Computational Logic
A “Hands-on” Introduction to Pure Logic Programming
Syntax: Terms (Variables, Constants, and Structures)

(using Prolog notation conventions)

- **Variables**: start with uppercase character (or “_”), may include “_” and digits:

 Examples: X, Im4u, A_little_garden, _, _x, _22

- **Constants**: lowercase first character, may include “_” and digits. Also, numbers and some special characters. Quoted, any character:

 Examples: a, dog, a_big_cat, 23, ’Hungry man’, []

- **Structures**: a functor (the structure name, is like a constant name) followed by a fixed number of arguments between parentheses:

 Example: date(monday, Month, 1994)

 Arguments can in turn be variables, constants and structures.

 ◇ **Arity**: is the number of arguments of a structure. Functors are represented as *name/arity*. A constant can be seen as a structure with arity zero.

Variables, constants, and structures as a whole are called **terms** (they are the terms of a “first–order language”): the *data structures* of a logic program.
Syntax: Terms

(Using Prolog notation conventions)

- **Examples of terms:**

<table>
<thead>
<tr>
<th>Term</th>
<th>Type</th>
<th>Main functor:</th>
</tr>
</thead>
<tbody>
<tr>
<td>dad</td>
<td>constant</td>
<td>dad/0</td>
</tr>
<tr>
<td>time(min, sec)</td>
<td>structure</td>
<td>time/2</td>
</tr>
<tr>
<td>pair(Calvin, tiger(Hobbes))</td>
<td>structure</td>
<td>pair/2</td>
</tr>
<tr>
<td>Tee(Alf, rob)</td>
<td>illegal</td>
<td></td>
</tr>
<tr>
<td>A_good_time</td>
<td>variable</td>
<td></td>
</tr>
</tbody>
</table>

- **Functors** can be defined as prefix, postfix, or infix **operators** (just syntax!):

<table>
<thead>
<tr>
<th>Expression</th>
<th>Term</th>
<th>Operator</th>
<th>Infix?</th>
</tr>
</thead>
<tbody>
<tr>
<td>a + b</td>
<td>is the term</td>
<td>’+’(a,b)</td>
<td></td>
</tr>
<tr>
<td>- b</td>
<td>is the term</td>
<td>’-’(b)</td>
<td></td>
</tr>
<tr>
<td>a < b</td>
<td>is the term</td>
<td>’<’(a,b)</td>
<td></td>
</tr>
<tr>
<td>john father mary</td>
<td>is the term</td>
<td>father(john,mary)</td>
<td></td>
</tr>
</tbody>
</table>

We assume that some such operator definitions are always preloaded.
Syntax: Rules and Facts (Clauses)

- **Rule:** an expression of the form:

\[
p_0(t_1, t_2, \ldots, t_{n_0}) \leftarrow p_1(t^1_1, t^1_2, \ldots, t^1_{n_1}), \]
\[
\quad \ldots \]
\[
\quad p_m(t^m_1, t^m_2, \ldots, t^m_{n_m}).
\]

- \(p_0(\ldots) \) to \(p_m(\ldots) \) are *syntactically* like *terms*.
- \(p_0(\ldots) \) is called the **head** of the rule.
- The \(p_i \) to the right of the arrow are called *literals* and form the **body** of the rule. They are also called **procedure calls**.
- Usually, \(:- \) is called the **neck** of the rule.

- **Fact:** an expression of the form \(p(t_1, t_2, \ldots, t_n) \) (i.e., a rule with empty body).

Example:

<table>
<thead>
<tr>
<th>meal(soup, beef, coffee).</th>
<th>% ← A fact.</th>
</tr>
</thead>
<tbody>
<tr>
<td>meal(First, Second, Third) :- appetizer(First), main_dish(Second), dessert(Third).</td>
<td>% ← A rule.</td>
</tr>
</tbody>
</table>

- Rules and facts are both called **clauses**.
• **Predicate** (or *procedure definition*): a set of clauses whose heads have the same name and arity (called the **predicate name**).

 Examples:

 \[
 \begin{align*}
 \text{pet}(\text{spot}) & . \\
 \text{pet}(X) & : - \text{animal}(X), \text{barks}(X). \\
 \text{pet}(X) & : - \text{animal}(X), \text{meows}(X). \\
 \text{animal}(\text{spot}) & . \\
 \text{animal}(\text{barry}) & . \\
 \text{animal}(\text{hobbes}) & .
 \end{align*}
 \]

 Predicate `pet/1` has three clauses. Of those, one is a fact and two are rules. Predicate `animal/1` has three clauses, all facts.

• **Logic Program**: a set of predicates.

• **Query**: an expression of the form:

 \[
 \leftarrow p_1(t^1_1, \ldots, t^n_1), \ldots, p_n(t^1_n, \ldots, t^m_n).
 \]

 (i.e., a clause without a head).

 A query represents a question to the program.

 Example: `\leftarrow \text{pet}(X)`.

 In most systems written as: `?- \text{pet}(X)`.
“Declarative” Meaning of Facts and Rules

The declarative meaning is the corresponding one in first order logic, according to certain conventions:

- **Facts**: state things that are true.
 (Note that a fact “p.” can be seen as the rule “p :- true.”)

 Example: the fact `animal(spot)` can be read as “spot is an animal”.

- **Rules**:
 - Commas in rule bodies represent conjunction, i.e.,

 \[p \leftarrow p_1, \ldots, p_m \text{ represents } p \leftarrow p_1 \land \cdots \land p_m. \]
 - “\(\leftarrow \)” represents as usual logical implication.

 Thus, a rule \(p \leftarrow p_1, \ldots, p_m \) means “if \(p_1 \) and \ldots and \(p_m \) are true, then \(p \) is true”

 Example: the rule `pet(X):- animal(X), barks(X)` can be read as “X is a pet if it is an animal and it barks”.
“Declarative” Meaning of Predicates and Queries

- **Predicates**: clauses in the same predicate

 \[p \leftarrow p_1, \ldots, p_n \]
 \[p \leftarrow q_1, \ldots, q_m \]

 ...

 provide different **alternatives** (for \(p \)).

Example: the rules

```prolog
pet(X) :- animal(X), barks(X).
pet(X) :- animal(X), meows(X).
```

express two ways for \(X \) to be a pet.

- **Note** (variable scope): the \(X \) vars. in the two clauses above are different, despite the same name. Vars. are **local to clauses** (and are **renamed** any time a clause is used –as with vars. local to a procedure in conventional languages).

- **A query** represents a **question to the program**.

Examples:

```prolog
?- pet(spot).
?- pet(X).
```

asks whether **spot** is a pet.

asks: “Is there an \(X \) which is a pet?”
“Execution” and Semantics

- **Example of a logic program:**

  ```
  pet(X) :- animal(X), barks(X).
  pet(X) :- animal(X), meows(X).
  animal(spot). barks(spot).
  animal(barry). meows(barry).
  animal(hobbes). roars(hobbes).
  ```

- **Execution:** given a program and a query, *executing* the logic program is *attempting to find an answer to the query.*

 Example: given the program above and the query `:- pet(X).` the system will try to find a “substitution” for X which makes $\text{pet}(X)$ true.

 - The **declarative semantics** specifies *what* should be computed (all possible answers).
 - Intuitively, we have two possible answers: $X = \text{spot}$ and $X = \text{barry}$.
 - The **operational semantics** specifies *how* answers are computed (which allows us to determine *how many steps* it will take).
Running Programs in a Logic Programming System

- File `pets.pl` contains (explained later):

```
:- module(_,_,[‘bf/bfall’]).
```

+ *the pet example code as in previous slides.*

- Interaction with the system query evaluator (the “top level”):

```
?- Ciao 1.XX ...
?- use_module(pets).
  yes
?- pet(spot).
  yes
?- pet(X).
  X = spot ? ;
  X = barry ? ;
  no
?- 
```

See the part on Developing Programs with a Logic Programming System for more details on the particular system used in the course (Ciao).
Simple (Top-Down) Operational Meaning of Programs

- A logic program is operationally a set of *procedure definitions* (the predicates).
- A query \(\leftarrow p \) is an initial *procedure call*.
- A procedure definition with one *clause* \(p \leftarrow p_1, \ldots, p_m \). means:
 "to execute a call to \(p \) you have to *call* \(p_1 \) and \(\ldots \) and \(p_m \)"
 ◦ In principle, the order in which \(p_1, \ldots, p_n \) are called does not matter, but, in practical systems it is fixed.
- If several clauses (definitions) \(p \leftarrow p_1, \ldots, p_n \) means:
\[
p \leftarrow q_1, \ldots, q_m
\]
 "to execute a call to \(p \), call \(p_1 \land \ldots \land p_n \), or, alternatively, \(q_1 \land \ldots \land q_n \), or \ldots "
 ◦ Unique to logic programming –it is like having several alternative procedure definitions.
 ◦ Means that several possible paths may exist to a solution and they *should be explored*.
 ◦ System usually stops when the first solution found, user can ask for more.
 ◦ Again, in principle, the order in which these paths are explored does not matter (*if certain conditions are met*), but, for a given system, this is typically also fixed.

In the following we define a more precise operational semantics.
Unification: uses

- **Unification** is the mechanism used in *procedure calls* to:
 - Pass parameters.
 - “Return” values.

- It is also used to:
 - Access parts of structures.
 - Give values to variables.

- Unification is a procedure to solve equations on data structures.
 - As usual, it returns a minimal solution to the equation (or the equation system).
 - As many equation solving procedures it is based on isolating variables and then *instantiating* them with their values.
Unification

- **Unifying two terms (or literals)** \(A\) and \(B\): is asking if they can be made syntactically identical by giving (minimal) values to their variables.
 - I.e., find a variable substitution \(\theta\) such that \([A \theta = B \theta]\) (or, if impossible, \(\text{fail}\)).
 - Only variables can be given values!
 - Two structures can be made identical only by making their arguments identical.

E.g.:

<table>
<thead>
<tr>
<th>(A)</th>
<th>(B)</th>
<th>(\theta)</th>
<th>(A \theta)</th>
<th>(B \theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>dog</td>
<td>dog</td>
<td>(\emptyset)</td>
<td>dog</td>
<td>dog</td>
</tr>
<tr>
<td>(X)</td>
<td>a</td>
<td>{X = a}</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>(X)</td>
<td>(Y)</td>
<td>{X = Y}</td>
<td>(Y)</td>
<td>(Y)</td>
</tr>
<tr>
<td>(f(X, g(t)))</td>
<td>(f(m(h), g(M)))</td>
<td>{X=m(h), M=t}</td>
<td>(f(m(h), g(t)))</td>
<td>(f(m(h), g(t)))</td>
</tr>
<tr>
<td>(f(X, g(t)))</td>
<td>(f(m(h), t(M)))</td>
<td>Impossible (1)</td>
<td>(f(m(h), g(t)))</td>
<td>(f(m(h), g(t)))</td>
</tr>
<tr>
<td>(f(X, X))</td>
<td>(f(Y, l(Y)))</td>
<td>Impossible (2)</td>
<td>(f(m(h), g(t)))</td>
<td>(f(m(h), g(t)))</td>
</tr>
</tbody>
</table>

- (1) Structures with different name and/or arity cannot be unified.
- (2) A variable cannot be given as value a term which contains that variable, because it would create an infinite term. This is known as the **occurs check**. (See, however, *cyclic terms* later.)
Unification

- Often several solutions exist, e.g.:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>θ_1</th>
<th>$A\theta_1$ and $B\theta_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(X, g(T))$</td>
<td>$f(m(H), g(M))$</td>
<td>${ X=m(a), H=a, M=b, T=b }$</td>
<td>$f(m(a), g(b))$</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>${ X=m(H), M=f(A), T=f(A) }$</td>
<td>$f(m(H), g(f(A)))$</td>
</tr>
</tbody>
</table>

These are correct, but a simpler (“more general”) solution exists:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>θ_1</th>
<th>$A\theta_1$ and $B\theta_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(X, g(T))$</td>
<td>$f(m(H), g(M))$</td>
<td>${ X=m(H), T=M }$</td>
<td>$f(m(H), g(M))$</td>
</tr>
</tbody>
</table>

- Always a unique (modulo variable renaming) **most general** solution exists (unless unification fails).
- This is the one that we are interested in.
- The *unification algorithm* finds this solution.
Unification Algorithm

- Let A and B be two terms:

1. $\theta = \emptyset$, $E = \{A = B\}$

2. while not $E = \emptyset$:
 2.1 delete an equation $T = S$ from E
 2.2 case T or S (or both) are (distinct) variables. Assuming T variable:
 * (occur check) if T occurs in the term $S \rightarrow$ halt with failure
 * substitute variable T by term S in all terms in θ
 * substitute variable T by term S in all terms in E
 * add $T = S$ to θ
 2.3 case T and S are non-variable terms:
 * if their names or arities are different \rightarrow halt with failure
 * obtain the arguments $\{T_1, \ldots, T_n\}$ of T and $\{S_1, \ldots, S_n\}$ of S
 * add $\{T_1 = S_1, \ldots, T_n = S_n\}$ to E

3. halt with θ being the m.g.u of A and B
Unification Algorithm Examples (I)

• Unify: $A = p(X, X)$ and $B = p(f(Z), f(W))$

<table>
<thead>
<tr>
<th>θ</th>
<th>E</th>
<th>T</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>{}</td>
<td>${ p(X, X) = p(f(Z), f(W)) }$</td>
<td>$p(X, X)$</td>
<td>$p(f(Z), f(W))$</td>
</tr>
<tr>
<td>{}</td>
<td>${ X = f(Z), X = f(W) }$</td>
<td>X</td>
<td>$f(Z)$</td>
</tr>
<tr>
<td>${ X = f(Z) }$</td>
<td>${ f(Z) = f(W) }$</td>
<td>$f(Z)$</td>
<td>$f(W)$</td>
</tr>
<tr>
<td>${ X = f(Z) }$</td>
<td>${ Z = W }$</td>
<td>Z</td>
<td>W</td>
</tr>
<tr>
<td>${ X = f(W), Z = W }$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Unify: $A = p(X, f(Y))$ and $B = p(Z, X)$

<table>
<thead>
<tr>
<th>θ</th>
<th>E</th>
<th>T</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>{}</td>
<td>${ p(X, f(Y)) = p(Z, X) }$</td>
<td>$p(X, f(Y))$</td>
<td>$p(Z, X)$</td>
</tr>
<tr>
<td>{}</td>
<td>${ X = Z, f(Y) = X }$</td>
<td>X</td>
<td>Z</td>
</tr>
<tr>
<td>${ X = Z }$</td>
<td>${ f(Y) = Z }$</td>
<td>$f(Y)$</td>
<td>Z</td>
</tr>
<tr>
<td>${ X = f(Y), Z = f(Y) }$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Unification Algorithm Examples (II)

• Unify: $A = p(X, f(Y))$ and $B = p(a, g(b))$

<table>
<thead>
<tr>
<th>θ</th>
<th>E</th>
<th>T</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>{}</td>
<td>${ p(X, f(Y)) = p(a, g(b)) }$</td>
<td>$p(X, f(Y))$</td>
<td>$p(a, g(b))$</td>
</tr>
<tr>
<td>{}</td>
<td>${ X = a, f(Y) = g(b) }$</td>
<td>X</td>
<td>a</td>
</tr>
<tr>
<td>${ X = a }$</td>
<td>${ f(Y) = g(b) }$</td>
<td>$f(Y)$</td>
<td>$g(b)$</td>
</tr>
<tr>
<td>fail</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Unify: $A = p(X, f(X))$ and $B = p(Z, Z)$

<table>
<thead>
<tr>
<th>θ</th>
<th>E</th>
<th>T</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>{}</td>
<td>${ p(X, f(X)) = p(Z, Z) }$</td>
<td>$p(X, f(X))$</td>
<td>$p(Z, Z)$</td>
</tr>
<tr>
<td>{}</td>
<td>${ X = Z, f(X) = Z }$</td>
<td>X</td>
<td>Z</td>
</tr>
<tr>
<td>${ X = Z }$</td>
<td>${ f(Z) = Z }$</td>
<td>$f(Z)$</td>
<td>Z</td>
</tr>
<tr>
<td>fail</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A (Schematic) Interpreter for Logic Programs (SLD–resolution)

Input: A logic program P, a query Q
Output: Q_μ (answer substitution) if Q is provable from P, failure otherwise

Algorithm:

1. Initialize the “resolvent” R to be \{Q\}
2. While R is nonempty do:
 2.1. Take the leftmost literal A in R
 2.2. Choose a (renamed) clause $A' \leftarrow B_1, \ldots, B_n$ from P, such that A and A' unify with unifier θ
 (if no such clause can be found, branch is failure; explore another branch)
 2.3. Remove A from R, add B_1, \ldots, B_n to R
 2.4. Apply θ to R and Q
3. If R is empty, output Q (a solution). Explore another branch for more sol’s.

- Step 2.2 defines alternative paths to be explored to find answer(s); execution explores this tree (for example, breadth-first).
• Since step 2.2 is left open, a given logic *programming* system must specify how it deals with this by providing one (or more)

 ◦ **Search rule(s):** “how are clauses/branches selected in 2.2.”

• If the search rule is not specified execution is *nondeterministic*, since choosing a different clause (in step 2.2) can lead to different solutions (finding solutions in a different order).

Example (two valid executions):

<table>
<thead>
<tr>
<th>?- pet(X).</th>
<th>?- pet(X).</th>
</tr>
</thead>
<tbody>
<tr>
<td>X = spot ? ;</td>
<td>X = barry ? ;</td>
</tr>
<tr>
<td>X = barry ? ;</td>
<td>X = spot ? ;</td>
</tr>
<tr>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>?-</td>
<td>?-</td>
</tr>
</tbody>
</table>

• In fact, there is also some freedom in step 2.1, i.e., a system may also specify:

 ◦ **Computation rule(s):** “how are literals selected in 2.1.”
Running programs

C_1: pet(X) :- animal(X), barks(X).

C_2: pet(X) :- animal(X), meows(X).

C_3: animal(spot).

C_4: animal(barry).

C_5: animal(hobbes).

C_6: barks(spot).

C_7: meows(barry).

C_8: roars(hobbes).

$\text{•} \quad \text{:- pet(P).}$

\begin{center}
\begin{tabular}{|c|c|c|c|}
\hline
Q & R & Clause & θ \\
\hline
pet(P) & pet(P) & C_2^* & \{ $P = X_1$ \} \\
\hline
pet(X_1) & animal(X_1), meows(X_1) & C_4^* & \{ $X_1 = \text{barry}$ \} \\
\hline
pet(barry) & meows(barry) & C_7 & \{ \} \\
\hline
pet(barry) & -- & -- & -- \\
\hline
\end{tabular}
\end{center}

* means there is a choice-point, i.e., there are other clauses whose head unifies.

$\text{•} \quad \text{System response: } P = \text{barry} \ ?$

$\text{•} \quad \text{If we type ; after the ? prompt (i.e., we ask for another solution) the system can go and execute a different branch (i.e., a different choice in } C_2^* \text{ or } C_4^* \text{).} $
Running programs (different strategy)

C₁: pet(X) :- animal(X), barks(X).
C₂: pet(X) :- animal(X), meows(X).
C₃: animal(spot).
C₄: animal(barry).
C₅: animal(hobbes).
C₆: barks(spot).
C₇: meows(barry).
C₈: roars(hobbes).

• :- pet(P). (different strategy)

<table>
<thead>
<tr>
<th>Q</th>
<th>R</th>
<th>Clause</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>pet(P)</td>
<td>pet(P)</td>
<td>C₁*</td>
<td>{P = X₁}</td>
</tr>
<tr>
<td>pet(X₁)</td>
<td>animal(X₁), barks(X₁)</td>
<td>C₅*</td>
<td>{X₁ = hobbes}</td>
</tr>
<tr>
<td>pet(hobbes)</td>
<td>barks(hobbes)</td>
<td>???</td>
<td>failure</td>
</tr>
</tbody>
</table>

→ explore another branch (different choice in C₁* or C₅*) to find a solution. We take C₃ instead of C₅:

<table>
<thead>
<tr>
<th>Q</th>
<th>R</th>
<th>Clause</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>pet(P)</td>
<td>pet(P)</td>
<td>C₁*</td>
<td>{P = X₁}</td>
</tr>
<tr>
<td>pet(X₁)</td>
<td>animal(X₁), barks(X₁)</td>
<td>C₃*</td>
<td>{X₁ = spot}</td>
</tr>
<tr>
<td>pet(spot)</td>
<td>barks(spot)</td>
<td>C₆</td>
<td>{}</td>
</tr>
<tr>
<td>pet(spot)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
The Search Tree

- A query + a logic program together specify a search tree.

 Example: query `:- pet(X)` with the previous program generates this search tree (the boxes represent the “and” parts [except leaves]):

- Different query → different tree.
- The search and computation rules explain how the search tree will be explored during execution.
- How can we achieve completeness (guarantee that all solutions will be found)?
Characterization of The Search Tree

- All solutions are at \textit{finite depth} in the tree.
- Failures can be at finite depth or, in some cases, be an infinite branch.
Depth-First Search

- Incomplete: may fall through an infinite branch before finding all solutions.
- But very efficient: it can be implemented with a call stack, very similar to a traditional programming language.
Breadth-First Search

- Will find all solutions before falling through an infinite branch.
- But costly in terms of time and memory.
- Used in all the following examples (via Ciao’s \texttt{bf} package).
Selecting breadth-first or depth-first search

- In the Ciao system we can select the search rule using the *packages* mechanism.

- Files should start with the following line:
 - To execute in *breadth-first* mode:
    ```prolog
    :- module(_,_,['bf/bfall']).
    ```
 - To execute in *depth-first* mode:
    ```prolog
    :- module(_,_,[]).
    ```

See the part on Developing Programs with a Logic Programming System for more details on the particular system used in the course (Ciao).
Role of Unification in Execution and Modes

- As mentioned before, unification used to access data and give values to variables.

 Example: Consider query `:- animal(A), named(A,Name).` with:

 `animal(dog(barry)). named(dog(Name),Name).`

- Also, unification is used to pass parameters in procedure calls and to return values upon procedure exit.

<table>
<thead>
<tr>
<th>Q</th>
<th>R</th>
<th>Clause</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>pet(P)</td>
<td>pet(P)</td>
<td>C_1^*</td>
<td>{ P=X_1 }</td>
</tr>
<tr>
<td>pet(X_1)</td>
<td>animal(X_1), barks(X_1)</td>
<td>C_3^*</td>
<td>{ X_1=spot }</td>
</tr>
<tr>
<td>pet(spot)</td>
<td>barks(spot)</td>
<td>C_6</td>
<td>{}</td>
</tr>
<tr>
<td>pet(spot)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

- In fact, argument positions are not fixed a priori to be input or output.

 Example: Consider query `:- pet(spot).` vs. `:- pet(X).`

 or `:- plus(s(0),s(s(0)),Z).` vs. `:- plus(s(0),Y,s(s(s(0)))).`

- Thus, procedures can be used in different **modes** (different sets of arguments are input or output in each mode).
Database Programming

- A Logic Database is a set of facts and rules (i.e., a logic program):

 father_of(john, peter).
 father_of(john, mary).
 father_of(peter, michael).
 mother_of(mary, david).

 grandfather_of(L, M) :- father_of(L, N),
 father_of(N, M).
 grandfather_of(X, Y) :- father_of(X, Z),
 mother_of(Z, Y).

- Given such database, a logic programming system can answer questions (queries) such as:

 ?- father_of(john, peter).
 yes
 ?- father_of(john, david).
 no
 ?- father_of(john, X).
 X = peter ;
 X = mary

- Rules for grandmother_of(X, Y)?

 ?- grandfather_of(X, michael).
 X = john
 ?- grandfather_of(X, Y).
 X = john, Y = michael ;
 X = john, Y = david
 ?- grandfather_of(X, X).
 no
Another example:

resistor(power, n1).
resistor(power, n2).
transistor(n2, ground, n1).
transistor(n3, n4, n2).
transistor(n5, ground, n4).

inverter(Input, Output) :-
 transistor(Input, ground, Output), resistor(power, Output).

nand_gate(Input1, Input2, Output) :-
 transistor(Input1, X, Output), transistor(Input2, ground, X),
 resistor(power, Output).

and_gate(Input1, Input2, Output) :-
 nand_gate(Input1, Input2, X), inverter(X, Output).

Query and_gate(In1, In2, Out) has solution: In1 = n3, In2 = n5, Out = n1
Structured Data and Data Abstraction (and the ’=’ Predicate)

- **Data structures** are created using (complex) terms.

- Structuring data is important:

  ```
  course(complog,wed,19,00,20,30,'M.','Hermenegildo',new,5102).
  ```

- When is the Computational Logic course?

  ```
  ```

- Structured version:

  ```
  course(complog,Time,Lecturer,Location) :-
  Time = t(wed,18:30,20:30),
  Lecturer = lect('M.','Hermenegildo'),
  Location = loc(new,5102).
  ```

Note: “X=Y” is equivalent to “’=’(X,Y)” where the predicate =/2 is defined as the fact “’=’(X,X).” – Plain unification!

- Equivalent to:

  ```
  course(complog, t(wed,18:30,20:30),
  lect('M.','Hermenegildo'), loc(new,5102)).
  ```
Structured Data and Data Abstraction (and The Anonymous Variable)

• Given:

\[
\text{course(complog,Time,Lecturer, Location) :-}
\]
\[
\begin{align*}
\text{Time} &= \text{t(wed,18:30,20:30),} \\
\text{Lecturer} &= \text{lect('M.','Hermenegildo'),} \\
\text{Location} &= \text{loc(new,5102).}
\end{align*}
\]

• When is the Computational Logic course?

```prolog
?- course(complog, Time, A, B).
```

has solution:

```
Time=t(wed,18:30,20:30), A=lect('M.','Hermenegildo'), B=loc(new,5102)
```

• Using the *anonymous variable* ("_"):

```prolog
?- course(complog,Time, _, _).
```

has solution:

```
Time=t(wed,18:30,20:30)
```
Structured Data and Data Abstraction (Contd.)

- The circuit example revisited:

```prolog
resistor(r1,power,n1).  transistor(t1,n2,ground,n1).
resistor(r2,power,n2).  transistor(t2,n3,n4,n2).
transistor(t3,n5,ground,n4).

inverter(inv(T,R),Input,Output) :-
    transistor(T,Input,ground,Output),
    resistor(R,power,Output).

nand_gate(nand(T1,T2,R),Input1,Input2,Output) :-
    transistor(T1,Input1,X,Output),
    transistor(T2,Input2,ground,X),
    resistor(R,power,Output).

and_gate(and(N,I),Input1,Input2,Output) :-
    nand_gate(N,Input1,Input2,X), inverter(I,X,Output).
```

- The query

```prolog
:- and_gate(G,In1,In2,Out).
```

has solution:

```
G=and(nand(t2,t3,r2),inv(t1,r1)), In1=n3, In2=n5, Out=n1
```
Logic Programs and the Relational DB Model

• Codd’s Relational Model

<table>
<thead>
<tr>
<th>Relation</th>
<th>Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuple</td>
<td>Row</td>
</tr>
<tr>
<td>Attribute</td>
<td>Column</td>
</tr>
</tbody>
</table>

• Example:

```
<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>Sex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>20</td>
<td>M</td>
</tr>
<tr>
<td>Jones</td>
<td>21</td>
<td>F</td>
</tr>
<tr>
<td>Smith</td>
<td>36</td>
<td>M</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>Name</th>
<th>Town</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>London</td>
<td>15</td>
</tr>
<tr>
<td>Brown</td>
<td>York</td>
<td>5</td>
</tr>
<tr>
<td>Jones</td>
<td>Paris</td>
<td>21</td>
</tr>
<tr>
<td>Smith</td>
<td>Brussels</td>
<td>15</td>
</tr>
<tr>
<td>Smith</td>
<td>Santander</td>
<td>5</td>
</tr>
</tbody>
</table>
```

• The order of the rows is immaterial.
• (Duplicate rows are not allowed)
Logic Programs and the Relational DB Model (Contd.)

<table>
<thead>
<tr>
<th>Relational Database</th>
<th>Logic Programming</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relation Name</td>
<td>Predicate symbol</td>
</tr>
<tr>
<td>Relation</td>
<td>Procedure consisting of ground facts (facts without variables)</td>
</tr>
<tr>
<td>Tuple</td>
<td>Ground fact</td>
</tr>
<tr>
<td>Attribute</td>
<td>Argument of predicate</td>
</tr>
</tbody>
</table>

- **Example:**

 person(brown, 20, male).
 person(jones, 21, female).
 person(smith, 36, male).

- **Example:**

 lived_in(brown, london, 15).
 lived_in(brown, york, 5).
 lived_in(jones, paris, 21).
 lived_in(smith, brussels, 15).
 lived_in(smith, santander, 5).

<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>Sex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>20</td>
<td>M</td>
</tr>
<tr>
<td>Jones</td>
<td>21</td>
<td>F</td>
</tr>
<tr>
<td>Smith</td>
<td>36</td>
<td>M</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Town</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>London</td>
<td>15</td>
</tr>
<tr>
<td>Brown</td>
<td>York</td>
<td>5</td>
</tr>
<tr>
<td>Jones</td>
<td>Paris</td>
<td>21</td>
</tr>
<tr>
<td>Smith</td>
<td>Brussels</td>
<td>15</td>
</tr>
<tr>
<td>Smith</td>
<td>Santander</td>
<td>5</td>
</tr>
</tbody>
</table>

“Person”

“Lived in”
The operations of the relational model are easily implemented as rules.

- **Union:**

 \[
 \text{r}_\text{union}_s(X_1,\ldots,X_n) \leftarrow r(X_1,\ldots,X_n).
 \]
 \[
 \text{r}_\text{union}_s(X_1,\ldots,X_n) \leftarrow s(X_1,\ldots,X_n).
 \]

- **Set Difference:**

 \[
 \text{r}_\text{diff}_s(X_1,\ldots,X_n) \leftarrow r(X_1,\ldots,X_n), \text{not } s(X_1,\ldots,X_n).
 \]
 \[
 \text{r}_\text{diff}_s(X_1,\ldots,X_n) \leftarrow s(X_1,\ldots,X_n), \text{not } r(X_1,\ldots,X_n).
 \]
 (we postpone the discussion on *negation* until later.)

- **Cartesian Product:**

 \[
 \text{r}_X_s(X_1,\ldots,X_m,X_{m+1},\ldots,X_{m+n}) \leftarrow r(X_1,\ldots,X_m),s(X_{m+1},\ldots,X_{m+n}).
 \]

- **Projection:**

 \[
 \text{r13}(X_1,X_3) \leftarrow r(X_1,X_2,X_3).
 \]

- **Selection:**

 \[
 \text{r}_\text{selected}(X_1,X_2,X_3) \leftarrow r(X_1,X_2,X_3),\leq(X_2,X_3).
 \]
 (see later for definition of \(\leq/2\))
• Derived operations – some can be expressed more directly in LP:
 ◦ Intersection:
 \[
 r \text{_meet_s}(X_1, \ldots, X_n) \leftarrow r(X_1, \ldots, X_n), \ s(X_1, \ldots, X_n).
 \]
 ◦ Join:
 \[
 r \text{_joinX2_s}(X_1, \ldots, X_n) \leftarrow r(X_1, X_2, X_3, \ldots, X_n), \ s(X_1', X_2, X_3', \ldots, X_n').
 \]
• Duplicates an issue: see “setof” later in Prolog.
Deductive Databases

- The subject of “deductive databases” uses these ideas to develop *logic-based databases*.
 - Often syntactic restrictions (a subset of definite programs) used (e.g. “Datalog” – no functors, no existential variables).
 - Variations of a “bottom-up” execution strategy used: Use the T_p operator (explained in the theory part) to compute the model, restrict to the query.
Recursive Programming

- **Example:** ancestors.

  ```prolog
  parent(X,Y) :- father(X,Y).
  parent(X,Y) :- mother(X,Y).
  
  ancestor(X,Y) :- parent(X,Y).
  ancestor(X,Y) :- parent(X,Z), parent(Z,Y).
  ancestor(X,Y) :- parent(X,Z), parent(Z,W), parent(W,Y).
  ancestor(X,Y) :- parent(X,Z), parent(Z,W), parent(W,K), parent(K,Y).
  ...  
  ```

- **Defining ancestor recursively:**

  ```prolog
  parent(X,Y) :- father(X,Y).
  parent(X,Y) :- mother(X,Y).
  
  ancestor(X,Y) :- parent(X,Y).
  ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).
  ```

- **Exercise:** define “related”, “cousin”, “same generation”, etc.
Types

- **Type**: a (possibly infinite) set of terms.
- **Type definition**: A program defining a type.
- **Example**: Weekday:
 - Set of terms to represent: Monday, Tuesday, Wednesday, ...
 - Type definition:
 - weekday('Monday').
 - weekday('Tuesday'). ...
- **Example**: Date (weekday * day in the month):
 - Set of terms to represent: date('Monday', 23), date(Tuesday, 24), ...
 - Type definition:
 - date(date(W,D)) :- weekday(W), day_of_month(D).
 - day_of_month(1).
 - day_of_month(2).
 - ...
 - day_of_month(31).
Recursive Programming: Recursive Types

- **Recursive types**: defined by recursive logic programs.
- **Example**: natural numbers (simplest recursive data type):
 - Set of terms to represent: \(0, s(0), s(s(0)), \ldots\)
 - Type definition:

 \[
 \begin{align*}
 \text{nat}(0) & . \\
 \text{nat}(s(X)) & :- \text{nat}(X).
 \end{align*}
 \]

 A *minimal recursive predicate*: one unit clause and one recursive clause (with a single body literal).
- Types are *runnable* and can be used to check or produce values:
 - \(?- \text{nat}(X) \Rightarrow X=0; X=s(0); X=s(s(0)); \ldots\)
- We can reason about **complexity**, for a given class of queries (“mode”). E.g., for mode \(\text{nat}(\text{ground})\) complexity is *linear* in size of number.
- **Example**: integers:
 - Set of terms to represent: \(0, s(0), -s(0), \ldots\)
 - Type definition:

 \[
 \begin{align*}
 \text{integer}(X) & :- \text{nat}(X). \\
 \text{integer}(-X) & :- \text{nat}(X).
 \end{align*}
 \]
Recursive Programming: Arithmetic

- Defining the natural order (\leq) of natural numbers:

 \[
 \text{less_or_equal}(\emptyset,X) :- \ \text{nat}(X).
 \]

 \[
 \text{less_or_equal}(\text{s}(X),\text{s}(Y)) :- \ \text{less_or_equal}(X,Y).
 \]

- Multiple uses: \text{less_or_equal}(\text{s}(\emptyset),\text{s}(\emptyset))), \text{less_or_equal}(X,\emptyset), ...

- Multiple solutions:

 \[
 \text{less_or_equal}(X,\text{s}(\emptyset)), \text{less_or_equal}(\text{s}(\emptyset),Y), \text{etc.}
 \]

- Addition:

 \[
 \text{plus}(\emptyset,X,X) :- \ \text{nat}(X).
 \]

 \[
 \text{plus}(\text{s}(X),Y,\text{s}(Z)) :- \ \text{plus}(X,Y,Z).
 \]

- Multiple uses: \text{plus}(\text{s}(\emptyset),\text{s}(\emptyset),Z), \text{plus}(\text{s}(\emptyset),Y,\text{s}(\emptyset))

- Multiple solutions: \text{plus}(X,Y,\text{s}(\text{s}(\emptyset)))), \text{etc.}
Recursive Programming: Arithmetic

- Another possible definition of addition:

  ```prolog
  plus(X,0,X) :- nat(X).
  plus(X,s(Y),s(Z)) :- plus(X,Y,Z).
  ```

- The meaning of `plus` is the same if both definitions are combined.

- Not recommended: several proof trees for the same query → not efficient, not concise. We look for minimal axiomatizations.

- The art of logic programming: finding compact and computationally efficient formulations!

- Try to define: `times(X,Y,Z)` (Z = X*Y), `exp(N,X,Y)` (Y = X^N), `factorial(N,F)` (F = N!), `minimum(N1,N2,Min)`, ...
Recursive Programming: Arithmetic

- Definition of \(\text{mod}(X, Y, Z) \)
 “\(Z \) is the remainder from dividing \(X \) by \(Y \)”

\[\exists Q \text{ s.t. } X = Y \times Q + Z \land Z < Y \]

\[\Rightarrow \]

\[\text{mod}(X, Y, Z) :\text{-} \text{less}(Z, Y), \text{times}(Y, Q, W), \text{plus}(W, Z, X). \]

\[\text{less}(0, s(X)) :\text{-} \text{nat}(X). \]

\[\text{less}(s(X), s(Y)) :\text{-} \text{less}(X, Y). \]

- Another possible definition:

\[\text{mod}(X, Y, X) :\text{-} \text{less}(X, Y). \]

\[\text{mod}(X, Y, Z) :\text{-} \text{plus}(X1, Y, X), \text{mod}(X1, Y, Z). \]

- The second is much more efficient than the first one (compare the size of the proof trees).
The Ackermann function:

- \(\text{ackermann}(0,N) = N+1 \)
- \(\text{ackermann}(M,0) = \text{ackermann}(M-1,1) \)
- \(\text{ackermann}(M,N) = \text{ackermann}(M-1,\text{ackermann}(M,N-1)) \)

In Peano arithmetic:

- \(\text{ackermann}(0,N) = s(N) \)
- \(\text{ackermann}(s(M1),0) = \text{ackermann}(M1,s(0)) \)
- \(\text{ackermann}(s(M1),s(N1)) = \text{ackermann}(M1,\text{ackermann}(s(M1),N1)) \)

Can be defined as:

\[
\begin{align*}
\text{ackermann}(0,N,s(N)) &= . \\
\text{ackermann}(s(M1),0,Val) &:= \text{ackermann}(M1,s(0),Val). \\
\text{ackermann}(s(M1),s(N1),Val) &:= \text{ackermann}(s(M1),N1,Val1), \\
&\quad \text{ackermann}(M1,Val1,Val). \\
\end{align*}
\]

In general, functions can be coded as a predicate with one more argument, which represents the output (and additional syntactic sugar often available).
Recursive Programming: Arithmetic/Functions (Functional Syntax)

- Syntactic support available (see, e.g., the Ciao fsyntax and functional packages).
- The Ackermann function (Peano) in Ciao’s functional Syntax and defining s as a prefix operator:

```
:- use_package(functional).
:- op(500, fy, s).
ackermann( 0, N) := s N.
ackermann(s M, 0) := ackermann(M, s 0).
ackermann(s M, s N) := ackermann(M, ackermann(s M, N) ).
```

- Convenient in other cases – e.g. for defining types:

```
nat(0).
nat(s(X) :- nat(X).
```

Using special := notation for the “return” (last) the argument:

```
nat := 0.
nat := s(X) :- nat(X).
```
Moving body call to head using the ~ notation (“evaluate and replace with result”):

\[
\text{nat} := 0.
\text{nat} := s(\text{nat}).
\]

“~” not needed with functional package if inside its own definition:

\[
\text{nat} := 0.
\text{nat} := s(\text{nat}).
\]

Using an \texttt{:- op(500,fy,s)} declaration to define s as a \textit{prefix operator}:

\[
\text{nat} := 0.
\text{nat} := s \text{ nat}.
\]

Using “|” (disjunction):

\[
\text{nat} := 0 \mid s \text{ nat}.
\]

Which exactly equivalent to:

\[
\text{nat}(0).
\text{nat}(s(X) :- \text{nat}(X)).
\]
Recursive Programming: Lists

- Binary structure: first argument is *element*, second argument is *rest* of the list.

- We need:
 - A constant symbol: we use the *constant* \([\]\) (\(\rightarrow\) denotes the empty list).
 - A functor of arity 2: traditionally the dot “." (which is overloaded).

- Syntactic sugar: the term \(\langle X,Y \rangle\) is denoted by \([X|Y]\) (\(X\) is the *head*, \(Y\) is the *tail*).

<table>
<thead>
<tr>
<th>Formal object</th>
<th>“Cons pair” syntax</th>
<th>“Element” syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\langle a,[] \rangle)</td>
<td>([a</td>
<td>[]])</td>
</tr>
<tr>
<td>(\langle a,\langle b,[] \rangle \rangle)</td>
<td>([a</td>
<td>[b</td>
</tr>
<tr>
<td>(\langle a,\langle b,\langle c,[] \rangle \rangle \rangle)</td>
<td>([a</td>
<td>[b</td>
</tr>
<tr>
<td>(\langle a,X \rangle)</td>
<td>([a</td>
<td>X])</td>
</tr>
<tr>
<td>(\langle a,\langle b,X \rangle \rangle)</td>
<td>([a</td>
<td>[b</td>
</tr>
</tbody>
</table>

- Note that:
 - \([a,b]\) and \([a|X]\) unify with \(\{X = [b]\}\)
 - \([a]\) and \([a|X]\) unify with \(\{X = [\]\}\)
 - \([a]\) and \([a,b|X]\) do not unify
 - \([\] \) and \([X]\) do not unify
Recursive Programming: Lists (Contd.)

- Type definition (no syntactic sugar):

  ```prolog
  list([]).
  list.(X,Y) :- list(Y).
  ```

- Type definition, with some syntactic sugar ([] notation):

  ```prolog
  list([]).
  list([X|Y]) :- list(Y).
  ```

- Type definition, using also functional package:

  ```prolog
  list := [] | [_|list].
  ```

- “Exploring” the type:

  ```prolog
  ?- list(L).
  L = [] ? ;
  L = [_] ? ;
  L = [_,_] ? ;
  L = [_,_,_] ?
  ...
  ```
• X is a *member* of the list Y:

 member(a,[a]). member(b,[b]). etc. \(\Rightarrow\) member(X,[X]).

 member(a,[a,c]). member(b,[b,d]). etc. \(\Rightarrow\) member(X,[X,Y]).

 member(a,[a,c,d]). member(b,[b,d,l]). etc. \(\Rightarrow\) member(X,[X,Y,Z]).

 \[\Rightarrow \text{member}(X,[X|Y]) :- \text{list}(Y). \]

 member(a,[c,a]), member(b,[d,b]). etc. \(\Rightarrow\) member(X,[Y,X]).

 member(a,[c,d,a]). member(b,[s,t,b]). etc. \(\Rightarrow\) member(X,[Y,Z,X]).

 \[\Rightarrow \text{member}(X,[Y|Z]) :- \text{member}(X,Z). \]

• Resulting definition:

 member(X,[X|Y]) :- list(Y).

 member(X,[_|T]) :- member(X,T).

• Uses of member(X,Y):

 ◦ checking whether an element is in a list (member(b,[a,b,c]))

 ◦ finding an element in a list (member(X,[a,b,c]))

 ◦ finding a list containing an element (member(a,Y))
• Combining lists and naturals:
 ◇ Computing the length of a list:

 \[
 \text{len([],0).} \\
 \text{len([H|T],s(LT)) :- len(T,LT)}
 \]

 ◇ Adding all elements of a list:

 \[
 \text{sumlist([],0).} \\
 \text{sumlist([H|T],S) :- sumlist(T,ST), plus(ST,H,S).}
 \]

 ◇ The type of lists of natural numbers:

 \[
 \text{natlist([],0).} \\
 \text{natlist([H|T]) :- natlist(T,ST), \textit{nat}(ST,H,S).} \\
 \text{or:} \\
 \text{natlist := [nat|natlist].}
 \]
Recursive Programming: Lists (Contd.)

- Exercises:
 - Define: \texttt{prefix(X,Y)} (the list \(X\) is a prefix of the list \(Y\)), e.g. \texttt{prefix([a, b], [a, b, c, d])}
 - Define: \texttt{suffix(X,Y)}, \texttt{sublist(X,Y)}, ...
Recursive Programming: Lists (Contd.)

- Concatenation of lists:

 ◦ Base case:
 append([], [a], [a]). append([], [a, b], [a, b]). etc.
 \[\Rightarrow \text{append}([], Ys, Ys) :- \text{list}(Ys). \]

 ◦ Rest of cases (first step):
 append([a], [b], [a, b]).
 append([a], [b, c], [a, b, c]). etc.
 \[\Rightarrow \text{append}([X], Ys, [X|Ys]) :- \text{list}(Ys). \]
 append([a, b], [c], [a, b, c]).
 append([a, b], [c, d], [a, b, c, d]). etc.
 \[\Rightarrow \text{append}([X, Z], Ys, [X, Z|Ys]) :- \text{list}(Ys). \]

This is still infinite → we need to generalize more.
Recursive Programming: Lists (Contd.)

- Second generalization:
 \[\text{append}([X], Ys, [X|Ys]) :- \text{list}(Ys).\]
 \[\text{append}([X,Z], Ys, [X,Z|Ys]) :- \text{list}(Ys).\]
 \[\text{append}([X,Z,W], Ys, [X,Z,W|Ys]) :- \text{list}(Ys).\]

\[\Rightarrow \text{append}([X|Xs], Ys, [X|Zs]) :- \text{append}(Xs,Ys,Zs).\]

- So, we have:

\[
\begin{align*}
\text{append}([], Ys, Ys) & :- \text{list}(Ys). \\
\text{append}([X|Xs], Ys, [X|Zs]) & :- \text{append}(Xs,Ys,Zs).
\end{align*}
\]

- Another way of reasoning: thinking inductively.

 ◦ The base case is:
 \[\text{ciaoinlineappend}([], Ys, Ys) :- \text{list}(Ys).\]

 ◦ If we assume that \[\text{append}(Zs, Ys, Zs)\] works for some iteration, then, in the next one, the following holds: \[\text{append}(s(Zs), Ys, s(Zs))\].
Recursive Programming: Lists (Contd.)

- Uses of append:
 - Concatenate two given lists:

    ```prolog
    ?- append([a, b, c], [d, e], L).
    L = [a, b, c, d, e] ?
    
    ?- append([a, b, c, d, e], [a, b, c, d, e], L).
    L = [a, b, c, d, e] ?
    
    ?- append([a, b, c, d, e], [a, b, c, d, e], L).
    L = [a, b, c, d, e] ?
    ...
    
    ?- append([a, b, c, d, e], [a, b, c, d, e], L).
    L = [a, b, c, d, e] ?
    ...
    ```
 - Find differences between lists:
    ```prolog
    ?- append(D, [d, e], [a, b, c, d, e]).
    D = [a, b, c] ?
    
    ?- append(D, [d, e], [a, b, c, d, e]).
    D = [a, b, c] ?
    
    ?- append(D, [d, e], [a, b, c, d, e]).
    D = [a, b, c] ?
    ```
 - Split a list:
    ```prolog
    ?- append(A, B, [a, b, c, d, e]).
    A = [],
    B = [a, b, c, d, e] ? ;
    A = [a],
    B = [b, c, d, e] ? ;
    A = [a, b],
    B = [c, d, e] ? ;
    A = [a, b, c],
    B = [d, e] ?
    ```
• reverse(Xs,Ys): Ys is the list obtained by reversing the elements in the list Xs
 It is clear that we will need to traverse the list Xs
 For each element X of Xs, we must put X at the end of the rest of the Xs list
 already reversed:

 reverse([X|Xs],Ys) :-
 reverse(Xs,Zs),
 append(Zs,[X],Ys).

 How can we stop?
 reverse([],[]).

• As defined, reverse(Xs,Ys) is very inefficient. Another possible definition:
 (uses an accumulating parameter)

 reverse(Xs,Ys) :- reverse(Xs,[],Ys).
 reverse([],Ys,Ys).
 reverse([X|Xs],Acc,Ys) :- reverse(Xs,[X|Acc],Ys).

⇒ Find the differences in terms of efficiency between the two definitions.
Recursive Programming: Binary Trees

- Represented by a ternary functor tree(Element,Left,Right).
- Empty tree represented by void.
- Definition:

```prolog
binary_tree(void).  
binary_tree(tree(Element,Left,Right)) :-
    binary_tree(Left),
    binary_tree(Right).
```

- Defining tree_member(Element,Tree):

```prolog
  tree_member(X,tree(X,Left,Right)) :-
      binary_tree(Left),
      binary_tree(Right).
  tree_member(X,tree(Y,Left,Right)) :-  tree_member(X,Left).
  tree_member(X,tree(Y,Left,Right)) :-  tree_member(X,Right).
```
• Defining `pre_order(Tree,Elements)`:
 Elements is a list containing the elements of Tree traversed in preorder.

  ```
  pre_order(void,[]).
  pre_order(tree(X,Left,Right),Elements) :-
      pre_order(Left,ElementsLeft),
      pre_order(Right,ElementsRight),
      append([X|ElementsLeft],ElementsRight,Elements).
  ```

• Exercise – define:
 ◇ `in_order(Tree,Elements)`
 ◇ `post_order(Tree,Elements)`
Polymorphism

• Note that the two definitions of `member/2` can be used *simultaneously*:

```prolog
lt_member(X,[X|Y]) :- list(Y).
lt_member(X,[_|T]) :- lt_member(X,T).

lt_member(X,tree(X,L,R)) :- binary_tree(L), binary_tree(R).
lt_member(X,tree(Y,L,R)) :- lt_member(X,L).
lt_member(X,tree(Y,L,R)) :- lt_member(X,R).
```

Lists only unify with the first two clauses, trees with clauses 3–5!

• `:- lt_member(X,[b,a,c]).`

 `X = b ; X = a ; X = c`

• `:- lt_member(X,tree(b,tree(a,void,void),tree(c,void,void))).`

 `X = b ; X = a ; X = c`

• Also, try (somewhat surprising): `:- lt_member(M,T).`
Recursive Programming: Manipulating Symbolic Expressions

- Recognizing (and generating!) polynomials in some term X:
 - X is a polynomial in X
 - a constant is a polynomial in X
 - sums, differences and products of polynomials in X are polynomials
 - also polynomials raised to the power of a natural number and the quotient of a polynomial by a constant

```
 polynomial(X,X).
polynomial(Term,X) :- pconstant(Term).
polynomial(Term1 + Term2,X) :- polynomial(Term1,X), polynomial(Term2,X).
polynomial(Term1 - Term2,X) :- polynomial(Term1,X), polynomial(Term2,X).
polynomial(Term1 * Term2,X) :- polynomial(Term1,X), polynomial(Term2,X).
polynomial(Term1 / Term2,X) :- polynomial(Term1,X), pconstant(Term2).
polynomial(Term1 ^ N,X) :- polynomial(Term1,X), nat(N).
```
Recursive Programming: Manipulating Symb. Expressions (Contd.)

- **Symbolic differentiation:** deriv(Expression, X, DifferentiatedExpression)

 deriv(X, X, s(0)).
 deriv(C, X, 0) :- pconstant(C).
 deriv(U + V, X, DU + DV) :- deriv(U, X, DU), deriv(V, X, DV).
 deriv(U - V, X, DU - DV) :- deriv(U, X, DU), deriv(V, X, DV).
 deriv(U * V, X, DU * V + U * DV) :- deriv(U, X, DU), deriv(V, X, DV).
 deriv(U / V, X, (DU * V - U * DV) / V ^ s(s(0))) :- deriv(U, X, DU), deriv(V, X, DV).
 deriv(U ^ s(N), X, s(N) * U ^ N * DU) :- deriv(U, X, DU), nat(N).
 deriv(log(U), X, DU / U) :- deriv(U, X, DU).

 ...

- ?- deriv(s(s(s(0))) * x + s(s(0)), x, Y).

- A simplification step can be added.
- Recognizing the sequence of characters accepted by the following *non-deterministic, finite automaton* (NDFA):

 ![Diagram of NDFA]

 where q_0 is both the *initial* and the *final* state.

- Strings are represented as lists of constants (e.g., `[a, b, b]`).

- Program:

  ```prolog
  initial(q0).
  delta(q0,a,q1).
  delta(q1,b,q0).
  final(q0).
  delta(q1,b,q1).

  accept(S) :- initial(Q), accept_from(S,Q).

  accept_from([],Q) :- final(Q).
  accept_from([X|Xs],Q) :- delta(Q,X,NewQ), accept_from(Xs,NewQ).
  ```
A *nondeterministic, stack, finite automaton* (NDSFA):

\[
\text{accept}(S) :- \text{initial}(Q), \text{accept}_\text{from}(S,Q,[]) .
\]

\[
\text{accept}_\text{from}([],Q,[]) :- \text{final}(Q) .
\]

\[
\text{accept}_\text{from}([X|Xs],Q,S) :- \text{delta}(Q,X,S,NewQ,NewS),
\quad \text{accept}_\text{from}(Xs,NewQ,NewS) .
\]

\[
\text{initial}(q0) .
\]

\[
\text{final}(q1) .
\]

\[
\text{delta}(q0,X,Xs,q0,[X|Xs]) .
\]

\[
\text{delta}(q0,X,Xs,q1,[X|Xs]) .
\]

\[
\text{delta}(q0,X,Xs,q1,Xs) .
\]

\[
\text{delta}(q1,X,[X|Xs],q1,Xs) .
\]

- What sequence does it recognize?
Recursive Programming: Towers of Hanoi

- **Objective:**
 - Move tower of N disks from peg a to peg b, with the help of peg c.

- **Rules:**
 - Only one disk can be moved at a time.
 - A larger disk can never be placed on top of a smaller disk.

![Diagram](image-url)
• We will call the main predicate `hanoi_moves(N, Moves)`

• \(N \) is the number of disks and \(Moves \) the corresponding list of “moves”.

• Each move `move(A, B)` represents that the top disk in A should be moved to B.

• **Example:**

```
hanoi_moves( s(s(s(0))),
            [ move(a,b), move(a,c), move(b,c), move(a,b),
              move(c,a), move(c,b), move(a,b) ])
```

is represented by:

```
  |  |  |  |
/ |  |  |  |\
|
/|
/|
/
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
/|
• A general rule:

We capture this in a predicate \( hanoi(N, \text{Orig}, \text{Dest}, \text{Help}, \text{Moves}) \) where "Moves contains the moves needed to move a tower of \( N \) disks from peg \( \text{Orig} \) to peg \( \text{Dest} \), with the help of peg \( \text{Help} \)."

\[
\begin{align*}
\text{hanoi}(s(0), \text{Orig}, \text{Dest}, \_\text{Help}, [\text{move(Orig, Dest)}]). \\
\text{hanoi}(s(N), \text{Orig}, \text{Dest}, \text{Help}, \text{Moves}) & :- \\
& \text{hanoi}(N, \text{Orig}, \text{Help}, \text{Dest}, \text{Moves1}), \\
& \text{hanoi}(N, \text{Help}, \text{Dest}, \text{Orig}, \text{Moves2}), \\
& \text{append}(\text{Moves1}, [\text{move(Orig, Dest)}|\text{Moves2}], \text{Moves}).
\end{align*}
\]

• And we simply call this predicate:

\[
\begin{align*}
\text{hanoi_moves}(N, \text{Moves}) & :- \\
& \text{hanoi}(N, a, b, c, \text{Moves}).
\end{align*}
\]
Learning to Compose Recursive Programs

- To some extent it is a simple question of practice.
- By generalization (as in the previous examples): elegant, but sometimes difficult? (Not the way most people do it.)
- Think inductively: state first the base case(s), and then think about the general recursive case(s).
- Sometimes it may help to compose programs with a given use in mind (e.g., “forwards execution”), making sure it is declaratively correct. Consider then also if alternative uses make sense.
- Sometimes it helps to look at well-written examples and use the same “schemas.”
- Using a global top-down design approach can help (in general, not just for recursive programs):
  - State the general problem.
  - Break it down into subproblems.
  - Solve the pieces.
- Again, the best approach: practice, practice, practice.