Computational Logic

Fundamentals of Definite Programs:

Syntax and Semantics
Towards Logic Programming

- Conclusion: resolution is a complete and effective deduction mechanism using:
 - Horn clauses (related to “Definite programs”),
 - Linear, Input strategy
 - Breadth-first exploration of the tree (or an equivalent approach)
 (possibly ordered clauses, but not required – see Selection rule later)

- Very close to what is generally referred to as SLD-resolution (see later)

- This allows to some extent realizing Greene’s dream (within the theoretical limits of the formal method), and efficiently!
Towards Logic Programming (Contd.)

• Given these results, why not use logic as a general purpose *programming language*? [Kowalski 74]

• A “logic program” would have two interpretations:
 ◦ *Declarative* (“LOGIC”): the logical reading (facts, statements, knowledge)
 ◦ *Procedural* (“CONTROL”): what resolution does with the program

• **ALGORITHM = LOGIC + CONTROL**

• Specify these components separately

• Often, worrying about control is not needed at all (thanks to resolution)

• Control can be effectively provided through the ordering of the literals in the clauses
Towards Logic Programming: Another (more compact) Clausal Form

- All formulas are transformed into a set of *Clauses*.
 - A clause has the form:
 \[\text{conc}_1, \ldots, \text{conc}_m \leftarrow \text{cond}_1, \ldots, \text{cond}_n \]
 where
 \[\{ \text{conc}_1, \ldots, \text{conc}_m \} \quad \text{“or”} \quad \{ \text{cond}_1, \ldots, \text{cond}_n \} \quad \text{“and”} \]
 are literals, and are the *conclusions* and *conditions* of a rule:
 \[\{ \text{conc}_1, \ldots, \text{conc}_m \} \leftarrow \{ \text{cond}_1, \ldots, \text{cond}_n \} \]
 “conclusions” “conditions”
 - All variables are implicitly universally quantified: (if \(X_1, \ldots, X_k \) are the variables)
 \[\forall X_1, \ldots, X_k \quad \text{conc}_1 \lor \ldots \lor \text{conc}_m \leftarrow \text{cond}_1 \land \ldots \land \text{cond}_n \]

- More compact than the traditional clausal form:
 - no connectives, just commas
 - no need to repeat negations: all negated atoms on one side, non-negated ones on the other

- A *Horn Clause* then has the form:
 \[\text{conc}_1 \leftarrow \text{cond}_1, \ldots, \text{cond}_n \]
 where \(n \) can be zero and possibly \(\text{conc}_1 \) empty.
Some Logic Programming Terminology – “Syntax” of Logic Programs

- **Definite Program**: a set of positive Horn clauses

 $\text{head} \leftarrow \text{goal}_1, \ldots, \text{goal}_n$

- The single *conclusion* is called the *head*.

- The conditions are called “goals” or “procedure calls”.

- $\text{goal}_1, \ldots, \text{goal}_n \ (n \geq 0)$ is called the “body”.

- If $n = 0$ the clause is called a “fact” (and the arrow is normally deleted)

- Otherwise it is called a “rule”

- **Query** (question): a negative Horn clause (a “headless” clause)

- A procedure is a set of rules and facts in which the heads have the same predicate symbol and arity.

- Terms in a goal are also called “arguments”.

Examples:

\[
\text{grandfather}(X,Y) \leftarrow \text{father }(X,Z), \text{mother}(Z,Y).
\]
\[
\text{grandfather}(X,Y) \leftarrow .
\]
\[
\text{grandfather}(X,Y).
\]
\[
\leftarrow \text{grandfather}(X,Y).
\]
LOGIC: Declarative “Reading” (Informal Semantics)

- A rule (has head and body)

 \[head \leftarrow goal_1, \ldots, goal_n. \]

 which contains variables \(X_1, \ldots, X_k \) can be read as

 for all \(X_1, \ldots, X_k \):

 “head” is true if “goal_1” and \(\ldots \) and “goal_n” are true

- A fact \(n=0 \) (has only head)

 \[head. \]

 for all \(X_1, \ldots, X_k \): “head” is true (always)

- A query (the headless clause)

 \[\leftarrow goal_1, \ldots, goal_n \]

 can be read as:

 for which \(X_1, \ldots, X_k \) are “goal_1” and \(\ldots \) and “goal_n” true?
• Given a first-order language L, with a non-empty set of variables, constants, function symbols, relation symbols, connectives, quantifiers, etc. and given a syntactic object A,

$$ground(A) = \{A\theta|\exists\theta \in Subst, var(A\theta) = \emptyset\}$$

i.e. the set of all “ground instances” of A.

• Given L, U_L (Herbrand universe) is the set of all ground terms of L.

• B_L (Herbrand Base) is the set of all ground atoms of L.

• Similarly, for the language L_P associated with a given program P we define U_P, and B_P.

• Example:

$P = \{p(f(X)) \leftarrow p(X). \ p(a). \ q(a). \ q(b). \ \}$

$U_P = \{a, b, f(a), f(b), f(f(a)), f(f(b)), \ldots\}$

$B_P = \{p(a), p(b), q(a), q(b), p(f(a)), p(f(b)), q(f(a)), \ldots\}$
Herbrand Interpretations and Models

• A Herbrand Interpretation is a subset of B_L, i.e. the set of all Herbrand interpretations $I_L = \mathcal{P}(B_L)$.

 (Note that I_L forms a complete lattice under \subseteq – important for fixpoint operations to be introduced later).

• Example: $P = \{ p(f(X)) \leftarrow p(X). \ p(a). \ q(a). \ q(b). \ \}$

 $U_P = \{a, b, f(a), f(b), f(f(a)), f(f(b)), \ldots\}$

 $B_P = \{p(a), p(b), q(a), q(b), p(f(a)), p(f(b)), q(f(a)), \ldots\}$

 $I_P = \text{all subsets of } B_P$

• A Herbrand Model is a Herbrand interpretation which contains all logical consequences of the program.

• The Minimal Herbrand Model H_P is the smallest Herbrand interpretation which contains all logical consequences of the program. (It is unique.)

• Example:

 $H_P = \{q(a), q(b), p(a), p(f(a)), p(f(f(a))), \ldots\}$
Declarative Semantics, Completeness, Correctness

- **Declarative semantics of a logic program** P:
 the set of ground facts which are logical consequences of the program (i.e., H_P).
 (Also called the “least model” semantics of P).

- **Intended meaning of a logic program** P:
 the set M of ground facts that the user expects to be logical consequences of the program.

- A logic program is **correct** if $H_P \subseteq M$.

- A logic program is **complete** if $M \subseteq H_P$.

- Example:

 father(john,peter).
 father(john,mary).
 mother(mary,mike).
 grandfather(X,Y) ← father(X,Z), father(Z,Y).

 with the usual intended meaning is **correct** but **incomplete**.
CONTROL: Linear (Input) Resolution in this Clausal Form

We now turn to the operational semantics of logic programs, given by a concrete operational procedure: Linear (Input) Resolution.

- Complementary literals:
 - in two different clauses
 - on different sides of \leftarrow
 - unifiable with unifier θ

father(john,mary) \leftarrow
grandfather(X,Y) \leftarrow father(X,Z), mother(Z,Y)

$\theta = \{X/john, Z/mary\}$
Resolution step (linear, input, ...):

- given a clause and a resolvent, we can build a new resolvent which follows from them by:
 - renaming apart the clause (“standardization apart” step)
 - putting all the conclusions to the left of the \leftarrow
 - putting all the conditions to the right of the \leftarrow
 - if there are complementary literals (unifying literals at different sides of the arrow in the two clauses), eliminating them and applying θ to the new resolvent

LD-Resolution: linear (and input) resolution, applied to definite programs
Note that then all resolvents are negative Horn clauses (like the query).
Example

- from

 father(john,peter) ←
 mother(mary,david) ←

 we can infer

 father(john,peter), mother(mary,david) ←

- from

 father(john,mary) ←
 grandfather(X,Y) ← father(X,Z), mother(Z,Y)

 we can infer

 grandfather(john,Y′) ← mother(mary,Y′)
CONTROL: A proof using LD-Resolution

• Prove “grandfather(john,david) ←” using the set of axioms:
 1. father(john,peter) ←
 2. father(john,mary) ←
 3. father(peter,mike) ←
 4. mother(mary,david) ←
 5. grandfather(L,M) ← father (L,N), father(N,M)
 6. grandfather(X,Y) ← father (X,Z), mother(Z,Y)

• We introduce the predicate to prove (negated!)
 7. ← grandfather(john,david)

• We start resolution: e.g. 6 and 7
 8. ← father(john,Z₁), mother(Z₁,david) X¹/john, Y¹/david

• using 2 and 8
 9. ← mother(mary,david) Z₁/mary

• using 4 and 9
 ←
CONTROL: Rules and SLD-Resolution

- Two control-related issues are still left open in LD-resolution. Given a current resolvent R and a set of clauses K:
 - given a clause C in K, several of the literals in R may unify the non-negated a complementary literal in C
 - given a literal L in R, it may unify with complementary literals in several clauses in K

- A *Computation* (or *Selection* rule) is a function which, given a resolvent (and possibly the proof tree up to that point) returns (selects) a literal from it. This is the goal that will be used next in the resolution process.

- A *Search* rule is a function which, given a literal and a set of clauses (and possibly the proof tree up to that point), returns a clause from the set. This is the clause that will be used next in the resolution process.
• SLD-resolution: Linear resolution for Definite programs with Selection rule.

• An SLD-resolution *method* is given by the combination of a *computation (or selection) rule* and a *search rule*.

• *Independence of the computation rule*: Completeness does not depend on the choice of the computation rule.

• Example: a “left-to-right” rule (as in ordered resolution) does not impair completeness – this coincides with the completeness result for ordered resolution.

• **Fundamental result:**
 “Declarative” semantics (H_P) \equiv “operational” semantics (SLD-resolution)
 I.e., all the facts in H_P can be deduced using SLD-resolution.
CONTROL: Procedural reading of a logic program

- Given a rule

 \[\text{head} \leftarrow \text{goal}_1, \ldots, \text{goal}_n.\]

 it can be seen as a description of the goals the solver (resolution method) has to execute in order to solve "head"

- Possible, given computation and search rules.

- In general, “In order to solve ‘head’, solve ‘goal_1’ and ... and solve ‘goal_n’ ”

- If ordered resolution is used (left-to-right computation rule), then read “In order to solve ‘head’, first solve ‘goal_1’ and then ‘goal_2’ and then ... and finally solve ‘goal_n’ ”

- Thus the “control” part corresponding to the computation rule is often associated with the order of the goals in the body of a clause

- Another part (corresponding to the search rule) is often associated with the order of clauses
Example – read “procedurally”:

father(john,peter).
father(john,mary).
father(peter,mike).
father(X,Y) ← mother(Z,Y), married(X,Z).
Towards a Fixpoint Semantics for LP – Fixpoint Basics

• A fixpoint for an operator $T : X \to X$ is an element of $x \in X$ such that $x = T(x)$.

• If X is a poset, T is monotonic if $\forall x, y \in X, x \leq y \Rightarrow T(x) \leq T(y)$.

• If X is a complete lattice and T is monotonic the set of fixpoints of T is also a complete lattice [Tarski].

• The least element of the lattice is the least fixpoint of T, denoted $\text{lfp}(T)$.

• Powers of a monotonic operator (successive applications):
 \[
 T \uparrow 0(x) = x \\
 T \uparrow n(x) = T(T \uparrow (n - 1)(x)) (n \text{ is a successor ordinal}) \\
 T \uparrow \omega(x) = \bigsqcup \{ T \uparrow n(x) | n < \omega \}
 \]
 We abbreviate $T \uparrow \alpha(\bot)$ as $T \uparrow \alpha$.

• There is some ω such that $T \uparrow \omega = \text{lfp}(T)$. The sequence $T \uparrow 0, T \uparrow 1, ..., \text{lfp}(T)$ is the Kleene sequence for T.

• In a finite lattice the Kleene sequence for a monotonic operator T is finite.
Towards a Fixpoint Semantics for LP – Fixpoint Basics (Contd.)

- A subset Y of a poset X is an (ascending) chain iff $\forall y, y' \in Y, y \leq y' \lor y' \leq y$
- A complete lattice X is "ascending chain finite" (or Noetherian) if all ascending chains are finite
- In an ascending chain finite lattice the Kleene sequence for a monotonic operator T is finite
Lattice Structures

finite

\[
\begin{array}{c}
\top \\
d \\
\underline{e} \\
a \\
b \\
\underline{c} \\
\bot \\
\end{array}
\]

finite_depth

\[
\begin{array}{c}
\top \\
\vdots \\
\inf \\
\vdots \\
\bot \\
\end{array}
\]

ascending chain finite

\[
\begin{array}{c}
\top \\
1 \\
2 \\
3 \\
4 \\
\bot \\
\end{array}
\]
A Fixpoint Semantics for Logic Programs, and Equivalences

- The Immediate consequence operator T_P is a mapping: $T_P : I_P \rightarrow I_P$ defined by:

 $$T_P(I) = \{ A \in B_P | \exists C \in \text{ground}(P), C = A \leftarrow L_1, \ldots, L_n \text{ and } L_1, \ldots, L_n \in I \}$$

 (in particular, if $(A \leftarrow) \in P$, then every element of $\text{ground}(A)$ is in $T_P(I)$, $\forall I$).

- T_P is monotonic, so it has a least fixpoint I^* so that $T_P(I^*) = I^*$, which can be obtained by applying T_P iteratively starting from the bottom element of the lattice (the empty interpretation).

- (Characterization Theorem) [Van Emden and Kowalski]
 A program P has a Herbrand model H_P such that :

 - H_P is the least Herbrand Model of P.
 - H_P is the least fixpoint of T_P ($\text{lfp } T_P$).
 - $H_P = T_P \uparrow \omega$.

 I.e., least model semantics (H_P) \equiv fixpoint semantics ($\text{lfp } T_P$).

- Because it gives us some intuition on how to build H_P, the least fixpoint semantics can in some cases (e.g., finite models) also be an operational semantics (e.g., in deductive databases).
Example:

\[P = \{ p(f(X)) \leftarrow p(X). \ p(a). \ q(a). \ q(b). \} \]

\[U_P = \{a, b, f(a), f(b), f(f(a)), f(f(b)), \ldots\} \]
\[B_P = \{p(a), p(b), q(a), q(b), p(f(a)), p(f(b)), q(f(a)), \ldots\} \]
\[I_P = \textit{all subsets of } B \]
\[H_P = \{q(a), q(b), p(a), p(f(a)), p(f(f(a))), \ldots\} \]

\[T_P \uparrow 0 = \{p(a), q(a), q(b)\} \]
\[T_P \uparrow 1 = \{p(a), q(a), q(b), p(f(a))\} \]
\[T_P \uparrow 2 = \{p(a), q(a), q(b), p(f(a)), p(f(f(a)))\} \]
\[\ldots \]
\[T_P \uparrow \omega = H_P \]