Computational Logic
A “Hands-on” Introduction to Pure Logic Programming
Syntax: Terms (Variables, Constants, and Structures)

(using Prolog notation conventions)

- **Variables:** start with an uppercase character (or "_"). May include "_" and digits.

 Examples: X, Im4u, A_little_garden, _, _x, _22

- **Constants:** lowercase first character, may include "_" and digits. Also, numbers and some special characters. Quoted, any character.

 Examples: a, dog, a_big_cat, 23, ’Hungry man’, []

- **Structures:** a functor (the structure name, is like a constant name) followed by a fixed number of arguments between parentheses.

 Example: date(monday, Month, 1994)

 Arguments can in turn be variables, constants and structures.

 ◊ **Arity:** is the number of arguments of a structure. Functors are represented as `name/arity`. A constant can be seen as a structure with arity zero.

Variables, constants, and structures as a whole are called **terms** (they are the terms of a “first–order language”): the *data structures* of a logic program.
Syntax: Terms

(using Prolog notation conventions)

- **Examples of terms:**

<table>
<thead>
<tr>
<th>Term</th>
<th>Type</th>
<th>Main functor:</th>
</tr>
</thead>
<tbody>
<tr>
<td>dad</td>
<td>constant</td>
<td>dad/0</td>
</tr>
<tr>
<td>time(min, sec)</td>
<td>structure</td>
<td>time/2</td>
</tr>
<tr>
<td>pair(Calvin, tiger(Hobbes))</td>
<td>structure</td>
<td>pair/2</td>
</tr>
<tr>
<td>Tee(Alf, rob)</td>
<td>illegal</td>
<td>—</td>
</tr>
<tr>
<td>A_good_time</td>
<td>variable</td>
<td>—</td>
</tr>
</tbody>
</table>

- **Functors** can be defined as *prefix*, *postfix*, or *infix* operators (just syntax!):

<table>
<thead>
<tr>
<th>Expression</th>
<th>Term Description</th>
<th>Main Functor</th>
</tr>
</thead>
<tbody>
<tr>
<td>a + b</td>
<td>is the term</td>
<td>’+(a,b)</td>
</tr>
<tr>
<td>- b</td>
<td>is the term</td>
<td>’-(b)</td>
</tr>
<tr>
<td>a < b</td>
<td>is the term</td>
<td>’<(a,b)</td>
</tr>
<tr>
<td>john father mary</td>
<td>is the term</td>
<td>father(john,mary)</td>
</tr>
</tbody>
</table>

We assume that some such operator definitions are always preloaded.
Syntax: Rules and Facts (Clauses)

- **Rule**: an expression of the form:

 \[p_0(t_1, t_2, \ldots, t_{n_0}) \leftarrow p_1(t_1^1, t_2^1, \ldots, t_{n_1}^1), \]
 \[\quad \ldots \]
 \[\quad p_m(t_1^m, t_2^m, \ldots, t_{n_m}^m). \]

 - \(p_0(\ldots) \) to \(p_m(\ldots) \) are *syntactically* like terms.
 - \(p_0(\ldots) \) is called the **head** of the rule.
 - The \(p_i \) to the right of the arrow are called *literals* and form the **body** of the rule. They are also called **procedure calls**.
 - Usually, \(\leftarrow \) is called the **neck** of the rule.

- **Fact**: an expression of the form \(p(t_1, t_2, \ldots, t_n). \) (i.e., a rule with empty body).

 Example:

  ```
  meal(soup, beef, coffee). % ← A fact.
  meal(First, Second, Third) :- appetizer(First),
  main_dish(Second),
  dessert(Third). % ← A rule.
  ```

- Rules and facts are both called **clauses**.
Predicate (or procedure definition): a set of clauses whose heads have the same name and arity (called the predicate name).

Examples:

<table>
<thead>
<tr>
<th>Clause</th>
<th>Clause</th>
</tr>
</thead>
<tbody>
<tr>
<td>pet(spot)</td>
<td>animal(spot)</td>
</tr>
<tr>
<td>pet(X) :- animal(X), barks(X)</td>
<td>animal(barry)</td>
</tr>
<tr>
<td>pet(X) :- animal(X), meows(X)</td>
<td>animal(hobbes)</td>
</tr>
</tbody>
</table>

Predicate pet/1 has three clauses. Of those, one is a fact and two are rules. Predicate animal/1 has three clauses, all facts.

Logic Program: a set of predicates.

Query: an expression of the form: \(\leftarrow p_1(t_1^1, \ldots, t_{n_1}^1), \ldots, p_n(t_1^n, \ldots, t_{n_m}^n) \).

A query represents a question to the program.

Example: \(\leftarrow \) pet(X). In most systems written as: \(?-\) pet(X).
“Declarative” Meaning of Facts and Rules

The declarative meaning is the corresponding one in first order logic, according to certain conventions:

- **Facts**: state things that are true.
 (Note that a fact “\(p.\)” can be seen as the rule “\(p \ :- \ true.\)”)

Example: the fact \(\text{animal(spot)}.\)
can be read as “spot is an animal”.

- **Rules**:
 - Commas in rule bodies represent conjunction, i.e.,
 \[p \leftarrow p_1, \cdots, p_m. \text{ represents } p \leftarrow p_1 \land \cdots \land p_m. \]
 - “\(\leftarrow\)” represents as usual logical implication.

Thus, a rule \(p \leftarrow p_1, \cdots, p_m.\) means “if \(p_1\) and \(\ldots\) and \(p_m\) are true, then \(p\) is true”

Example: the rule \(\text{pet}(X) :- \text{animal}(X), \text{barks}(X).\)
can be read as “\(X\) is a pet if it is an animal and it barks”.

“Declarative” Meaning of Predicates and Queries

- **Predicates**: clauses in the same predicate

 \[p \leftarrow p_1, \ldots, p_n \]

 \[p \leftarrow q_1, \ldots, q_m \]

 \[\ldots \]

 provide different *alternatives* (for \(p \)).

 Example: the rules

 \[
 \text{pet}(X) :- \text{animal}(X), \text{barks}(X). \\
 \text{pet}(X) :- \text{animal}(X), \text{meows}(X).
 \]

 express two ways for \(X \) to be a pet.

- **Note** (variable *scope*): the \(X \) vars. in the two clauses above are different, despite the same name. Vars. are *local to clauses* (and are *renamed* any time a clause is used –as with vars. local to a procedure in conventional languages).

- **A query** represents a *question to the program*.

 Examples:

 \[
 \text{?- pet(spot).} \\
 \text{?- pet}(X).
 \]

 asks whether \(\text{spot} \) is a pet. asks: “Is there an \(X \) which is a pet?”
“Execution” and Semantics

- Example of a **logic program**:

```
pet(X) :- animal(X), barks(X).
pet(X) :- animal(X), meows(X).
animal(spot). barks(spot).
animal(barry). meows(barry).
animal(hobbes). roars(hobbes).
```

- **Execution**: given a program and a query, *executing* the logic program is *attempting to find an answer to the query*.

 Example: given the program above and the query `:- pet(X).`

 the system will try to find a “substitution” for `X` which makes `pet(X)` true.

 - The **declarative semantics** specifies *what* should be computed (all possible answers).
 - Intuitively, we have two possible answers: `X = spot` and `X = barry`.
 - The **operational semantics** specifies *how* answers are computed (which allows us to determine *how many steps* it will take).
Running Programs in a Logic Programming System

- File `pets.pl` contains (explained later):

  ```prolog
  :- module(_,_,['bf/bfall']).
  ```

 the pet example code as in previous slides.

- Interaction with the system query evaluator (the “top level”):

  ```prolog
  ?- Ciao 1.XX ...
  ?- use_module(pets).
  yes
  ?- pet(spot).
  yes
  ?- pet(X).
  X = spot ;
  X = barry ;
  no
  ?-
  ```

See the part on Developing Programs with a Logic Programming System for more details on the particular system used in the course (Ciao).
Simple (Top-Down) Operational Meaning of Programs

- A logic program is operationally a set of *procedure definitions* (the predicates).

- A query $\leftarrow p$ is an initial *procedure call*.

- A procedure definition with one *clause* $p \leftarrow p_1, \ldots, p_m$. means:

 “to execute a call to p you have to *call* p_1 and \ldots and p_m”

 ◦ In principle, the order in which p_1, \ldots, p_n are called does not matter, but, in practical systems it is fixed.

- If several clauses (definitions) $p \leftarrow p_1, \ldots, p_n$ means:

 $p \leftarrow q_1, \ldots, q_m$

 “to execute a call to p, call $p_1 \land \ldots \land p_n$, or, alternatively, $q_1 \land \ldots \land q_n$, or \ldots”

 ◦ Unique to logic programming—it is like having several alternative procedure definitions.
 ◦ Means that several possible paths may exist to a solution and they *should be explored*.
 ◦ System usually stops when the first solution found, user can ask for more.
 ◦ Again, in principle, the order in which these paths are explored does not matter (*if certain conditions are met*), but, for a given system, this is typically also fixed.

In the following we define a more precise operational semantics.
Unification: uses

- **Unification** is the mechanism used in *procedure calls* to:
 - Pass parameters.
 - “Return” values.

- It is also used to:
 - Access parts of structures.
 - Give values to variables.

- Unification is a procedure to solve equations on data structures.
 - As usual, it returns a minimal solution to the equation (or the equation system).
 - As many equation solving procedures it is based on isolating variables and then *instantiating* them with their values.
Unification

- **Unifying two terms (or literals) A and B:** is asking if they can be made syntactically identical by giving (minimal) values to their variables.
 - i.e., find a **variable substitution** θ such that $A\theta = B\theta$ (or, if impossible, fail).
 - Only variables can be given values!
 - Two structures can be made identical only by making their arguments identical.

E.g.:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>θ</th>
<th>$A\theta$</th>
<th>$B\theta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>dog</td>
<td>dog</td>
<td>\emptyset</td>
<td>dog</td>
<td>dog</td>
</tr>
<tr>
<td>X</td>
<td>a</td>
<td>${X = a}$</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>X</td>
<td>Y</td>
<td>${X = Y}$</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>$f(X, g(t))$</td>
<td>$f(m(h), g(M))$</td>
<td>${X=m(h), M=t}$</td>
<td>$f(m(h), g(t))$</td>
<td>$f(m(h), g(t))$</td>
</tr>
<tr>
<td>$f(X, g(t))$</td>
<td>$f(m(h), t(M))$</td>
<td>Impossible (1)</td>
<td>$f(m(h), g(t))$</td>
<td>$f(m(h), g(t))$</td>
</tr>
<tr>
<td>$f(X, X)$</td>
<td>$f(Y, l(Y))$</td>
<td>Impossible (2)</td>
<td>$f(m(h), g(t))$</td>
<td>$f(m(h), g(t))$</td>
</tr>
</tbody>
</table>

- (1) Structures with different name and/or arity cannot be unified.
- (2) A variable cannot be given as value a term which contains that variable, because it would create an infinite term. This is known as the **occurs check**. (See, however, **cyclic terms** later.)
Unification

- Often several solutions exist, e.g.:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>θ_1</th>
<th>$A\theta_1$ and $B\theta_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(X, g(T))$</td>
<td>$f(m(H), g(M))$</td>
<td>${ X=m(a), H=a, M=b, T=b }$</td>
<td>$f(m(a), g(b))$</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>${ X=m(H), M=f(A), T=f(A) }$</td>
<td>$f(m(H), g(f(A)))$</td>
</tr>
</tbody>
</table>

These are correct, but a simpler ("more general") solution exists:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>θ_1</th>
<th>$A\theta_1$ and $B\theta_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(X, g(T))$</td>
<td>$f(m(H), g(M))$</td>
<td>${ X=m(H), T=M }$</td>
<td>$f(m(H), g(M))$</td>
</tr>
</tbody>
</table>

- Always a unique (modulo variable renaming) most general solution exists (unless unification fails).

- This is the one that we are interested in.

- The *unification algorithm* finds this solution.
Unification Algorithm

• Let A and B be two terms:

1. $\theta = \emptyset$, $E = \{A = B\}$
2. while not $E = \emptyset$:
 2.1 delete an equation $T = S$ from E
 2.2 case T or S (or both) are (distinct) variables. Assuming T variable:
 * (occur check) if T occurs in the term S → halt with failure
 * substitute variable T by term S in all terms in θ
 * substitute variable T by term S in all terms in E
 * add $T = S$ to θ
 2.3 case T and S are non-variable terms:
 * if their names or arities are different → halt with failure
 * obtain the arguments $\{T_1, \ldots, T_n\}$ of T and $\{S_1, \ldots, S_n\}$ of S
 * add $\{T_1 = S_1, \ldots, T_n = S_n\}$ to E
3. halt with θ being the m.g.u of A and B
Unification Algorithm Examples (I)

• Unify: $A = p(X, X)$ and $B = p(f(Z), f(W))$

<table>
<thead>
<tr>
<th>θ</th>
<th>E</th>
<th>T</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>${ p(X, X) = p(f(Z), f(W)) }$</td>
<td>$p(X, X)$</td>
<td>$p(f(Z), f(W))$</td>
</tr>
<tr>
<td>\emptyset</td>
<td>${ X = f(Z), X = f(W) }$</td>
<td>X</td>
<td>$f(Z)$</td>
</tr>
<tr>
<td>${ X = f(Z) }$</td>
<td>${ f(Z) = f(W) }$</td>
<td>$f(Z)$</td>
<td>$f(W)$</td>
</tr>
<tr>
<td>${ X = f(Z) }$</td>
<td>${ Z = W }$</td>
<td>Z</td>
<td>W</td>
</tr>
<tr>
<td>${ X = f(W), Z = W }$</td>
<td>\emptyset</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Unify: $A = p(X, f(Y))$ and $B = p(Z, X)$

<table>
<thead>
<tr>
<th>θ</th>
<th>E</th>
<th>T</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>${ p(X, f(Y)) = p(Z, X) }$</td>
<td>$p(X, f(Y))$</td>
<td>$p(Z, X)$</td>
</tr>
<tr>
<td>\emptyset</td>
<td>${ X = Z, f(Y) = X }$</td>
<td>X</td>
<td>Z</td>
</tr>
<tr>
<td>${ X = Z }$</td>
<td>${ f(Y) = Z }$</td>
<td>$f(Y)$</td>
<td>Z</td>
</tr>
<tr>
<td>${ X = f(Y), Z = f(Y) }$</td>
<td>\emptyset</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Unification Algorithm Examples (II)

* Unify: \(A = p(X, f(Y)) \) and \(B = p(a, g(b)) \)

\[
\begin{array}{cccc}
\theta & E & T & S \\
\{\} & \{ p(X, f(Y)) = p(a, g(b)) \} & p(X, f(Y)) & p(a, g(b)) \\
\{\} & \{ X = a, f(Y) = g(b) \} & X & a \\
\{ X = a \} & \{ f(Y) = g(b) \} & f(Y) & g(b) \\
\text{fail}
\end{array}
\]

* Unify: \(A = p(X, f(X)) \) and \(B = p(Z, Z) \)

\[
\begin{array}{cccc}
\theta & E & T & S \\
\{\} & \{ p(X, f(X)) = p(Z, Z) \} & p(X, f(X)) & p(Z, Z) \\
\{\} & \{ X = Z, f(X) = Z \} & X & Z \\
\{ X = Z \} & \{ f(Z) = Z \} & f(Z) & Z \\
\text{fail}
\end{array}
\]
A (Schematic) Interpreter for Logic Programs (SLD–resolution)

Input: A logic program P, a query Q
Output: Q_μ (answer substitution) if Q is provable from P, failure otherwise

Algorithm:

1. Initialize the “resolvent” R to be $\{Q\}$
2. While R is nonempty do:
 2.1. Take the leftmost literal A in R
 2.2. Choose a (renamed) clause $A' \leftarrow B_1, \ldots, B_n$ from P, such that A and A' unify with unifier θ
 (if no such clause can be found, branch is failed; explore another branch)
 2.3. Remove A from R, add B_1, \ldots, B_n to R
 2.4. Apply θ to R and Q
3. If R is empty, output Q (a solution). Explore another branch for more sol’s.

• Step 2.2 defines alternative paths to be explored to find answer(s); execution explores this tree (for example, breadth-first).
Since step 2.2 is left open, a given logic programming system must specify how it deals with this by providing one (or more)

- **Search rule(s):** “how are clauses/branches selected in 2.2.”

If the search rule is not specified execution can be **nondeterministic**, since choosing a different clause (in step 2.2) could lead to different solutions (finding solutions in a different order).

Example (two valid executions):

```
?- pet(X).
X = spot ? ;
X = barry ? ;
no
?- pet(X).
X = barry ? ;
X = spot ? ;
no
?- pet(X).
```

In fact, there is also some freedom in step 2.1, i.e., a system may also specify:

- **Computation rule(s):** “how are literals selected in 2.1.”
Running programs

\(C_1: \) pet(X) :- animal(X), barks(X).
\(C_2: \) pet(X) :- animal(X), meows(X).
\(C_3: \) animal(spot).
\(C_4: \) animal(barry).
\(C_5: \) animal(hobbes).
\(C_6: \) barks(spot).
\(C_7: \) meows(barry).
\(C_8: \) roars(hobbes).

:- pet(P).

<table>
<thead>
<tr>
<th>(Q)</th>
<th>(R)</th>
<th>Clause</th>
<th>(\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pet(P)</td>
<td>pet(P)</td>
<td>(C_2^*)</td>
<td>({ P = X_1 })</td>
</tr>
<tr>
<td>pet((X_1))</td>
<td>animal((X_1)), meows((X_1))</td>
<td>(C_4^*)</td>
<td>({ X_1 = \text{barry} })</td>
</tr>
<tr>
<td>pet((\text{barry}))</td>
<td>meows((\text{barry}))</td>
<td>(C_7)</td>
<td>({ })</td>
</tr>
<tr>
<td>pet((\text{barry}))</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

* means there is a choice-point, i.e., there are other clauses whose head unifies.

- System response: \(P = \text{barry} \) ?

- If we type “;” after the ? prompt (i.e., we ask for another solution) the system can go and execute a different branch (i.e., a different choice in \(C_2^* \) or \(C_4^* \)).
Running programs (different strategy)

\(C_1 \): \(\text{pet}(X) :- \text{animal}(X), \text{barks}(X). \)
\(C_2 \): \(\text{pet}(X) :- \text{animal}(X), \text{meows}(X). \)
\(C_3 \): \(\text{animal}(\text{spot}). \)
\(C_4 \): \(\text{animal}(\text{barry}). \)
\(C_5 \): \(\text{animal}(\text{hobbes}). \)
\(C_6 \): \(\text{barks}(\text{spot}). \)
\(C_7 \): \(\text{meows}(\text{barry}). \)
\(C_8 \): \(\text{roars}(\text{hobbes}). \)

- \(:- \text{pet}(P) \) (different strategy)

<table>
<thead>
<tr>
<th>(Q)</th>
<th>(R)</th>
<th>Clause</th>
<th>(\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pet(P)</td>
<td>pet(P)</td>
<td>(C_1^*)</td>
<td>({ P = X_1 })</td>
</tr>
<tr>
<td>pet((X_1)) \text{animal}(X_1), \text{barks}(X_1)</td>
<td>(C_5^*)</td>
<td>({ X_1 = \text{hobbes} })</td>
<td></td>
</tr>
<tr>
<td>pet(\text{hobbes}) \text{barks(\text{hobbes})}</td>
<td>????</td>
<td>failure</td>
<td></td>
</tr>
</tbody>
</table>

→ explore another branch (different choice in \(C_1^* \) or \(C_5^* \)) to find a solution. We take \(C_3 \) instead of \(C_5 \):

<table>
<thead>
<tr>
<th>(Q)</th>
<th>(R)</th>
<th>Clause</th>
<th>(\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pet(P)</td>
<td>pet(P)</td>
<td>(C_1^*)</td>
<td>({ P = X_1 })</td>
</tr>
<tr>
<td>pet((X_1)) \text{animal}(X_1), \text{barks}(X_1)</td>
<td>(C_3^*)</td>
<td>({ X_1 = \text{spot} })</td>
<td></td>
</tr>
<tr>
<td>pet(\text{spot}) \text{barks(\text{spot})}</td>
<td>(C_6)</td>
<td>({})</td>
<td></td>
</tr>
<tr>
<td>pet(\text{spot})</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
The Search Tree

- A query + a logic program together specify a search tree.

Example: query \(\text{pet}(X) \) with the previous program generates this search tree (the boxes represent the “and” parts [except leaves]):

- Different query \(\rightarrow \) different tree.
- The search and computation rules explain how the search tree will be explored during execution.
- How can we achieve completeness (guarantee that all solutions will be found)?
Characterization of The Search Tree

- All solutions are at \textit{finite depth} in the tree.
- Failures can be at finite depth or, in some cases, be an infinite branch.
Depth-First Search

- Incomplete: may fall through an infinite branch before finding all solutions.
- But very efficient: it can be implemented with a call stack, very similar to a traditional programming language.
Breadth-First Search

- Will find all solutions before falling through an infinite branch.
- But costly in terms of time and memory.
- Used in all the following examples (via Ciao’s bf package).
Selecting breadth-first or depth-first search

- In the Ciao system we can select the search rule using the packages mechanism.

- Files should start with the following line:

 ◦ To execute in breadth-first mode:

    ```
    :- module(_,_,['bf/bfall']).
    ```

 ◦ To execute in depth-first mode:

    ```
    :- module(_,_,[]).
    ```

See the part on Developing Programs with a Logic Programming System for more details on the particular system used in the course (Ciao).
Role of Unification in Execution

- As mentioned before, unification used to access data and give values to variables.

 Example: Consider query `:- animal(A), named(A,Name).` with:

 `animal(dog(barry)).` `named(dog(Name),Name).`

- Also, unification is used to pass parameters in procedure calls and to return values upon procedure exit.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Q</code></td>
<td><code>R</code></td>
<td>Clause</td>
<td><code>{θ}</code></td>
<td></td>
</tr>
<tr>
<td><code>pet(P)</code></td>
<td><code>pet(P)</code></td>
<td>C_1^*</td>
<td><code>{ P=X_1 }</code></td>
<td></td>
</tr>
<tr>
<td><code>pet(X_1)</code></td>
<td><code>animal(X_1), barks(X_1)</code></td>
<td>C_3^*</td>
<td><code>{ X_1=spot }</code></td>
<td></td>
</tr>
<tr>
<td><code>pet(spot)</code></td>
<td><code>barks(spot)</code></td>
<td>C_6</td>
<td><code>{}</code></td>
<td></td>
</tr>
<tr>
<td><code>pet(spot)</code></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
“Modes”

• In fact, argument positions are not fixed a priori to be input or output.

Example: Consider query

\[\text{`:\ -: pet(spot).} \quad \text{vs.} \quad \text{`:\ -: pet(X).} \]

or

\[\text{`:\ -: plus(s(0), s(s(0)), Z).} \quad \text{% Adds} \]

vs.

\[\text{`:\ -: plus(s(0), Y, s(s(s(0))))}. \quad \text{% Subtracts} \]

• Thus, procedures can be used in different **modes** s.t. different sets of arguments are input or output in each mode.

• We sometimes use `+` and `-` to refer to, respectively, and argument being an input or an output, e.g.:

\[\text{plus(+X, +Y, -Z)} \quad \text{means we call plus with} \]

- \(X \) instantiated,
- \(Y \) instantiated, and
- \(Z \) free.
Database Programming

- A Logic Database is a set of facts and rules (i.e., a logic program):

father_of(john, peter).
father_of(john, mary).
father_of(peter, michael).
mother_of(mary, david).

grandfather_of_of(L, M) :- father_of(L, N),
father_of(N, M).

grandfather_of_of(X, Y) :- father_of(X, Z),
mother_of(Z, Y).

- Given such database, a logic programming system can answer questions (queries) such as:

 ?- father_of(john, peter).
 yes

 ?- father_of(john, david).
 no

 ?- father_of(john, X).
 X = peter ;
 X = mary

- Rules for grandmother_of(X, Y)?

 ?- grandfather_of(X, michael).
 X = john

 ?- grandfather_of(X, Y).
 X = john, Y = michael ;
 X = john, Y = david

 ?- grandfather_of(X, X).
 no
Another example:

```
resistor(power, n1).
resistor(power, n2).
transistor(n2, ground, n1).
transistor(n3, n4, n2).
transistor(n5, ground, n4).
```

inverter(Input, Output) :-
 transistor(Input, ground, Output), resistor(power, Output).

nand_gate(Input1, Input2, Output) :-
 transistor(Input1, X, Output),
 transistor(Input2, ground, X),
 resistor(power, Output).

and_gate(Input1, Input2, Output) :-
 nand_gate(Input1, Input2, X),
 inverter(X, Output).

Query and_gate(In1, In2, Out) has solution: In1=n3, In2=n5, Out=n1
Structured Data and Data Abstraction (and the ’=’ Predicate)

- **Data structures** are created using (complex) terms.

- Structuring data is important:

```prolog
course(complog,wed,18,30,20,30,'M.','Hermenegildo',new,5102).
```

- When is the Computational Logic course?

```prolog
```

- Structured version:

```prolog
course(complog,Time,Lecturer,Location) :-
  Time = t(wed,18:30,20:30),
  Lecturer = lect('M.','Hermenegildo'),
  Location = loc(new,5102).
```

Note: “X=Y” is equivalent to “’=’(X,Y)” where the predicate =/2 is defined as the fact “’=’(X,X).” – Plain unification!

- Equivalent to:

```prolog
course(complog, t(wed,18:30,20:30),
  lect('M.','Hermenegildo'), loc(new,5102)).
```
Structured Data and Data Abstraction (and The Anonymous Variable)

• Given:

\[
\text{course(complog,Time,Lecturer, Location) :-}
\text{Time} = t(\text{wed},18:30,20:30),
\text{Lecturer} = \text{lect('M.'),'Hermenegildo'),}
\text{Location} = \text{loc(new,5102)}.
\]

• When is the Computational Logic course?

?- course(complog, Time, A, B).

has solution:

\[
\text{Time} = t(\text{wed},18:30,20:30), \ A = \text{lect('M.'),'Hermenegildo'), B = loc(new,5102)}
\]

• Using the \textit{anonymous variable} ("_"):

\[
\text{- course(complog,Time, _, _).}
\]

has solution:

\[
\text{Time} = t(\text{wed},18:30,20:30)
\]
Terms as Data Structures with Pointers

- **main** below is a procedure, that:
 - creates some data structures, with *pointers* and *aliasing*.
 - *calls* other *procedures*, *passing* to them *pointers* to these structures.

```prolog
main :-
    X = f(K, g(K)),
    Y = a,
    Z = g(L),
    W = h(b, L),
    % Heap memory at this point →
    p(X, Y),
    q(Y, Z),
    r(W).
```

- Terms are data structures with pointers.
- Logical variables are *declarative* pointers.
 - Declarative: they can only be assigned once.
• The circuit example revisited:

\[
\begin{align*}
\text{resistor}(r_1, \text{power}, n_1). & \quad \text{transistor}(t_1, n_2, \text{ground}, n_1). \\
\text{resistor}(r_2, \text{power}, n_2). & \quad \text{transistor}(t_2, n_3, n_4, n_2).
\end{align*}
\]

\[\text{transistor}(t_3, n_5, \text{ground}, n_4).\]

\[\text{inverter}(\text{inv}(T, R), \text{Input}, \text{Output}) \iff \\
\quad \text{transistor}(T, \text{Input}, \text{ground}, \text{Output}), \\
\quad \text{resistor}(R, \text{power}, \text{Output}).\]

\[\text{nand}_\text{gate}(\text{nand}(T_1, T_2, R), \text{Input}_1, \text{Input}_2, \text{Output}) \iff \\
\quad \text{transistor}(T_1, \text{Input}_1, X, \text{Output}), \\
\quad \text{transistor}(T_2, \text{Input}_2, \text{ground}, X), \\
\quad \text{resistor}(R, \text{power}, \text{Output}).\]

\[\text{and}_\text{gate}(\text{and}(N, I), \text{Input}_1, \text{Input}_2, \text{Output}) \iff \\
\quad \text{nand}_\text{gate}(N, \text{Input}_1, \text{Input}_2, X), \quad \text{inverter}(I, X, \text{Output}).\]

• The query \(\text{:- and}_\text{gate}(G, \text{In}_1, \text{In}_2, \text{Out}).\)

has solution: \(G=\text{and}(\text{nand}(t_2, t_3, r_2), \text{inv}(t_1, r_1)), \text{In}_1=n_3, \text{In}_2=n_5, \text{Out}=n_1\)
Logic Programs and the Relational DB Model

Relational Database
Relation Name → Predicate symbol
Relation → Procedure consisting of ground facts
Tuple → Ground fact
Attribute → Argument of predicate

<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>Sex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>20</td>
<td>M</td>
</tr>
<tr>
<td>Jones</td>
<td>21</td>
<td>F</td>
</tr>
<tr>
<td>Smith</td>
<td>36</td>
<td>M</td>
</tr>
</tbody>
</table>

“Person”

<table>
<thead>
<tr>
<th>Name</th>
<th>Town</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>London</td>
<td>15</td>
</tr>
<tr>
<td>Brown</td>
<td>York</td>
<td>5</td>
</tr>
<tr>
<td>Jones</td>
<td>Paris</td>
<td>21</td>
</tr>
<tr>
<td>Smith</td>
<td>Brussels</td>
<td>15</td>
</tr>
<tr>
<td>Smith</td>
<td>Santander</td>
<td>5</td>
</tr>
</tbody>
</table>

“Lived in”

person(brown,20,male).
person(jones,21,female).
person(smith,36,male).

lived_in(brown, london, 15).
lived_in(brown, york, 5).
lived_in(jones, paris, 21).
lived_in(smith, brussels, 15).
lived_in(smith, santander, 5).
The operations of the relational model are easily implemented as rules.

- **Union**: \(r \cup s(X_1, \ldots, X_n) \leftarrow r(X_1, \ldots, X_n). \)
 \(r \cup s(X_1, \ldots, X_n) \leftarrow s(X_1, \ldots, X_n). \)

- **Cartesian Product**: \(r \times s(X_1, \ldots, X_m, X_{m+1}, \ldots, X_{m+n}) \leftarrow r(X_1, \ldots, X_m), s(X_{m+1}, \ldots, X_{m+n}). \)

- **Projection**: \(r_{13}(X_1, X_3) \leftarrow r(X_1, X_2, X_3). \)

- **Selection**: \(r_{\text{selected}}(X_1, X_2, X_3) \leftarrow r(X_1, X_2, X_3), \leq (X_2, X_3). \)
 \((\leq/2 \text{ can be, e.g., Peano, Prolog built-in, constraints...}) \)

- **Set Difference**: \(r \setminus s(X_1, \ldots, X_n) \leftarrow r(X_1, \ldots, X_n), \text{not } s(X_1, \ldots, X_n). \)
 \(r \setminus s(X_1, \ldots, X_n) \leftarrow s(X_1, \ldots, X_n), \text{not } r(X_1, \ldots, X_n). \)
 (we postpone the discussion on *negation* until later.)

Derived operations – some can be expressed more directly in LP:

- **Intersection**: \(r \cap s(X_1, \ldots, X_n) \leftarrow r(X_1, \ldots, X_n), s(X_1, \ldots, X_n). \)

- **Join**: \(r \Join s(X_1, \ldots, X_n) \leftarrow r(X_1, X_2, X_3, \ldots, X_n), s(X'_1, X_2, X'_3, \ldots, X'_n). \)

Duplicates an issue: see “setof” later in Prolog.
Deductive Databases

- The subject of “deductive databases” uses these ideas to develop *logic-based databases*.
 - Often syntactic restrictions (a subset of definite programs) used (e.g. “Datalog” – no functors, no existential variables).
 - Variations of a “bottom-up” execution strategy used: Use the T_p operator (explained in the theory part) to compute the model, restrict to the query.
 - Powerful notions of negation supported: S-models
 - → **Answer Set Programming** (ASP)
 - → powerful knowledge representation and reasoning systems.
Recursive Programming

- **Example: ancestors.**

  ```prolog
  parent(X,Y) :- father(X,Y).
  parent(X,Y) :- mother(X,Y).

  ancestor(X,Y) :- parent(X,Y).
  ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).
  ancestor(X,Y) :- parent(X,Z), parent(Z,W), ancestor(W,Y).
  ancestor(X,Y) :- parent(X,Z), parent(Z,W), parent(W,K), ancestor(K,Y).
  ...
  ```

- **Defining ancestor recursively:**

  ```prolog
  parent(X,Y) :- father(X,Y).
  parent(X,Y) :- mother(X,Y).

  ancestor(X,Y) :- parent(X,Y).
  ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).
  ```

- **Exercise:** define “related”, “cousin”, “same generation”, etc.
Types

- **Type**: a (possibly infinite) set of terms.
- **Type definition**: A program defining a type.
- **Example**: Weekday:
 - Set of terms to represent: ’Monday’, ’Tuesday’, ’Wednesday’, ...
 - Type definition:
 weekday(’Monday’).
 weekday(’Tuesday’). ...

- **Example**: Date (weekday * day in the month):
 - Set of terms to represent: date(’Monday’,23), date(’Tuesday’,24), ...
 - Type definition:
 date(date(W,D)) :- weekday(W), day_of_month(D).
 day_of_month(1).
 day_of_month(2).
 ...
 day_of_month(31).

Recursive Programming: Recursive Types

- **Recursive types**: defined by recursive logic programs.

- **Example**: natural numbers (simplest recursive data type):

 🔹 Set of terms to represent: \(\emptyset, s(\emptyset), s(s(\emptyset)), \ldots \)

 🔹 Type definition:

  ```prolog
  nat(\emptyset).
  nat(s(X)) :- nat(X).
  ```

 A *minimal recursive predicate*:
 one unit clause and one recursive clause (with a single body literal).

- Types are *runnable* and can be used to check or produce values:

  ```prolog
  ?- nat(X) ⇒ X=\emptyset; X=s(\emptyset); X=s(s(\emptyset)); \ldots
  ```

- We can reason about *complexity*, for a given *class of queries* ("mode").
 E.g., for mode \texttt{nat(ground)} complexity is *linear* in size of number.

- **Example**: integers:

 🔹 Set of terms to represent: \(\emptyset, s(\emptyset), -s(\emptyset), \ldots \)

 🔹 Type definition:

  ```prolog
  integer( X ) :- nat(X).
  integer(-X) :- nat(X).
  ```
Defining the natural order (≤) of natural numbers:

\[
\text{less_or_equal}(0, X) :- \text{nat}(X).
\]

\[
\text{less_or_equal}(s(X), s(Y)) :- \text{less_or_equal}(X, Y).
\]

- Multiple uses (modes):
 \[
 \text{less_or_equal}(s(0), s(s(0))), \text{less_or_equal}(X, 0), \ldots
 \]

- Multiple solutions:
 \[
 \text{less_or_equal}(X, s(0)), \text{less_or_equal}(s(s(0)), Y), \text{etc.}
 \]

Addition:

\[
\text{plus}(0, X, X) :- \text{nat}(X).
\]

\[
\text{plus}(s(X), Y, s(Z)) :- \text{plus}(X, Y, Z).
\]

- Multiple uses (modes):
 \[
 \text{plus}(s(s(0)), s(0), Z), \text{plus}(s(s(0)), Y, s(0))
 \]

- Multiple solutions:
 \[
 \text{plus}(X, Y, s(s(s(0))))), \text{etc.}
 \]
Recursive Programming: Arithmetic

- Another possible definition of addition:

\[
\begin{align*}
\text{plus}(X, 0, X) & :\text{nat}(X). \\
\text{plus}(X, s(Y), s(Z)) & :\text{plus}(X, Y, Z).
\end{align*}
\]

- The meaning of \text{plus} is the same if both definitions are combined.

- Not recommended: several proof trees for the same query \rightarrow not efficient, not concise. We look for minimal axiomatizations.

- The art of logic programming: finding compact and computationally efficient formulations!

- Try to define: \text{times}(X, Y, Z) (Z = X \times Y), \text{exp}(N, X, Y) (Y = X^N), \text{factorial}(N, F) (F = N!), \text{minimum}(N1, N2, Min), ...
Recursive Programming: Arithmetic

- Definition of \(\text{mod}(X, Y, Z) \)

 “\(Z \) is the remainder from dividing \(X \) by \(Y \)”

 \[
 \exists Q \text{ s.t. } X = Y \times Q + Z \land Z < Y
 \]

 \[\Rightarrow\]

 \[
 \text{mod}(X, Y, Z) : - \less(Z, Y), \times(Y, Q, W), \plus(W, Z, X).
 \]

- Another possible definition:

 \[
 \text{mod}(X, Y, X) : - \less(X, Y).
 \]

 \[
 \text{mod}(X, Y, Z) : - \plus(X1, Y, X), \text{mod}(X1, Y, Z).
 \]

- The second is much more efficient than the first one (compare the size of the proof trees).
Recursive Programming: Arithmetic/Functions

- The Ackermann function:

 \[
 \text{ackermann}(0, N) = N + 1 \\
 \text{ackermann}(M, 0) = \text{ackermann}(M - 1, 1) \\
 \text{ackermann}(M, N) = \text{ackermann}(M - 1, \text{ackermann}(M, N - 1))
 \]

- In Peano arithmetic:

 \[
 \text{ackermann}(0, N) = \text{s}(N) \\
 \text{ackermann}(\text{s}(M_1), 0) = \text{ackermann}(M_1, \text{s}(0)) \\
 \text{ackermann}(\text{s}(M_1), \text{s}(N_1)) = \text{ackermann}(M_1, \text{ackermann}(\text{s}(M_1), N_1))
 \]

- Can be defined as:

 \[
 \text{ackermann}(0, N, \text{s}(N)) . \\
 \text{ackermann}(\text{s}(M_1), 0, \text{Val}) :- \text{ackermann}(M_1, \text{s}(0), \text{Val}). \\
 \text{ackermann}(\text{s}(M_1), \text{s}(N_1), \text{Val}) :- \text{ackermann}(\text{s}(M_1), \text{s}(N_1), \text{Val1}), \\
 \text{ackermann}(M_1, \text{Val1}, \text{Val}).
 \]

- In general, \textit{functions} can be coded as a predicate with one more argument, which represents the output (and additional syntactic sugar often available).
• Syntactic support available (see, e.g., the Ciao *fsyntax* and *functional* packages).

• The Ackermann function (Peano) in Ciao’s functional Syntax and defining s as a prefix operator:

```prolog
:- use_package(functional).
:- op(500, fy, s).

ackermann( 0, N) := s N.
ackermann(s M, 0) := ackermann(M, s 0).
ackermann(s M, s N) := ackermann(M, ackermann(s M, N) ).
```

• Convenient in other cases – e.g. for defining types:

```prolog
nat(0).
nat(s(X)) :- nat(X).
```

Using special := notation for the “return” (last) the argument:

```prolog
nat := 0.
nat := s(X) :- nat(X).
```
Moving body call to head using the \(\sim \) notation (“evaluate and replace with result”):

\[
\begin{align*}
nat & := 0. \\
nat & := s(\sim nat).
\end{align*}
\]

“\(\sim \)” not needed with functional package if inside its own definition:

\[
\begin{align*}
nat & := 0. \\
nat & := s(nat).
\end{align*}
\]

Using an \texttt{:- op(500,fy,s)} declaration to define \(s \) as a prefix operator:

\[
\begin{align*}
nat & := 0. \\
nat & := s \texttt{ nat}.
\end{align*}
\]

Using “|” (disjunction):

\[
\begin{align*}
nat & := 0 \mid s \texttt{ nat}.
\end{align*}
\]

Which is exactly equivalent to:

\[
\begin{align*}
nat(0). \\
nat(s(X)) & :- \texttt{ nat}(X).
\end{align*}
\]
Functional Syntax: Packages and Directives

- `:- use_package(fsyntax).`
 Allows the use of `:=` for definitions, `~` for `eval`, `|` for `or`, etc.:
 \[
 \text{ackmann(s M, s N) := } \sim\text{ackmann(M, } \sim\text{ackmann(s M, N)).}
 \]

- To evaluate automatically functors that are defined as functions (no need for `~` for them):

 `:- fun_eval ackmann/2.`
 \[
 \text{ackmann(s M, s N) := ackmann(M, ackmann(s M, N)).}
 \]

 To enable this for all functions defined in file:

 `:- fun_eval defined(true).`

- To evaluate arithmetic functors automatically (no need for `~` for them):

 `:- fun_eval arith(true).`
 \[
 \text{add_one(X,X+1).}
 \]

- The functional package includes `fsyntax` + both `fun_eval`’s above:

 `:- use_package(functional).`
Recursive Programming: Lists

- Binary structure: first argument is *element*, second argument is *rest* of the list.

- We need:
 - A constant symbol: we use the *constant* \([\]\) (→ denotes the empty list).
 - A functor of arity 2: traditionally the dot “.” (which is overloaded).

- Syntactic sugar: the term \(.(X,Y)\) is denoted by \([X|Y]\) (\(X\) is the *head*, \(Y\) is the *tail*).

<table>
<thead>
<tr>
<th>Formal object</th>
<th>“Cons pair” syntax</th>
<th>“Element” syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>(.a,[])</td>
<td>([a</td>
<td>[]])</td>
</tr>
<tr>
<td>(.a,.(b,[]))</td>
<td>([a</td>
<td>[b</td>
</tr>
<tr>
<td>(.a,.(b,.(c,[])))</td>
<td>([a</td>
<td>[b</td>
</tr>
<tr>
<td>(.a,X)</td>
<td>([a</td>
<td>X])</td>
</tr>
<tr>
<td>(.a,.(b,X))</td>
<td>([a</td>
<td>[b</td>
</tr>
</tbody>
</table>

- Note that:
 - \([a,b]\) and \([a|X]\) unify with \(\{X = [b]\}\)
 - \([a]\) and \([a|X]\) unify with \(\{X = []\}\)
 - \([a]\) and \([a,b|X]\) do not unify
 - \([]\) and \([X]\) do not unify
Recursive Programming: Lists (Contd.)

- Type definition (no syntactic sugar):

 \[
 \text{list}([]). \\
 \text{list}(.(X,Y)) := \text{list}(Y).
 \]

- Type definition, with some syntactic sugar ([] notation):

 \[
 \text{list}([]). \\
 \text{list}([X|Y]) := \text{list}(Y).
 \]

- Type definition, using also functional package:

 \[
 \text{list} := [] \mid [_] \mid \text{list}.
 \]

- “Exploring” the type:

 \[
 \text{?- list}(L). \\
 L = [] ? ; \\
 L = [_] ? ; \\
 L = [_,_] ? ; \\
 L = [_,_,_] ? ; \\
 ...
 \]
Recursive Programming: Lists (Contd.)

- X is a member of the list Y:

 member(a, [a]). member(b, [b]). etc. ⇒ member(X, [X]).
 member(a, [a, c]). member(b, [b, d]). etc. ⇒ member(X, [X, Y]).
 member(a, [a, c, d]). member(b, [b, d, l]). etc. ⇒ member(X, [X, Y, Z]).

 ⇒ member(X, [X | Y]) :- list(Y).

 member(a, [c, a]), member(b, [d, b]). etc. ⇒ member(X, [Y, X]).
 member(a, [c, d, a]). member(b, [s, t, b]). etc. ⇒ member(X, [Y, Z, X]).

 ⇒ member(X, [Y | Z]) :- member(X, Z).

- Resulting definition:

 member(X, [X | Y]) :- list(Y).
 member(X, [_ | T]) :- member(X, T).

- Uses of member(X, Y):
 ◦ checking whether an element is in a list (member(b, [a, b, c]))
 ◦ finding an element in a list (member(X, [a, b, c]))
 ◦ finding a list containing an element (member(a, Y))
• Combining lists and naturals:

 - Computing the length of a list:

    ```prolog
    len([], 0).
    len([H|T], s(LT)) :- len(T, LT).
    ```

 - Adding all elements of a list:

    ```prolog
    sumlist([], 0).
    sumlist([H|T], S) :- sumlist(T, ST), plus(ST, H, S).
    ```

 - The type of lists of natural numbers:

    ```prolog
    natlist([]).
    natlist([H|T]) :- nat(H), natlist(T).
    ```

 or:

    ```prolog
    natlist := [] | [~nat|natlist].
    ```
Exercises:
- Define: \(\text{prefix}(X, Y) \) (the list \(X \) is a prefix of the list \(Y \)), e.g.
 \(\text{prefix}([a, b], [a, b, c, d]) \)
- Define: \(\text{suffix}(X, Y) \), \(\text{sublist}(X, Y) \), ...
Recursive Programming: Lists (Contd.)

- Concatenation of lists:
 - Base case:
 \[
 \text{append}([], [a], [a]). \text{append}([], [a,b], [a,b]). \text{etc.}
 \]
 \[
 \Rightarrow \text{append}([], Ys, Ys) :- \text{list}(Ys).
 \]
 - Rest of cases (first step):
 \[
 \text{append}([a], [b], [a,b]).
 \text{append}([a], [b,c], [a,b,c]). \text{etc.}
 \]
 \[
 \Rightarrow \text{append}([X], Ys, [X|Ys]) :- \text{list}(Ys).
 \]
 \[
 \text{append}([a,b], [c], [a,b,c]).
 \text{append}([a,b], [c,d], [a,b,c,d]). \text{etc.}
 \]
 \[
 \Rightarrow \text{append}([X,Z], Ys, [X,Z|Ys]) :- \text{list}(Ys).
 \]

This is still infinite \(\Rightarrow\) we need to generalize more.
Recursive Programming: Lists (Contd.)

- Second generalization:

 append([X], Ys, [X|Ys]) :- list(Ys).
 append([X,Z], Ys, [X,Z|Ys]) :- list(Ys).
 append([X,Z,W], Ys, [X,Z,W|Ys]) :- list(Ys).

 ⇒ append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

- So, we have:

  ```
  append([], Ys, Ys) :- list(Ys).
  append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).
  ```

- Another way of reasoning: thinking inductively.

 ◦ The base case is: `append([], Ys, Ys):-list(Ys)`.
 ◦ If we assume that `append(Xs, Ys, Zs)` works for some iteration, then, in the next one, the following holds: `append([X|Xs], Ys, [X|Zs])`.

Recursive Programming: Lists (Contd.)

• Uses of append:
 ☐ Concatenate two given lists:

    ```prolog
    ?- append([a,b,c],[d,e],L).
    L = [a,b,c,d,e] ?
    ```

 ☐ Find differences between lists:

    ```prolog
    ?- append(D,[d,e],[a,b,c,d,e]).
    D = [a,b,c] ?
    ```

 ☐ Split a list:

    ```prolog
    ?- append(A,B,[a,b,c,d,e]).
    A = [],
    B = [a,b,c,d,e] ? ;
    A = [a],
    B = [b,c,d,e] ? ;
    A = [a,b],
    B = [c,d,e] ? ;
    A = [a,b,c],
    B = [d,e] ?
    ```
Recursive Programming: Lists (Contd.)

- \texttt{reverse(Xs, Ys)}: Ys is the list obtained by reversing the elements in the list Xs

 It is clear that we will need to traverse the list Xs

 For each element X of Xs, we must put X at the end of the rest of the Xs list already reversed:

 \[
 \text{reverse}([X|Xs], Ys) :- \\
 \quad \text{reverse}(Xs, Zs), \\
 \quad \text{append}(Zs, [X], Ys).
 \]

 How can we stop?

 \[
 \text{reverse}([], []).
 \]

- As defined, \texttt{reverse(Xs,Ys)} is very inefficient. Another possible definition:

 (uses an \textit{accumulating parameter})

 \[
 \text{reverse}(Xs, Ys) :- \text{reverse}(Xs, [], Ys).
 \]

 \[
 \text{reverse}([], Ys, Ys).
 \]

 \[
 \text{reverse}([X|Xs], Acc, Ys) :- \text{reverse}(Xs, [X|Acc], Ys).
 \]

\Rightarrow Find the differences in terms of efficiency between the two definitions.
Recursive Programming: Binary Trees

- Represented by a ternary functor tree(Element,Left,Right).
- Empty tree represented by void.
- Definition:

 \[
 \begin{align*}
 \text{binary_tree}(\text{void}). \\
 \text{binary_tree}(\text{tree}(\text{Element},\text{Left},\text{Right})) & :- \\
 & \quad \text{binary_tree}(\text{Left}), \\
 & \quad \text{binary_tree}(\text{Right}).
 \end{align*}
 \]

- Defining tree_member(Element,Tree):

 \[
 \begin{align*}
 & \text{tree_member}(X,\text{tree}(X,\text{Left},\text{Right})) :- \\
 & \quad \text{binary_tree}(\text{Left}), \\
 & \quad \text{binary_tree}(\text{Right}). \\
 & \text{tree_member}(X,\text{tree}(Y,\text{Left},\text{Right})) :- \text{tree_member}(X,\text{Left}). \\
 & \text{tree_member}(X,\text{tree}(Y,\text{Left},\text{Right})) :- \text{tree_member}(X,\text{Right}).
 \end{align*}
 \]
Recursive Programming: Binary Trees

- Defining `pre_order(Tree,Elements)`: Elements is a list containing the elements of Tree traversed in preorder.

```prolog
pre_order(void, []).
pres_order(tree(X, Left, Right), Elements) :-
    pre_order(Left, ElementsLeft),
    pre_order(Right, ElementsRight),
    append([X | ElementsLeft], ElementsRight, Elements).
```

- Exercise – define:
 - `in_order(Tree, Elements)`
 - `post_order(Tree, Elements)`
Polymorphism

• Note that the two definitions of `member/2` can be used *simultaneously*:

```prolog
lt_member(X,[X|Y]) :- list(Y).
lt_member(X,[_|T]) :- lt_member(X,T).
```

```prolog
lt_member(X,tree(X,L,R)) :- binary_tree(L), binary_tree(R).
lt_member(X,tree(Y,L,R)) :- lt_member(X,L).
lt_member(X,tree(Y,L,R)) :- lt_member(X,R).
```

Lists only unify with the first two clauses, trees with clauses 3–5!

• `:- lt_member(X,[b,a,c]).`
 \(X = b \ ; \ X = a \ ; \ X = c\)

• `:- lt_member(X,tree(b,tree(a,void,void),tree(c,void,void))).`
 \(X = b \ ; \ X = a \ ; \ X = c\)

• Also, try (somewhat surprising): `:- lt_member(M,T).`
Recursive Programming: Manipulating Symbolic Expressions

- Recognizing (and generating!) polynomials in some term X:
 - X is a polynomial in X
 - a constant is a polynomial in X
 - sums, differences and products of polynomials in X are polynomials
 - also polynomials raised to the power of a natural number and the quotient of a polynomial by a constant

```
% polynomial(X,X).
polynomial(Term,X) :- pconstant(Term).
polynomial(Term1+Term2,X) :- polynomial(Term1,X), polynomial(Term2,X).
polynomial(Term1-Term2,X) :- polynomial(Term1,X), polynomial(Term2,X).
polynomial(Term1*Term2,X) :- polynomial(Term1,X), polynomial(Term2,X).
polynomial(Term1/Term2,X) :- polynomial(Term1,X), pconstant(Term2).
polynomial(Term1^N,X) :- polynomial(Term1,X), nat(N).
```
Recursive Programming: Manipulating Symb. Expressions (Contd.)

- Symbolic differentiation: deriv(Expression, X, Derivative)

 deriv(X, X, s(0)).
 deriv(C, X, 0) :- pconstant(C).
 deriv(U+V, X, DU+DV) :- deriv(U, X, DU), deriv(V, X, DV).
 deriv(U-V, X, DU-DV) :- deriv(U, X, DU), deriv(V, X, DV).
 deriv(U*V, X, DU*V+U*DV) :- deriv(U, X, DU), deriv(V, X, DV).
 deriv(U/V, X, (DU*V-U*DV)/V^s(s(0))) :- deriv(U, X, DU), deriv(V, X, DV).
 deriv(U^s(N), X, s(N)*U^N*DU) :- deriv(U, X, DU), nat(N).
 deriv(log(U), X, DU/U) :- deriv(U, X, DU).
 ...

- ?- deriv(s(s(s(0))))*x+s(s(0)), x, Y).

- A simplification step can be added.
Recursive Programming: Graphs

• A common approach: make use of another data structure, e.g., lists:
 ◦ Graphs as lists of edges.

• Alternative: make use of Prolog’s program database:
 ◦ Declare the graph using facts in the program.

  ```prolog
  edge(a, b).
  edge(c, a).
  edge(b, c).
  edge(d, a).
  ```

• Paths in a graph: `path(X, Y)` iff there is a path in the graph from node `X` to node `Y`.
  ```prolog
  path(A, B) :- edge(A, B).
  path(A, B) :- edge(A, X), path(X, B).
  ```

• Circuit: a closed path. `circuit` iff there is a path in the graph from a node to itself.
  ```prolog
  circuit :- path(A, A).
  ```
Recursive Programming: Graphs (Exercises)

- Modify `circuit/0` so that it gives the circuit. (You have to modify also `path/2`)
- Propose a solution for handling several graphs in our representation.
- Propose a suitable representation of graphs as data structures.
- Define the previous predicates for your representation.

- Consider unconnected graphs (there is a subset of nodes not connected in any way to the rest) versus connected graphs.
- Consider directed versus undirected graphs.

- Try `path(a,d)`. Solve the problem.
Recognizing the sequence of characters accepted by the following non-deterministic, finite automaton (NDFA):

\[
\begin{array}{c}
q_0 \\
\downarrow \quad a \\
\quad \quad q_1 \\
\quad \quad \downarrow b \\
\quad \quad \quad \quad b \\
\quad \\
q_0
\end{array}
\]

where \(q_0 \) is both the initial and the final state.

Strings are represented as lists of constants (e.g., \([a, b, b]\)).

Program:

\[
\begin{align*}
\text{initial}(q_0). & \quad \text{delta}(q_0,a,q_1). \\
& \quad \text{delta}(q_1,b,q_0). \\
\text{final}(q_0). & \quad \text{delta}(q_1,b,q_1). \\
\text{accept}(S) & \quad : - \quad \text{initial}(Q), \text{accept_from}(S,Q). \\
\text{accept_from}([],Q) & \quad : - \quad \text{final}(Q). \\
\text{accept_from}([X|Xs],Q) & \quad : - \quad \text{delta}(Q,X,\text{NewQ}), \text{accept_from}(Xs,\text{NewQ}).
\end{align*}
\]
• A *nondeterministic, stack, finite automaton* (NDSFA):

```prolog
accept(S) :- initial(Q), accept_from(S,Q,[]).

accept_from([],Q,[]) :- final(Q).
accept_from([X|Xs],Q,S) :- delta(Q,X,S,NewQ,NewS),
                               accept_from(Xs,NewQ,NewS).

initial(q0).
final(q1).

delta(q0,X,Xs,q0,[X|Xs]).
delta(q0,X,Xs,q1,[X|Xs]).
delta(q0,X,Xs,q1,Xs).
delta(q1,X,[X|Xs],q1,Xs).
```

• What sequence does it recognize?
Recursive Programming: Towers of Hanoi

- **Objective:**
 - Move tower of N disks from peg a to peg b, with the help of peg c.

- **Rules:**
 - Only one disk can be moved at a time.
 - A larger disk can never be placed on top of a smaller disk.
We will call the main predicate `hanoi_moves(N,Moves)`

- N is the number of disks and $Moves$ the corresponding list of "moves".
- Each move `move(A, B)` represents that the top disk in A should be moved to B.

Example:

```
hanoi_moves( s(s(s(0))),
             [ move(a,b), move(a,c), move(b,c), move(a,b),
               move(c,a), move(c,b), move(a,b) ])
```
Recursive Programming: Towers of Hanoi (Contd.)

- A general rule:

- We capture this in a predicate \(\text{hanoi}(N, \text{Orig}, \text{Dest}, \text{Help}, \text{Moves}) \) where "Moves contains the moves needed to move a tower of \(N \) disks from peg \(\text{Orig} \) to peg \(\text{Dest} \), with the help of peg \(\text{Help} \)."

\[
\begin{align*}
\text{hanoi}(s(0), \text{Orig}, \text{Dest}, _\text{Help}, [\text{move}(\text{Orig}, \text{Dest})]). \\
\text{hanoi}(s(N), \text{Orig}, \text{Dest}, \text{Help}, \text{Moves}) & : - \\
& \quad \text{hanoi}(N, \text{Orig}, \text{Help}, \text{Dest}, \text{Moves1}), \\
& \quad \text{hanoi}(N, \text{Help}, \text{Dest}, \text{Orig}, \text{Moves2}), \\
& \quad \text{append}(\text{Moves1}, [\text{move}(\text{Orig}, \text{Dest})|\text{Moves2}], \text{Moves}).
\end{align*}
\]

- And we simply call this predicate:

\[
\begin{align*}
\text{hanoi_moves}(N, \text{Moves}) & : - \\
& \quad \text{hanoi}(N, a, b, c, \text{Moves}).
\end{align*}
\]
Learning to Compose Recursive Programs

- To some extent it is a simple question of practice.
- By generalization (as in the previous examples): elegant, but sometimes difficult? (Not the way most people do it.)
- Think inductively: state first the base case(s), and then think about the general recursive case(s).
- Sometimes it may help to compose programs with a given use in mind (e.g., “forwards execution”), making sure it is declaratively correct. Consider then also if alternative uses make sense.
- Sometimes it helps to look at well-written examples and use the same “schemas.”
- Using a global top-down design approach can help (in general, not just for recursive programs):
 - State the general problem.
 - Break it down into subproblems.
 - Solve the pieces.
- Again, the best approach: practice, practice, practice.