Computational Logic
Automated Deduction Fundamentals
Elements of First-Order Predicate Logic

First Order Language:

- An *alphabet* consists of the following classes of symbols:
 1. *variables* denoted by $X, Y, Z, \text{Boo}, ...$, (infinite)
 2. *constants* denoted by $1, a, \text{boo}, \text{john}, ...$
 3. *functors* denoted by $f, g, +, -, ..$
 4. *predicate symbols* denoted by $p, q, \text{dog}, ...$
 5. *connectives*, which are: \neg (negation), \lor (disjunction), \land (conjunction), \rightarrow (implication) and \leftrightarrow (equivalence),
 6. *quantifiers*, which are: \exists (there exists) and \forall (for all),
 7. *parentheses*, which are: (and) and the *comma*, that is: “,”.

- Each functor and predicate symbol has a fixed *arity*, they are often represented in *Functor/Arity* form, e.g. $f/3$.

- A constant can be seen as a functor of arity 0.

- Propositions are represented by a predicate symbol of arity 0.
Important: Notation Convention Used

(A bit different from standard notational conventions in logic, but good for compatibility with LP systems)

- Variables: start with a capital letter or a “_” (X, Y, _a, _1)
- Atoms, functors, predicate symbols: start with a lower case letter or are enclosed in ’ ’ (f, g, a, 1, x, y, z, ’X’, ’_1’)
Terms and Atoms

We define by induction two classes of strings of symbols over a given alphabet.

- **The class of terms:**
 - a variable is a term,
 - a constant is a term,
 - if f is an n-ary functor and t_1, \ldots, t_n are terms then $f(t_1, \ldots, t_n)$ is a term.

- **The class of atoms** (different from LP!):
 - a proposition is an atom,
 - if p is an n-ary pred. symbol and t_1, \ldots, t_n are terms then $p(t_1, \ldots, t_n)$ is an atom,
 - true and false are atoms.

- **The class of Well Formed Formulas (WFFs):**
 - an atom is a WFF,
 - if F and G are WFFs then so are $\neg F, (F \lor G), (F \land G), (F \rightarrow G)$ and $(F \leftrightarrow G)$,
 - if F is a WFF and X is a variable then $\exists X \; F$ and $\forall X \; F$ are WFF.

- **Literal:** positive or negative (non-negated or negated) atom.
Examples

Examples of Terms

• Given:
 ◦ constants: a, b, c, 1, spot, john...
 ◦ functors: f/1, g/3, h/2, +/3...
 ◦ variables: X, L, Y...

• Correct: spot, f(john), f(X), +(1,2,3), +(X,Y,L), f(f(spot)), h(f(h(1,2)),L)

• Incorrect: spot(X), +(1,2), g, f(f(h))

Examples of Literals

• Given the elements above and:
 ◦ predicate symbols: dog/1, p/2, q/0, r/0, barks/1...

• Correct: q, r, dog(spot), p(X,f(john))...

• Incorrect: q(X), barks(f), dog(barks(X))
Examples of WFFs

- Given the elements above
 - Correct: $q, q \rightarrow r, r \leftarrow q, \text{dog}(X) \leftarrow \text{barks}(X), \text{dog}(X) \land p(X, Y), \exists X (\text{dog}(X) \land \text{barks}(X) \land \neg q), \exists Y (\text{dog}(Y) \rightarrow \text{bark}(Y))$
 - Incorrect: $q \lor, \exists p$

More about WFFs

- Allow us to represent knowledge and reason about it
 - Marcus was a man \(\text{man(marcus)} \)
 - Marcus was a pompeian \(\text{pompeian(marcus)} \)
 - All pompeians were romans \(\forall X \text{ pompeian}(X) \rightarrow \text{roman}(X) \)
 - Caesar was a ruler \(\text{ruler(caesar)} \)
 - All romans were loyal to Caesar or they hated him
 \(\forall X \text{ roman}(X) \rightarrow \text{loyalto}(X,\text{caesar}) \lor \text{hate}(X,\text{caesar}) \)
 - Everyone is loyal to someone \(\forall X \exists Y \text{ loyalto}(X,Y) \)

- We can now reason about this knowledge using standard deductive mechanisms.
- But there is in principle no guarantee that we will prove a given theorem.
Towards Efficient Automated Deduction

- *Automated deduction is search.*
- Complexity of search: directly dependent on branching factor at nodes (exponentially!).
- It is vital to cut down the branching factor:
 - Canonical representation of nodes (allows identifying identical nodes).
 - As few inference rules as possible.
Towards Efficient Automated Deduction (Contd.)

Clausal Form

- The complete set of logical operators ($\leftarrow, \land, \lor, \neg,$...) is redundant.
- A minimal (canonical) form would be interesting.
- It would be interesting to separate the quantifiers from the rest of the formula so that they did not need to be considered.
- It would also be nice if the formula were flat (i.e. no parenthesis).
- Conjunctive normal form has these properties [Davis 1960].

Deduction Mechanism

- A good example:
 Resolution – only two inference rules (Resolution rule and Replacement rule).
Classical Clausal Form: Conjunctive Normal Form

- General formulas are converted to:
 - Set of *Clauses*.
 - Clauses are in a logical conjunction.
 - A clause is a disjunction of the form: $\text{literal}_1 \lor \text{literal}_2 \lor \ldots \lor \text{literal}_n$
 - The literal_i are negated or non-negated atoms.
 - All variables are implicitly universally quantified: i.e. if X_1, \ldots, X_k are the variables that appear in a clause it represents the formula:
 $$\forall X_1, \ldots, X_k \ \text{literal}_1 \lor \text{literal}_2 \lor \ldots \lor \text{literal}_n$$

- Any formula can be converted to clausal form automatically by:
 1. Converting to Prenex form.
 2. Converting to conjunctive normal form (conjunction of disjunctions).
 3. Converting to Skolem form (eliminating existential quantifiers).
 4. Eliminating universal quantifiers.
 5. Separating conjunctions into clauses.

- The *unsatisfiability* of a system is preserved.
Substitutions

- **A substitution** is a finite mapping from variables to terms, written as
 \[\theta = \{ X_1/t_1, \ldots, X_n/t_n \} \] where
 - the variables \(X_1, \ldots, X_n \) are different,
 - for \(i = 1, \ldots, n \) \(X_i \not\equiv t_i \).

- A pair \(X_i/t_i \) is called a *binding*.

- \(\text{domain}(\theta) = \{ X_1, \ldots, X_n \} \) and \(\text{range}(\theta) = \text{vars}(\{ t_1, \ldots, t_n \}) \).

- If \(\text{range}(\theta) = \emptyset \) then \(\theta \) is called *ground*.

- If \(\theta \) is a bijective mapping from variables to variables then \(\theta \) is called a *renaming*.

- **Examples:**
 - \(\theta_1 = \{ X/f(A), Y/X, Z/h(b, Y), W/a \} \)
 - \(\theta_2 = \{ X/a, Y/a, Z/h(b, c), W/f(d) \} \) (ground)
 - \(\theta_3 = \{ X/A, Y/B, Z/C, W/D \} \) (renaming)
Substitutions (Contd.)

- Substitutions operate on *expressions*, i.e. a term, a sequence of literals or a clause, denoted by E.

- The application of θ to E (denoted $E\theta$) is obtained by *simultaneously* replacing each occurrence in E of X_i by t_i, $X_i/t_i \in \theta$.

- The resulting expression $E\theta$ is called an *instance* of E.

- If θ is a renaming then $E\theta$ is called a *variant* of E.

- Example:
 \[
 \theta_1 = \{X/f(A), Y/X, Z/h(b,Y), W/a\}
 \]
 \[
 p(X,Y,X) \theta_1 = p(f(A), X, f(A))
 \]
Composition of Substitutions

- Given $\theta = \{X_1/t_1, \ldots, X_n/t_n\}$ and $\eta = \{Y_1/s_1, \ldots, Y_m/s_m\}$ their composition $\theta\eta$ is defined by removing from the set

$$\{X_1/t_1\eta, \ldots, X_n/t_n\eta, Y_1/s_1, \ldots, Y_m/s_m\}$$

those pairs $X_i/t_i\eta$ for which $X_i \equiv t_i\eta$, as well as those pairs Y_i/s_i for which $Y_i \in \{X_1, \ldots, X_n\}$.

- Example: if $\theta = \{X/3, Y/f(X, 1)\}$ and $\eta = \{X/4\}$ then $\theta\eta = \{X/3, Y/f(4, 1)\}$.

- For all substitutions θ, η and γ and an expression E

 i) $(E\theta)\eta \equiv E(\theta\eta)$
 ii) $(\theta\eta)\gamma = \theta(\eta\gamma)$.

- θ is more general than η if for some γ we have $\eta = \theta\gamma$.

- Example: $\theta = \{X/f(Y)\}$ more general than $\eta = \{X/f(h(G'))\}$
Unifiers

• If $A\theta \equiv B\theta$, then
 ◦ θ is called a unifier of A and B
 ◦ A and B are unifiable

• A unifier θ of A and B is called a most general unifier (mgu) if it is more general than any other unifier of A and B.

• If two atoms are unifiable then they have a most general unifier.

• θ is idempotent if $\theta\theta = \theta$.

• A unifier θ of A and B is relevant if all variables appearing either in $\text{domain}(\theta)$ or in $\text{range}(\theta)$, also appear in A or B.

• If two atoms are unifiable then they have an mgu which is idempotent and relevant.

• An mgu is unique up to renaming.
Unification Algorithm

- Non-deterministically choose from the set of equations an equation of a form below and perform the associated action.
 1. \(f(s_1, \ldots, s_n) = f(t_1, \ldots, t_n) \) → replace by \(s_1 = t_1, \ldots, s_n = t_n \)
 2. \(f(s_1, \ldots, s_n) = g(t_1, \ldots, t_m) \) where \(f \not\equiv g \) → halt with failure
 3. \(X = X \) → delete the equation
 4. \(t = X \) where \(t \) is not a variable → replace by the equation \(X = t \)
 5. \(X = t \) where \(X \not\equiv t \) and \(X \) has another occurrence in the set of equations →
 5.1 if \(X \) appears in \(t \) then halt with failure
 5.2 otherwise apply \(\{X/t\} \) to every other equation

- Consider the set of equations \(\{f(x) = f(f(z)), g(a, y) = g(a, x)\} \):
 ◦ (1) produces \(\{x = f(z), g(a, y) = g(a, x)\} \)
 ◦ then (1) yields \(\{x = f(z), a = a, y = x\} \)
 ◦ (3) produces \(\{x = f(z), y = x\} \)
 ◦ now only (5) can be applied, giving \(\{x = f(z), y = f(z)\} \)
 ◦ No step can be applied, the algorithm successfully terminates.
Unification Algorithm revisited

Let A and B be two formulas:

1. $\theta = \epsilon$

2. while $A\theta \neq B\theta$:
 2.1 find leftmost symbol in $A\theta$ s.t. the corresponding symbol in $B\theta$ is different
 2.2 let t_A and t_B be the terms in $A\theta$ and $B\theta$ starting with those symbols
 (a) if neither t_A nor t_B are variables or one is a variable occurring in the other \rightarrow halt with failure
 (b) otherwise, let t_A be a variable \rightarrow the new θ is the result of $\theta\{t_A/t_B\}$

3. end with θ being an m.g.u. of A and B
Unification Algorithm revisited (Contd.)

- **Example:** \(A = p(X, X) \) \(B = p(f(A), f(B)) \)

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(A\theta)</th>
<th>(B\theta)</th>
<th>Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\epsilon)</td>
<td>(p(X, X))</td>
<td>(p(f(A), f(B)))</td>
<td>({X/f(A)})</td>
</tr>
<tr>
<td>({X/f(A)})</td>
<td>(p(f(A), f(A)))</td>
<td>(p(f(A), f(B)))</td>
<td>({A/B})</td>
</tr>
<tr>
<td>({X/f(B), A/B})</td>
<td>(p(f(B), f(B)))</td>
<td>(p(f(B), f(B)))</td>
<td></td>
</tr>
</tbody>
</table>

- **Example:** \(A = p(X, f(Y)) \) \(B = p(Z, X) \)

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(A\theta)</th>
<th>(B\theta)</th>
<th>Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\epsilon)</td>
<td>(p(X, f(Y)))</td>
<td>(p(Z, X))</td>
<td>({X/Z})</td>
</tr>
<tr>
<td>({X/Z})</td>
<td>(p(Z, f(Y)))</td>
<td>(p(Z, Z))</td>
<td>({Z/f(Y)})</td>
</tr>
<tr>
<td>({X/f(Y), Z/f(Y)})</td>
<td>(p(f(Y), f(Y)))</td>
<td>(p(f(Y), f(Y)))</td>
<td></td>
</tr>
</tbody>
</table>
Resolution with Variables

- It is a *formal system* with:
 - A first order language with the following formulas:
 - Clauses: without repetition, and without an order among their literals.
 - The empty clause \(\square\).
 - An empty set of axioms.
 - Two inference rules: *resolution* and *replacement*.
Resolution with Variables (Contd.)

- Resolution:

\[r_1: A \lor F_1 \lor \cdots \lor F_n \]
\[r_2: \neg B \lor G_1 \lor \cdots \lor G_m \]
\[\frac{((F_1 \lor \cdots \lor F_n) \sigma \lor G_1 \lor \cdots \lor G_m)}{} \theta \]

where

- \(A \) and \(B \) are unifiable with substitution \(\theta \)
- \(\sigma \) is a renaming s.t. \((A \lor F_1 \lor \cdots \lor F_n) \sigma \) and \(\neg B \lor G_1 \lor \cdots \lor G_m \) have no variables in common
- \(\theta \) is the m.g.u. of \(A \sigma \) and \(B \)

The resulting clause is called the resolvent of \(r_1 \) and \(r_2 \).

- Replacement: \(A \lor B \lor F_1 \lor \cdots \lor F_n \Rightarrow (A \lor F_1 \lor \cdots \lor F_n) \theta \) where

- \(A \) and \(B \) are unifiable atoms
- \(\theta \) is the m.g.u. of \(A \) and \(B \)
Basic Properties

- Resolution is *correct* – i.e. all conclusions obtained using it are valid.
- There is no guarantee of directly deriving a given theorem.
- However, resolution (under certain assumptions) is refutation complete: if we have a set of clauses \(K = [C_0, C_1, \ldots, C_n] \) and it is inconsistent then resolution will arrive at the empty clause \(\Box \) in a finite number of steps.
- Therefore, a valid theorem (or a question that has an answer) is guaranteed to be provable by refutation. To prove “p” given \(K_0 = [C_0, C_1, \ldots, C_n] \):
 1. Negate it \(\neg p \).
 2. Construct \(K = [\neg p, C_0, C_1, \ldots, C_n] \).
 3. Apply resolution steps repeatedly to K.
- Furthermore, we can obtain answers by composing the substitutions along a path that leads to \(\Box \) (very important for realizing Green's dream!).
- It is important to use a good method in applying the resolution steps – i.e. in building the resolution tree (or proof tree).
- Again, the main issue is to reduce the branching factor.
Proof Tree

- Given a set of clauses $K = \{C_0, C_1, \cdots, C_n\}$ the proof tree of K is a tree s.t.:
 - the root is C_0
 - the branch from the root starts with the nodes labeled with C_0, C_1, \cdots, C_n
 - the descendent nodes of C_n are labeled by clauses obtained from the parent clauses using resolution
 - a derivation in K is a branch of the proof tree of K

- The derivation $C_0 C_1 \cdots C_n F_0 \cdots F_m$ is denoted as $K, F_0 \cdots F_m$
• Example: part of the proof tree for K, with:

$$K = [p, \neg p \lor q, \neg q]$$

$\vdash p \iff C_0$

$\neg p \lor q \iff C_1$

$\neg q \iff C_2$

$R(C_0,C_1) \equiv q$

$\neg p \iff R(C_1,C_2)$

$R(C_0,C_1) \equiv q$
Characteristics of the Proof Tree

- It can be infinite:

\[K = \{ p(e), \neg p(X) \lor p(f(X)) \} \]

\[p(e) \quad \equiv \quad \text{C0} \]
\[\neg p(X) \lor p(f(X)) \quad \equiv \quad \text{C1} \]
\[p(f(e)) \quad \theta = \{X/e\} \]
\[p(f(f(e))) \quad \theta = \{X/f(e)\} \]

- Even if it is finite, it can be too large to be explored efficiently
- Aim: determine some criteria to limit the number of derivations and the way in which the tree is explored \(\Rightarrow \) strategy
- Any strategy based on this tree is correct: if \(\square \) appears in a subtree of the proof tree of \(K \), then \(\square \) can be derived from \(K \) and therefore \(K \) is unsatisfiable
General Strategies

- **Depth-first with backtracking**: First descendant to the left; if failure or □ then backtrack
• **Breadth first**: all sons of all sibling nodes from left to right

```
1
  2        3
   4       5   6
       8   9   7
  Fail   Fail   
   Fail
```
• **Iterative deepening**
 - Advance depth-first for a time.
 - After a certain depth, switch to another branch as in breadth-first.

• **Completeness issues / possible types of branches:**
 - Success (always finite)
 - Finite failure
 - Infinite failure (provably infinite branches)
 - Non-provably infinite branches
Linear Strategies

- Those which only explore linear derivations
- A derivation $K, F_0 \cdots F_m$ is linear if
 - F_0 is obtained by resolution or replacement using C_0
 - $F_i, i > 0$ is obtained by resolution or replacement using F_{i-1}
- Examples:

```
p ≡ C0
¬ p v q ≡ C0
¬ p v q ≡ C1
¬ q ≡ C1
¬ q ≡ C2
¬ q ≡ C2
q ≡ F0
¬ p
q
```

```
Characteristics of these Strategies

1. If $\Box$ can be derived from $K$ by using resolution with variables, it can also be derived by linear resolution.

2. Let $K$ be $K' \cup \{C_0\}$ where $K'$ is a satisfiable set of clauses, i.e. $\Box$ cannot be derived from $K'$ by using resolution with variables. If $\Box$ can be derived from $K$ by using resolution with variables it can also be derived by linear resolution with root $C_0$.

- From (1), if the strategy is breadth first, it is complete.
- From (2), if we want to prove that $B$ is derived from $K'$ then we can apply linear resolution to $K = K' \cup \{\neg B\}$.
- Depth first with backtracking is not complete:

```
K = [p(e), \neg p(X) v p(f(X)), \neg p(X)]
 p(e) \equiv C0
 \neg p(X) v p(f(X)) \equiv C1
 \neg p(X) \equiv C2

F0 \equiv p(f(e))
F1 \equiv p(f(f(e)))
```


Input Strategies

- Those which only explore input derivations
- A derivation $K, F_0 \cdots F_m$ is input if
  - $F_0$ is obtained by resolution or replacement using $C_0$
  - $F_i, i > 0$ is obtained by resolution or replacement using at least a clause in $K$

Example:

$$K = \{ \neg p \lor q, p \lor \neg r, r, q \lor \neg s, s \lor q \}$$

\[
\begin{align*}
\neg p \lor q & \equiv C_0 \\
p \lor \neg r & \equiv C_1 \\
r & \equiv C_2 \\
q \lor \neg s & \equiv C_3 \\
s \lor q & \equiv C_4 \\
\neg q \lor \neg r & \equiv C_1 (\& C_0) \\
\neg q & \equiv C_2 \\
\neg s & \equiv C_3 \\
q & \equiv C_4 \\
\neg p & \equiv C_0 \\
\neg r & \equiv C_1 \\
\neg r & \equiv C_2
\end{align*}
\]
Input Strategies

- In an input derivation, if $F_{i-1}$ does not appear in any derivation of a successor clause, it can be eliminated from the derivation without changing the result.

- If $F_{i-1}$ appears in the derivation of $F_j, j > 1$, $F_{i-1}$ can be allocated in position $j - 1$.

- As a result, we can limit ourselves to linear input derivations without losing any input derivable clause.

- Let $K$ be $K' \cup \{C_0\}$ where $\Box$ is derived by using resolution with variables, $C_0$ is a negative Horn clause and all clauses in $K'$ are positive Horn clauses. There is an input derivation with root $C_0$ finishing in $\Box$ and in which the replacement rule is not used (Hernschen 1974).

- A Horn clause is a clause in which at most one literal is positive:
  - it is positive if precisely one literal is positive
  - it is negative if all literals are negatives

- As a result, in those conditions, a breadth first input strategy is complete, and a depth first input strategy with backtracking is complete if the tree is finite.
Ordered Strategies

- We consider a new formal system in which:
  1. clauses are *ordered* sets
  2. ordered resolution of two clauses
     \[ A = p_1 \lor \cdots \lor p_n \text{ and } B = q_1 \lor \cdots \lor q_m \]
     where \( p_1 \) is a positive literal and \( q_1 \) is a negative literal is possible iff \( \neg p_1 \) and \( \sigma(q_1) \) are unifiable (\( \sigma \) is a renaming, s.t. \( p_1 \) and \( \sigma(q_1) \) have no variables in common)
  3. the resolvent of \( A \) and \( B \) is \( \theta(p_2 \lor \cdots \lor p_n \lor \sigma(q_2 \lor \cdots \lor q_m)) \) where \( \theta \) is an m.g.u of \( \neg p_1 \) and \( \sigma(q_1) \)

- Let \( K = K' \cup \{C_0\} \) be a set of clauses s.t. \( \Box \) is derived by using resolution with variables, \( C_0 \) is a negative Horn clause and all clauses in \( K' \) are positive Horn clauses with the positive literal in the first place. There is a sorted input derivation with root \( C_0 \) arriving at \( \Box \).

- In this context a sorted linear input with:
  - breadth first: is complete
  - depth first with backtracking: is complete if the tree is finite