Computational Logic

Fundamentals of Definite Programs:

Syntax and Semantics
Towards Logic Programming

• Conclusion: resolution is a complete and effective deduction mechanism using:
 Horn clauses (related to “Definite programs”),
 Linear, Input strategy
 Breadth-first exploration of the tree (or an equivalent approach)
 (possibly ordered clauses, but not required – see Selection rule later)

• Very close to what is generally referred to as SLD-resolution (see later)

• This allows to some extent realizing Greene’s dream (within the theoretical limits of the formal method), and efficiently!
Towards Logic Programming (Contd.)

- Given these results, why not use logic as a general purpose *programming language*? [Kowalski 74]

- A “logic program” would have two interpretations:
 - *Declarative* (“LOGIC”): the logical reading (facts, statements, knowledge)
 - *Procedural* (“CONTROL”): what resolution does with the program

- ALGORITHM = LOGIC + CONTROL

- Specify these components separately

- Often, worrying about control is not needed at all (thanks to resolution)

- Control can be effectively provided through the ordering of the literals in the clauses
Towards Logic Programming: Another (more compact) Clausal Form

- All formulas are transformed into a set of *Clauses*.
 - A clause has the form: \(conc_1, \ldots, conc_m \leftarrow cond_1, \ldots, cond_n \)
 - where \(conc_1, \ldots, conc_m \) are literals, and are the *conclusions* and *conditions* of a rule:
 - \(∀X_1, \ldots, X_k \ conc_1 \lor \ldots \lor conc_m \leftarrow cond_1 \land \ldots \land cond_n \)
 - All variables are implicitly universally quantified: (if \(X_1, \ldots, X_k \) are the variables)

- More compact than the traditional clausal form:
 - no connectives, just commas
 - no need to repeat negations: all negated atoms on one side, non-negated ones on the other

- A *Horn Clause* then has the form: \(conc_1 \leftarrow cond_1, \ldots, cond_n \)
 - where \(n \) can be zero and possibly \(conc_1 \) empty.
Some Logic Programming Terminology – “Syntax” of Logic Programs

- **Definite Program**: a set of positive Horn clauses

 The single *conclusion* is called the *head*.

 The conditions are called “goals” or “procedure calls”.

 \[\text{goal}_1, \ldots, \text{goal}_n \quad (n \geq 0)\] is called the “body”.

 if \(n = 0 \) the clause is called a “fact” (and the arrow is normally deleted)

 Otherwise it is called a “rule”

- **Query** (question): a negative Horn clause (a “headless” clause)

 A procedure is a set of rules and facts in which the heads have the same predicate symbol and arity.

 Terms in a goal are also called “arguments”.
• Examples:
 grandfather(X,Y) ← father (X,Z), mother(Z,Y).
 grandfather(X,Y) ←.
 grandfather(X,Y).
 ← grandfather(X,Y).
LOGIC: Declarative “Reading” (Informal Semantics)

- A rule (has head and body)
 \[\text{head} \leftarrow \text{goal}_1, \ldots, \text{goal}_n. \]
 which contains variables \(X_1, \ldots, X_k \) can be read as
 for all \(X_1, \ldots, X_k \):
 “head” is true if “\(\text{goal}_1 \)” and ... and “\(\text{goal}_n \)” are true

- A fact n=0 (has only head)
 \[\text{head}. \]
 for all \(X_1, \ldots, X_k \): “head” is true (always)

- A query (the headless clause)
 \[\leftarrow \text{goal}_1, \ldots, \text{goal}_n \]
 can be read as:
 for which \(X_1, \ldots, X_k \) are “\(\text{goal}_1 \)” and ... and “\(\text{goal}_n \)” true?
Given a first-order language L, with a non-empty set of variables, constants, function symbols, relation symbols, connectives, quantifiers, etc. and given a syntactic object A,

$$\text{ground}(A) = \{ A\theta | \exists \theta \in \text{Subst}, \text{var}(A\theta) = \emptyset \}$$

i.e. the set of all “ground instances” of A.

Given L, U_L (Herbrand universe) is the set of all ground terms of L.

B_L (Herbrand Base) is the set of all ground atoms of L.

Similarly, for the language L_P associated with a given program P we define U_P, and B_P.

Example:

$P = \{ p(f(X)) \leftarrow p(X). \ p(a). \ q(a). \ q(b). \}$

$U_P = \{a, \ b, \ f(a), \ f(b), \ f(f(a)), \ f(f(b)), \ldots\}$

$B_P = \{p(a), \ p(b), \ q(a), \ q(b), \ p(f(a)), \ p(f(b)), \ q(f(a)), \ldots\}$
A Herbrand Interpretation is a subset of B_L, i.e. the set of all Herbrand interpretations $I_L = \mathcal{P}(B_L)$.

(Note that I_L forms a complete lattice under \subseteq – important for fixpoint operations to be introduced later).

Example: $P = \{ p(f(X)) \leftarrow p(X), p(a), q(a), q(b) \}$

$U_P = \{ a, b, f(a), f(b), f(f(a)), f(f(b)), \ldots \}$

$B_P = \{ p(a), p(b), q(a), q(b), p(f(a)), p(f(b)), q(f(a)), \ldots \}$

$I_P = \text{all subsets of } B_P$

A Herbrand Model is a Herbrand interpretation which contains all logical consequences of the program.

The Minimal Herbrand Model H_P is the smallest Herbrand interpretation which contains all logical consequences of the program. (It is unique.)

Example:

$H_P = \{ q(a), q(b), p(a), p(f(a)), p(f(f(a))), \ldots \}$
• **Declarative semantics of a logic program** P: the set of ground facts which are logical consequences of the program (i.e., H_P). (Also called the “least model” semantics of P).

• **Intended meaning of a logic program** P: the set M of ground facts that the user expects to be logical consequences of the program.

• A logic program is **correct** if $H_P \subseteq M$.

• A logic program is **complete** if $M \subseteq H_P$.

• Example:

 father(john,peter).
 father(john,mary).
 mother(mary,mike).
 grandfather(X,Y) ← father(X,Z), father(Z,Y).

 with the usual intended meaning is correct but incomplete.
We now turn to the *operational semantics* of logic programs, given by a concrete operational procedure: *Linear (Input) Resolution*.

- Complementary literals:
 - in two different clauses
 - on different sides of \leftarrow
 - unifiable with unifier θ

father(john,mary) \leftarrow
grandfather(X,Y) \leftarrow father(X,Z), mother(Z,Y)

$\theta = \{X/john, Z/mary\}$
• Resolution step (linear, input, ...):
 ◊ given a clause and a resolvent, we can build a new resolvent which follows from them by:
 * renaming apart the clause (“standardization apart” step)
 * putting *all* the conclusions to the left of the ←
 * putting *all* the conditions to the right of the ←
 * if there are complementary literals (unifying literals at different sides of the arrow in the two clauses), eliminating them and applying θ to the new resolvent

• LD-Resolution: linear (and input) resolution, applied to definite programs
 Note that then all resolvents are negative Horn clauses (like the query).
Example

- from
 father(john,peter) ←
 mother(mary,david) ←

we can infer
 father(john,peter), mother(mary,david) ←

- from
 father(john,mary) ←
 grandfather(X,Y) ← father(X,Z), mother(Z,Y)

we can infer
 grandfather(john,Y′) ← mother(mary,Y′)
CONTROL: A proof using LD-Resolution

• Prove “grandfather(john,david) ←” using the set of axioms:
 1. father(john,peter) ←
 2. father(john,mary) ←
 3. father(peter,mike) ←
 4. mother(mary,david) ←
 5. grandfather(L,M) ← father (L,N), father(N,M)
 6. grandfather(X,Y) ← father (X,Z), mother(Z,Y)

• We introduce the predicate to prove (negated!)
 7. ← grandfather(john,david)

• We start resolution: e.g. 6 and 7
 8. ← father(john,Z1), mother(Z1,david) \quad X1/john, Y1/david

• using 2 and 8
 9. ← mother(mary,david) \quad Z1/mary

• using 4 and 9
 ←
CONTROL: Rules and SLD-Resolution

• Two control-related issues are still left open in LD-resolution. Given a current resolvent R and a set of clauses K:
 ◦ given a clause C in K, several of the literals in R may unify the non-negated a complementary literal in C
 ◦ given a literal L in R, it may unify with complementary literals in several clauses in K

• A *Computation* (or *Selection* rule) is a function which, given a resolvent (and possibly the proof tree up to that point) returns (selects) a literal from it. This is the goal that will be used next in the resolution process.

• A *Search* rule is a function which, given a literal and a set of clauses (and possibly the proof tree up to that point), returns a clause from the set. This is the clause that will be used next in the resolution process.
• SLD-resolution: Linear resolution for Definite programs with Selection rule.

• An SLD-resolution method is given by the combination of a computation (or selection) rule and a search rule.

• Independence of the computation rule: Completeness does not depend on the choice of the computation rule.

• Example: a “left-to-right” rule (as in ordered resolution) does not impair completeness – this coincides with the completeness result for ordered resolution.

• Fundamental result:
 “Declarative” semantics \(H_P \) \(\equiv \) “operational” semantics (SLD-resolution)
 I.e., all the facts in \(H_P \) can be deduced using SLD-resolution.
CONTROL: Procedural reading of a logic program

• Given a rule

\[\text{head} \leftarrow \text{goal}_1, \ldots, \text{goal}_n. \]

it can be seen as a description of the goals the solver (resolution method) has to execute in order to solve “head”

• Possible, given computation and search rules.

• In general, “In order to solve ‘head’, solve ‘goal}_1’ and ... and solve ‘goal}_n’ ”

• If ordered resolution is used (left-to-right computation rule), then read “In order to solve ‘head’, first solve ‘goal}_1’ and then ‘goal}_2’ and then ... and finally solve ‘goal}_n’ ”

• Thus the “control” part corresponding to the computation rule is often associated with the order of the goals in the body of a clause

• Another part (corresponding to the search rule) is often associated with the order of clauses
Example – read “procedurally”:
father(john,peter).
father(john,mary).
father(peter,mike).
father(X,Y) ← mother(Z,Y), married(X,Z).
Towards a Fixpoint Semantics for LP – Fixpoint Basics

- A **fixpoint** for an operator $T : X \rightarrow X$ is an element of $x \in X$ such that $x = T(x)$.

- If X is a poset, T is monotonic if $\forall x, y \in X, x \leq y \Rightarrow T(x) \leq T(y)$

- If X is a complete lattice and T is monotonic the set of fixpoints of T is also a complete lattice [Tarski]

- The least element of the lattice is the **least fixpoint** of T, denoted $\text{lfp}(T)$

- Powers of a monotonic operator (successive applications):

 $$
 T \uparrow^0(x) = x \\
 T \uparrow^n(x) = T(T \uparrow^{n-1}(x))(n \text{ is a successor ordinal}) \\
 T \uparrow^\omega(x) = \bigsqcup\{T \uparrow^n(x) \mid n < \omega\}
 $$

 We abbreviate $T \uparrow^\alpha(\bot)$ as $T \uparrow^\alpha$

- There is some ω such that $T \uparrow^\omega = \text{lfp}(T)$. The sequence $T \uparrow^0, T \uparrow^1, ..., \text{lfp}(T)$ is the **Kleene sequence** for T

- In a finite lattice the Kleene sequence for a monotonic operator T is finite
A subset Y of a poset X is an (ascending) chain iff $\forall y, y' \in Y, y \leq y' \lor y' \leq y$.

A complete lattice X is \textit{ascending chain finite} (or \textit{Noetherian}) if all ascending chains are finite.

In an ascending chain finite lattice the Kleene sequence for a monotonic operator T is finite.
Lattice Structures

finite

![Diagram of finite lattice structure]

finite_depth

![Diagram of finite depth lattice structure]

ascending chain finite

![Diagram of ascending chain lattice structure]
The immediate consequence operator T_P is a mapping: $T_P : I_P \rightarrow I_P$ defined by:

$$T_P(I) = \{ A \in B_P | \exists C \in \text{ground}(P), C = A \leftarrow L_1, \ldots, L_n \text{ and } L_1, \ldots, L_n \in I \}$$

(in particular, if $(A \leftarrow) \in P$, then every element of $\text{ground}(A)$ is in $T_P(I)$, $\forall I$).

T_P is monotonic, so it has a least fixpoint I^* so that $T_P(I^*) = I^*$, which can be obtained by applying T_P iteratively starting from the bottom element of the lattice (the empty interpretation).

(Characterization Theorem) [Van Emden and Kowalski]
A program P has a Herbrand model H_P such that:

- H_P is the least Herbrand Model of P.
- H_P is the least fixpoint of T_P ($\text{lfp } T_P$).
- $H_P = T_P \uparrow \omega$.

I.e., least model semantics (H_P) \equiv fixpoint semantics ($\text{lfp } T_P$)

Because it gives us some intuition on how to build H_P, the least fixpoint semantics can in some cases (e.g., finite models) also be an operational semantics (e.g., in deductive databases).
A Fixpoint Semantics for Logic Programs: Example

• Example:

\[P = \{ p(f(X)) \leftarrow p(X). \]
\[p(a). \]
\[q(a). \]
\[q(b). \} \]

\[U_P = \{ a, b, f(a), f(b), f(f(a)), f(f(b)), \ldots \} \]
\[B_P = \{ p(a), p(b), q(a), q(b), p(f(a)), p(f(b)), q(f(a)), \ldots \} \]
\[I_P = \text{all subsets of } B \]
\[H_P = \{ q(a), q(b), p(a), p(f(a)), p(f(f(a))), \ldots \} \]

\[T_P \uparrow 0 = \{ p(a), q(a), q(b) \} \]
\[T_P \uparrow 1 = \{ p(a), q(a), q(b), p(f(a)) \} \]
\[T_P \uparrow 2 = \{ p(a), q(a), q(b), p(f(a)), p(f(f(a))) \} \]

\[\ldots \]
\[T_P \uparrow \omega = H_P \]