup \{\text{nat}(s(0))\}
\]
\[
\cup \{\text{sum}(s(0), y, s(y)) \mid y \in U_P\}
\]
\[
T_P \uparrow 2 = T_P \uparrow 1 \cup \{\text{nat}(s(s(0)))\}
\]
\[
\cup \{\text{sum}(s(s(0)), y, s(s(y))) \mid y \in U_P\}
\]
\[
T_P \uparrow 3 = T_P \uparrow 2 \cup \{\text{nat}(s(s(s(0))))\}
\]
\[
\cup \{\text{sum}(s(s(s(0))), y, s(s(s(y)))) \mid y \in U_P\}
\]
\[
\ldots
\]
\[
T_P \uparrow \omega = \{\text{nat}(x) \mid x \in U_P\} \cup \\
\{\text{sum}(s^n(0), y, s^n(y)) \mid y \in U_P \land n \in \mathbb{N}\}
\]

where we define $s^x(y)$ to be s nested x times and then applied to y.

Semantics – Equivalences

• (Characterization Theorem) [Van Emden and Kowalski]
 A program P has a Herbrand model H_P such that :

 ◦ H_P is the least Herbrand Model of P.
 ◦ H_P is the least fixpoint of $T_P \ (lfp \ T_P)$.
 ◦ $H_P = T_P \uparrow \omega$.

 I.e., least model semantics $(H_P) \equiv$ fixpoint semantics $(lfp \ T_P)$

• In addition, there is also an equivalence with the operational semantics (SLD-resolution):

 ◦ SLD-resolution answers “yes” to $a \in B_P \iff a \in H_P$.

• Because it gives us a way to directly build H_P (for finite models), the least fixpoint semantics can in some cases also be an operational semantics (e.g., for datalog in deductive databases).