Computational Logic

Logic Programming:

Model and Fixpoint Semantics
Towards the Model and Fixpoint Semantics

- We have seen previously the operational semantics (SLD-resolution).
- We now present the (declarative) **Model Semantics**:
  - We define our semantic *domain* (Herbrand interpretations).
  - We introduce the Minimal Herbrand Model.
- And the (also declarative) **Fixpoint Semantics**.
  - We recall some basic fixpoint theory.
  - Present the $T_P$ operator and the classic fixpoint semantics.
Declarative Semantics – Herbrand Base and Universe

• Given a first-order language $L$, with a non-empty set of variables, constants, function symbols, relation symbols, connectives, quantifiers, etc. and given a syntactic object $A$,

$$\text{ground}(A) = \{A\theta | \exists \theta \in \text{Subst}, \text{var}(A\theta) = \emptyset\}$$

i.e. the set of all “ground instances” of $A$.

• Given $L$, $U_L$ (*Herbrand universe*) is the set of all ground terms of $L$.

• $B_L$ (*Herbrand Base*) is the set of all ground atoms of $L$.

• Similarly, for the language $L_P$ associated with a given program $P$ we define $U_P$, and $B_P$. 
• Program:

\[ P = \{ \ p(f(X)) \leftarrow p(X). \ \\
\ p(a). \ \\
\ q(a). \ \\
\ q(b). \ \} \]

• Herbrand universe:

\[ U_P = \{ a, b, f(a), f(b), f(f(a)), f(f(b)), \ldots \} \]

• Herbrand base:

\[ B_P = \{ p(a), p(b), q(a), q(b), p(f(a)), p(f(b)), q(f(a)), \ldots \} \]
Herbrand Interpretations and Models

- A **Herbrand Interpretation** is a subset of $B_L$, i.e. the set of all Herbrand interpretations $I_L = \mathcal{P}(B_L)$.

  (Note that $I_L$ forms a *complete lattice* under $\subseteq$ – important for fixpoint operations to be introduced later).

- In previous example: $P = \{ p(f(X)) \leftarrow p(X). \ p(a). \ q(a). \ q(b). \}$
  $U_P = \{a, b, f(a), f(b), f(f(a)), f(f(b)), \ldots\}$
  $B_P = \{p(a), p(b), q(a), q(b), p(f(a)), p(f(b)), q(f(a)), \ldots\}$
  $I_P = \text{all subsets of } B_P$

- A **Herbrand Model** is a Herbrand interpretation which contains all logical consequences of the program.

- The **Minimal Herbrand Model** $H_P$ is the smallest Herbrand interpretation which contains all logical consequences of the program. (Theorem: it is unique.)

- Example:
  $H_P = \{q(a), q(b), p(a), p(f(a)), p(f(f(a))), \ldots\}$
Declarative Semantics, Completeness, Correctness

- **Declarative semantics of a logic program** $P$: the set of ground facts which are logical consequences of the program (i.e., $H_P$). (i.e., the *Minimal Herbrand* model (or “least model”) of $P$).

- **Intended meaning of a logic program** $P$: the set $I$ of ground facts that the user expects to be logical consequences of the program.

- A logic program is *correct* if $H_P \subseteq I$.

- A logic program is *complete* if $I \subseteq H_P$.

- Example:
  father(john,peter).
  father(john,mary).
  mother(mary,mike).
  grandfather(X,Y) ← father(X,Z), father(Z,Y).
  
  with the usual intended meaning is *correct* but *incomplete*. 
Towards a Fixpoint Semantics for LP – Fixpoint Basics

- **A fixpoint** for an operator $T : X \rightarrow X$ is an element of $x \in X$ such that $x = T(x)$.
- If $X$ is a poset, $T$ is monotonic if $\forall x, y \in X$, $x \leq y \Rightarrow T(x) \leq T(y)$.
- If $X$ is a complete lattice and $T$ is monotonic the set of fixpoints of $T$ is also a complete lattice [Tarski].
- The least element of the lattice is the least fixpoint of $T$, denoted $\text{lfp}(T)$.
- Powers of a monotonic operator (successive applications):
  
  $T \uparrow 0(x) = x$
  $T \uparrow n(x) = T(T \uparrow (n - 1)(x))(n \text{ is a successor ordinal})$
  $T \uparrow \omega(x) = \bigsqcup\{T \uparrow n(x) | n < \omega\}$

  We abbreviate $T \uparrow \alpha(\bot)$ as $T \uparrow \alpha$.

- There is some $\omega$ such that $T \uparrow \omega = \text{lfp}(T)$. The sequence $T \uparrow 0, T \uparrow 1, \ldots, \text{lfp}(T)$ is the Kleene sequence for $T$.
- In a finite lattice the Kleene sequence for a monotonic operator $T$ is finite.
A subset $Y$ of a poset $X$ is an (ascending) chain iff $\forall y, y' \in Y, y \leq y' \lor y' \leq y$

A complete lattice $X$ is *ascending chain finite* (or *Noetherian*) if all ascending chains are finite

In an ascending chain finite lattice the Kleene sequence for a monotonic operator $T$ is finite
Lattice Structures

**finite**

\[
\begin{array}{c}
  d \\
  \downarrow \\
  a \\
  \downarrow \\
  b \\
  \downarrow \\
  c \\
  \downarrow \\
  \bot
\end{array}
\]

**finite_depth**

\[
\begin{array}{c}
  \top \\
  \downarrow \\
  \bot
\end{array}
\]

ascending chain finite
A Fixpoint Semantics for Logic Programs

- **Semantic domain**: $I_L = \mathcal{P}(\text{BL}).$
- I.e., the elements of the semantic domain and *interpretations* (subsets of the Herbrand base).
- **Semantic operator** (defined on programs): the *immediate consequences operator*, $T_P$:
  - $T_P$ is a mapping: $T_P : I_P \rightarrow I_P$ defined by:
    \[
    T_P(I) = \{ A \in B_P \mid \exists C \in \text{ground}(P), C = A \leftarrow L_1, \ldots, L_n \text{ and } L_1, \ldots L_n \in I \}
    \]
    (in particular, if $(A \leftarrow) \in P$, then every element of $\text{ground}(A)$ is in $T_P(I)$, $\forall I$).
- $T_P$ is monotonic, so:
  - it has a least fixpoint $I^*$ so that $T_P(I^*) = I^*$,
  - this fixpoint can be obtained by applying $T_P$ iteratively starting from the bottom element of the lattice (the empty interpretation).
A Fixpoint Semantics for Logic Programs: Example 1 (finite)

\[P = \{ \begin{array}{l} p(X, a) \leftarrow q(X). \\
p(X, Y) \leftarrow q(X), r(Y). \\
q(a). \\
r(b). \\
q(b). \\
r(c). \end{array} \}\]

\[U_P = \{a, b, c\}\]

\[B_P = \{ \begin{array}{l} p(a, a), p(a, b), p(a, c), p(b, a), p(b, b), p(b, c), p(c, a), p(c, b), p(c, c), \\
q(a), q(b), q(c), \\
r(a), r(b), r(c) \end{array}\}\]

\[I_P = \text{all subsets of } B_P\]

\[H_P = \{q(a), q(b), r(b), r(c), p(a, a), p(b, a), p(a, b), p(b, b), p(a, c), p(b, c)\}\]

\[T_P \uparrow 0 = \{q(a), q(b), r(b), r(c)\}\]

\[T_P \uparrow 1 = \{q(a), q(b), r(b), r(c)\} \cup \{p(a, a), p(b, a), p(a, b), p(b, b), p(a, c), p(b, c)\}\]

\[T_P \uparrow 2 = T_P \uparrow 1 = \text{lfp}(T_P) = H_P\]
A Fixpoint Semantics for Logic Programs: Example 2 (infinite)

\[ P = \{ p(f(X)) \leftarrow p(X). \\
p(a). \\
q(a). \\
q(b). \} \]

\[ U_P = \{a, b, f(a), f(b), f(f(a)), f(f(b)), \ldots \} \]

\[ B_P = \{p(a), p(b), q(a), q(b), p(f(a)), p(f(b)), q(f(a)), \ldots \} \]

\[ I_P = \text{all subsets of } B_P \]

\[ H_P = \{q(a), q(b), p(a)\} \cup \{p(f^n(a)) \mid n \in \mathbb{N}\} \]

where we define \( f^n(a) \) to be \( f \) nested \( n \) times and then applied to \( a \).

(i.e., \( q(a), q(b), p(a), p(f(a)), p(f(f(a))), p(f(f(f(a)))), \ldots \))

\[ T_P \uparrow 0 = \{p(a), q(a), q(b)\} \]
\[ T_P \uparrow 1 = \{p(a), q(a), q(b), p(f(a))\} \]
\[ T_P \uparrow 2 = \{p(a), q(a), q(b), p(f(a)), p(f(f(a)))\} \]

\[ \ldots \]

\[ T_P \uparrow \omega = H_P \]
A Fixpoint Semantics for Logic Programs: Example 3 (infinite)

- Example:

\[ P = \{ \text{nat}(0). \]
\[ \text{nat}(s(X)) \leftarrow \text{nat}(X). \]
\[ \text{sum}(0, X, X). \]
\[ \text{sum}(s(X), Y, s(Z)) \leftarrow \text{sum}(X, Y, Z). \} \]

\[ U_P = \{0\} \cup \{s(x) \mid x \in U_P\} \]

(i.e., \(\{0, s(0), s(s(0)), s(s(s(0))), \ldots\}\)).

\[ B_P = \{\text{nat}(x) \mid x \in U_P\} \cup \{\text{sum}(x, y, z) \mid x, y, z \in U_P\} \]

(i.e., \(\{\text{nat}(0), \text{nat}(s(0)), \text{nat}(s(s(0))), \ldots\} \cup \{\text{sum}(0, 0, 0), \text{sum}(s(0), 0, 0), \text{sum}(0, s(0), 0), \text{sum}(0, 0, s(0)), \ldots\}\)).
A Fixpoint Semantics for Logic Programs: Example 3 (infinite, cont.)

Constructing the least fixpoint of the $T_P$ operator:

$T_P \uparrow 0 = \{ \text{nat}(0) \} \cup \{ \text{sum}(0, x, x) \mid x \in U_P \}$

$T_P \uparrow 1 = T_P \uparrow 0 \cup \{ \text{nat}(s(0)) \}$

$\quad \cup \{ \text{sum}(s(0), y, s(y)) \mid y \in U_P \}$

$T_P \uparrow 2 = T_P \uparrow 1 \cup \{ \text{nat}(s(s(0))) \}$

$\quad \cup \{ \text{sum}(s(s(0)), y, s(s(y))) \mid y \in U_P \}$

$T_P \uparrow 3 = T_P \uparrow 2 \cup \{ \text{nat}(s(s(s(0)))) \}$

$\quad \cup \{ \text{sum}(s(s(s(0))), y, s(s(s(y)))) \mid y \in U_P \}$

$\ldots$

$T_P \uparrow \omega = \{ \text{nat}(x) \mid x \in U_P \} \cup$

$\quad \{ \text{sum}(s^n(0), y, s^n(y)) \mid y \in U_P \land n \in \mathbb{N} \}$

where we define $s^x(y)$ to be $s$ nested $x$ times and then applied to $y$. 
Semantics – Equivalences

- (Characterization Theorem) [Van Emden and Kowalski]
  A program $P$ has a Herbrand model $H_P$ such that:
  - $H_P$ is the least Herbrand Model of $P$.
  - $H_P$ is the least fixpoint of $T_P$ ($lfp \ T_P$).
  - $H_P = T_P \uparrow \omega$.
  I.e., least model semantics ($H_P$) $\equiv$ fixpoint semantics ($lfp \ T_P$).

- In addition, there is also an equivalence with the operational semantics (SLD-resolution):
  - SLD-resolution answers “yes” to $a \in B_P \iff a \in H_P$.

- Because it gives us a way to directly build $H_P$ (for finite models), the least fixpoint semantics can in some cases also be an operational semantics (e.g., for datalog in deductive databases).