Syntax: Terms (Variables, Constants, and Structures)

(using Prolog notation conventions)

- **Variables**: start with uppercase character (or “_”), may include “_” and digits:

 Examples: X, Im4u, A_little_garden, _, _x, _22

- **Constants**: lowercase first character, may include “_” and digits. Also, numbers and some special characters. Quoted, any character:

 Examples: a, dog, a_big_cat, 23, ’Hungry man’, []

- **Structures**: a functor (the structure name, is like a constant name) followed by a fixed number of arguments between parentheses:

 Example: date(monday, Month, 1994)

 Arguments can in turn be variables, constants and structures.

 ◦ **Arity**: is the number of arguments of a structure. Functors are represented as name/arity. A constant can be seen as a structure with arity zero.

Variables, constants, and structures as a whole are called **terms** (they are the terms of a “first–order language”): the **data structures** of a logic program.
Syntax: Terms

(using Prolog notation conventions)

- **Examples of terms:**

<table>
<thead>
<tr>
<th>Term</th>
<th>Type</th>
<th>Main functor:</th>
</tr>
</thead>
<tbody>
<tr>
<td>dad</td>
<td>constant</td>
<td>dad/0</td>
</tr>
<tr>
<td>time(min, sec)</td>
<td>structure</td>
<td>time/2</td>
</tr>
<tr>
<td>pair(Calvin, tiger(Hobbes))</td>
<td>structure</td>
<td>pair/2</td>
</tr>
<tr>
<td>Tee(Alf, rob)</td>
<td>illegal</td>
<td>—</td>
</tr>
<tr>
<td>A_good_time</td>
<td>variable</td>
<td>—</td>
</tr>
</tbody>
</table>

- **Functors** can be defined as prefix, postfix, or infix **operators** (just syntax!):

<table>
<thead>
<tr>
<th>Expression</th>
<th>Term</th>
<th>Main Functor</th>
</tr>
</thead>
<tbody>
<tr>
<td>a + b</td>
<td>’+’(a, b)</td>
<td>if +/2 declared infix</td>
</tr>
<tr>
<td>- b</td>
<td>’-’(b)</td>
<td>if -/1 declared prefix</td>
</tr>
<tr>
<td>a < b</td>
<td>’<’(a, b)</td>
<td>if </2 declared infix</td>
</tr>
<tr>
<td>john father mary</td>
<td>father(john, mary)</td>
<td>if father/2 declared infix</td>
</tr>
</tbody>
</table>

We assume that some such operator definitions are always preloaded.
Syntax: Rules and Facts (Clauses)

- **Rule:** an expression of the form:

\[p_0(t_1, t_2, \ldots, t_{n_0}) \leftarrow p_1(t_1^1, t_2^1, \ldots, t_{n_1}^1), \ldots, p_m(t_1^m, t_2^m, \ldots, t_{n_m}^m). \]

- \(p_0(...) \) to \(p_m(...) \) are *syntactically* like terms.
- \(p_0(...) \) is called the **head** of the rule.
- The \(p_i \) to the right of the arrow are called *literals* and form the **body** of the rule. They are also called **procedure calls**.
- Usually, \(\leftarrow \) is called the **neck** of the rule.

- **Fact:** an expression of the form \(p(t_1, t_2, \ldots, t_n) \) (i.e., a rule with empty body).

Example:

<table>
<thead>
<tr>
<th>meal(soup, beef, coffee).</th>
<th>% ← A fact.</th>
</tr>
</thead>
<tbody>
<tr>
<td>meal(First, Second, Third) :-</td>
<td>% ← A rule.</td>
</tr>
<tr>
<td>appetizer(First),</td>
<td>%</td>
</tr>
<tr>
<td>main_dish(Second),</td>
<td>%</td>
</tr>
<tr>
<td>dessert(Third).</td>
<td>%</td>
</tr>
</tbody>
</table>

- Rules and facts are both called **clauses**.
Predicate (or procedure definition): a set of clauses whose heads have the same name and arity (called the predicate name).

Examples:

<table>
<thead>
<tr>
<th>Predicate</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>pet(spot)</td>
<td>animal(spot).</td>
</tr>
<tr>
<td>pet(X) :- animal(X), barks(X).</td>
<td>animal(barry).</td>
</tr>
<tr>
<td>pet(X) :- animal(X), meows(X).</td>
<td>animal(hobbes).</td>
</tr>
</tbody>
</table>

Predicate pet/1 has three clauses. Of those, one is a fact and two are rules. Predicate animal/1 has three clauses, all facts.

Logic Program: a set of predicates.

Query: an expression of the form:

(i.e., a clause without a head).

A query represents a question to the program.

Example: :- pet(X). In most systems written as: ?- pet(X).
“Declarative” Meaning of Facts and Rules

The declarative meaning is the corresponding one in first order logic, according to certain conventions:

- **Facts**: state things that are true.
 (Note that a fact “p.” can be seen as the rule “p :- true.”)

 Example: the fact `animal(spot).` can be read as “spot is an animal”.

- **Rules**:
 - Commas in rule bodies represent conjunction, i.e.,

 \[p \leftarrow p_1, \ldots, p_m. \text{ represents } p \leftarrow p_1 \land \cdots \land p_m. \]

 - “\(<\)” represents as usual logical implication.

 Thus, a rule `p \leftarrow p_1, \ldots, p_m. ` means “if \(p_1\) and \(\ldots\) and \(p_m\) are true, then \(p\) is true”

 Example: the rule `pet(X):- animal(X), barks(X).` can be read as “\(X\) is a pet if it is an animal and it barks”.
“Declarative” Meaning of Predicates and Queries

- **Predicates**: clauses in the same predicate

 \[p \leftarrow p_1, \ldots, p_n \]

 \[p \leftarrow q_1, \ldots, q_m \]

 ... provide different alternatives (for \(p \)).

 Example: the rules

  ```
  pet(X) :- animal(X), barks(X).
  pet(X) :- animal(X), meows(X).
  ```

 express two ways for \(X \) to be a pet.

- **Note** (variable scope): the \(X \) vars. in the two clauses above are different, despite the same name. Vars. are local to clauses (and are renamed any time a clause is used –as with vars. local to a procedure in conventional languages).

- **A query** represents a question to the program.

 Examples:

  ```
  ?- pet(spot).
  ?- pet(X).
  ```

 asks whether spot is a pet.
 asks: “Is there an \(X \) which is a pet?”
“Execution” and Semantics

• Example of a logic program:

```prolog
pet(X) :- animal(X), barks(X).
pet(X) :- animal(X), meows(X).
animal(spot).  barks(spot).
animal(barry). meows(barry).
animal(hobbes). roars(hobbes).
```

• **Execution**: given a program and a query, *executing* the logic program is attempting to find an answer to the query.

 Example: given the program above and the query `:- pet(X).`
 the system will try to find a “substitution” for `X` which makes `pet(X)` true.

 ◦ The **declarative semantics** specifies *what* should be computed (all possible answers).
 ⇒ Intuitively, we have two possible answers: `X = spot` and `X = barry`.

 ◦ The **operational semantics** specifies *how* answers are computed (which allows us to determine *how many steps* it will take).
Running Programs in a Logic Programming System

- File `pets.pl` contains (explained later):

  ```prolog
  :- module(_,_,[’bf/bfall’]).
  ```

 + the pet example code as in previous slides.

- Interaction with the system query evaluator (the “top level”):

  ```prolog
  |- Ciao 1.XX ...
  |- use_module(pets).
  yes
  |- pet(spot).
  yes
  |- pet(X).
  X = spot ? ;
  X = barry ? ;
  no
  |- 
  ```

See the part on Developing Programs with a Logic Programming System for more details on the particular system used in the course (Ciao).
Simple (Top-Down) Operational Meaning of Programs

- A logic program is operationally a set of *procedure definitions* (the predicates).
- A query \(\leftarrow p \) is an initial *procedure call*.
- A procedure definition with one *clause* \(p \leftarrow p_1, \ldots, p_m \). means:
 “to execute a call to \(p \) you have to call \(p_1 \) and \(\ldots \) and \(p_m \)”
 ◦ In principle, the order in which \(p_1, \ldots, p_n \) are called does not matter, but, in practical systems it is fixed.
- If several clauses (definitions) \(p \leftarrow p_1, \ldots, p_n \) means:
 \(p \leftarrow q_1, \ldots, q_m \)
 “to execute a call to \(p \), call \(p_1 \land \ldots \land p_n \), or, alternatively, \(q_1 \land \ldots \land q_n \), or \ldots”
 ◦ Unique to logic programming—it is like having several alternative procedure definitions.
 ◦ Means that several possible paths may exist to a solution and they *should be explored*.
 ◦ System usually stops when the first solution found, user can ask for more.
 ◦ Again, in principle, the order in which these paths are explored does not matter *(if certain conditions are met)*, but, for a given system, this is typically also fixed.

In the following we define a more precise operational semantics.
Unification: uses

- **Unification** is the mechanism used in *procedure calls* to:
 - Pass parameters.
 - “Return” values.
- It is also used to:
 - Access parts of structures.
 - Give values to variables.
- Unification is a procedure to solve equations on data structures.
 - As usual, it returns a minimal solution to the equation (or the equation system).
 - As many equation solving procedures it is based on isolating variables and then *instantiating* them with their values.
Unification

- **Unifying two terms (or literals) A and B:** is asking if they can be made syntactically identical by giving (minimal) values to their variables.
 - I.e., find a **variable substitution** θ such that $[A\theta = B\theta]$ (or, if impossible, *fail*).
 - Only variables can be given values!
 - Two structures can be made identical only by making their arguments identical.

E.g.:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>θ</th>
<th>$A\theta$</th>
<th>$B\theta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>dog</td>
<td>dog</td>
<td>\emptyset</td>
<td>dog</td>
<td>dog</td>
</tr>
<tr>
<td>X</td>
<td>a</td>
<td>${X = a}$</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>X</td>
<td>Y</td>
<td>${X = Y}$</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>$f(X, g(t))$</td>
<td>$f(m(h), g(M))$</td>
<td>${X=m(h), M=t}$</td>
<td>$f(m(h), g(t))$</td>
<td>$f(m(h), g(t))$</td>
</tr>
<tr>
<td>$f(X, g(t))$</td>
<td>$f(m(h), t(M))$</td>
<td>Impossible (1)</td>
<td>$f(m(h), g(t))$</td>
<td>$f(m(h), g(t))$</td>
</tr>
<tr>
<td>$f(X, X)$</td>
<td>$f(Y, l(Y))$</td>
<td>Impossible (2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- (1) Structures with different name and/or arity cannot be unified.
- (2) A variable cannot be given as value a term which contains that variable, because it would create an infinite term. This is known as the **occurs check**. (See, however, *cyclic terms* later.)
Unification

- Often several solutions exist, e.g.:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>θ_1</th>
<th>$A\theta_1$ and $B\theta_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(X, g(T))$</td>
<td>$f(m(H), g(M))$</td>
<td>${X=m(a), H=a, M=b, T=b}$</td>
<td>$f(m(a), g(b))$</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>${X=m(H), M=f(A), T=f(A)}$</td>
<td>$f(m(H), g(f(A)))$</td>
</tr>
</tbody>
</table>

These are correct, but a simpler ("more general") solution exists:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>θ_1</th>
<th>$A\theta_1$ and $B\theta_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(X, g(T))$</td>
<td>$f(m(H), g(M))$</td>
<td>${X=m(H), T=M}$</td>
<td>$f(m(H), g(M))$</td>
</tr>
</tbody>
</table>

- Always a unique (modulo variable renaming) *most general* solution exists (unless unification fails).

- This is the one that we are interested in.

- The *unification algorithm* finds this solution.
Unification Algorithm

• Let A and B be two terms:

1. $\theta = \emptyset$, $E = \{A = B\}$

2. while not $E = \emptyset$:

 2.1 delete an equation $T = S$ from E

 2.2 case T or S (or both) are (distinct) variables. Assuming T variable:
 * (occur check) if T occurs in the term S → halt with failure
 * substitute variable T by term S in all terms in θ
 * substitute variable T by term S in all terms in E
 * add $T = S$ to θ

 2.3 case T and S are non-variable terms:
 * if their names or arities are different → halt with failure
 * obtain the arguments $\{T_1, \ldots, T_n\}$ of T and $\{S_1, \ldots, S_n\}$ of S
 * add $\{T_1 = S_1, \ldots, T_n = S_n\}$ to E

3. halt with θ being the m.g.u of A and B
Unification Algorithm Examples (I)

- Unify: $A = p(X, X)$ and $B = p(f(Z), f(W))$

<table>
<thead>
<tr>
<th>θ</th>
<th>E</th>
<th>T</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>{}</td>
<td>{ $p(X, X) = p(f(Z), f(W))$ }</td>
<td>$p(X, X)$</td>
<td>$p(f(Z), f(W))$</td>
</tr>
<tr>
<td>{}</td>
<td>{ $X = f(Z), X = f(W)$ }</td>
<td>X</td>
<td>$f(Z)$</td>
</tr>
<tr>
<td>{ $X = f(Z)$ }</td>
<td>{ $f(Z) = f(W)$ }</td>
<td>$f(Z)$</td>
<td>$f(W)$</td>
</tr>
<tr>
<td>{ $X = f(Z)$ }</td>
<td>{ $Z = W$ }</td>
<td>Z</td>
<td>W</td>
</tr>
<tr>
<td>{ $X = f(W), Z = W$ }</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
</tr>
</tbody>
</table>

- Unify: $A = p(X, f(Y))$ and $B = p(Z, X)$

<table>
<thead>
<tr>
<th>θ</th>
<th>E</th>
<th>T</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>{}</td>
<td>{ $p(X, f(Y)) = p(Z, X)$ }</td>
<td>$p(X, f(Y))$</td>
<td>$p(Z, X)$</td>
</tr>
<tr>
<td>{}</td>
<td>{ $X = Z, f(Y) = X$ }</td>
<td>X</td>
<td>Z</td>
</tr>
<tr>
<td>{ $X = Z$ }</td>
<td>{ $f(Y) = Z$ }</td>
<td>$f(Y)$</td>
<td>Z</td>
</tr>
<tr>
<td>{ $X = f(Y), Z = f(Y)$ }</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
</tr>
</tbody>
</table>
Unification Algorithm Examples (II)

- Unify: \(A = p(X, f(Y)) \) and \(B = p(a, g(b)) \)

\[
\begin{array}{c|c|c|c}
\theta & E & T & S \\
\hline
\{\} & \{ p(X, f(Y)) = p(a, g(b)) \} & p(X, f(Y)) & p(a, g(b)) \\
\{X=a, f(Y)=g(b)\} & X & a \\
\{X=a\} & f(Y) & g(b) \\
\hline
\text{fail} & & & \\
\end{array}
\]

- Unify: \(A = p(X, f(X)) \) and \(B = p(Z, Z) \)

\[
\begin{array}{c|c|c|c}
\theta & E & T & S \\
\hline
\{\} & \{ p(X, f(X)) = p(Z, Z) \} & p(X, f(X)) & p(Z, Z) \\
\{X=Z, f(X)=Z\} & X & Z \\
\{X=Z\} & f(Z) & Z \\
\hline
\text{fail} & & & \\
\end{array}
\]
A (Schematic) Interpreter for Logic Programs (SLD–resolution)

Input: A logic program P, a query Q
Output: Q_{μ} (answer substitution) if Q is provable from P, *failure* otherwise

Algorithm:

1. Initialize the “resolvent” R to be \{Q\}
2. While R is nonempty do:
 2.1. Take the leftmost literal A in R
 2.2. Choose a (renamed) clause $A' \leftarrow B_1, \ldots, B_n$ from P
 such that A and A' *unify* with unifier θ
 (if no such clause can be found, branch is *failed*; explore another branch)
 2.3. Remove A from R, add B_1, \ldots, B_n to R
 2.4. Apply θ to R and Q
3. If R is empty, output Q (a solution). Explore another branch for more sol’s.

- Step 2.2 defines *alternative paths* to be explored to find answer(s); execution explores this tree (for example, breadth-first).
Since step 2.2 is left open, a given logic programming system must specify how it deals with this by providing one (or more)

- **Search rule(s):** “how are clauses/branches selected in 2.2.”

If the search rule is not specified execution can be *nondeterministic*, since choosing a different clause (in step 2.2) could lead to different solutions (finding solutions in a different order).

Example (two valid executions):

\[
\begin{align*}
?- \text{pet}(X). & \quad ?- \text{pet}(X). \\
X = \text{spot} \ ? \ ; & \quad X = \text{barry} \ ? \ ; \\
X = \text{barry} \ ? \ ; & \quad X = \text{spot} \ ? \ ; \\
\text{no} & \quad \text{no} \\
?- & \quad ?-
\end{align*}
\]

In fact, there is also some freedom in step 2.1, i.e., a system may also specify:

- **Computation rule(s):** “how are literals selected in 2.1.”
Running programs

C₁: \(\text{pet}(X) :- \text{animal}(X), \text{barks}(X). \)
C₂: \(\text{pet}(X) :- \text{animal}(X), \text{meows}(X). \)
C₃: \(\text{animal}(\text{spot}). \)
C₄: \(\text{animal}(\text{barry}). \)
C₅: \(\text{animal}(\text{hobbes}). \)
C₆: \(\text{barks}(\text{spot}). \)
C₇: \(\text{meows}(\text{barry}). \)
C₈: \(\text{roars}(\text{hobbes}). \)

\[
\begin{array}{|c|c|c|c|}
\hline
Q & R & \text{Clause} & \theta \\
\hline
\text{pet}(P) & \text{pet}(P) & C₂^* & \{ P = X₁ \} \\
\text{pet}(X₁) & \text{animal}(X₁), \text{meows}(X₁) & C₄^* & \{ X₁ = \text{barry} \} \\
\text{pet}(\text{barry}) & \text{meows}(\text{barry}) & C₇ & \{ \} \\
\text{pet}(\text{barry}) & \text{—} & \text{—} & \text{—} \\
\hline
\end{array}
\]

* means there is a choice-point, i.e., there are other clauses whose head unifies.

- System response: \(P = \text{barry} \) ?
- If we type “;” after the ? prompt (i.e., we ask for another solution) the system can go and execute a different branch (i.e., a different choice in \(C₂^* \) or \(C₄^* \)).
Running programs (different strategy)

C_1: pet(X) :- animal(X), barks(X).

C_2: pet(X) :- animal(X), meows(X).

C_3: animal(spot).

C_4: animal(barry).

C_5: animal(hobbes).

C_6: barks(spot).

C_7: meows(barry).

C_8: roars(hobbes).

\[\text{\textbullet} \quad :- \text{pet(P)}. \] (different strategy)

<table>
<thead>
<tr>
<th>Q</th>
<th>R</th>
<th>Clause</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>pet(P)</td>
<td>pet(P)</td>
<td>C_1^*</td>
<td>${ P = X_1 }$</td>
</tr>
<tr>
<td>pet(X_1)</td>
<td>animal(X_1), barks(X_1)</td>
<td>C_5^*</td>
<td>${ X_1 = \text{hobbes} }$</td>
</tr>
<tr>
<td>pet(hobbes)</td>
<td>barks(hobbes)</td>
<td>???</td>
<td>failure</td>
</tr>
</tbody>
</table>

→ explore another branch (different choice in C_1^* or C_5^*) to find a solution. We take C_3 instead of C_5:

<table>
<thead>
<tr>
<th>Q</th>
<th>R</th>
<th>Clause</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>pet(P)</td>
<td>pet(P)</td>
<td>C_1^*</td>
<td>${ P = X_1 }$</td>
</tr>
<tr>
<td>pet(X_1)</td>
<td>animal(X_1), barks(X_1)</td>
<td>C_3^*</td>
<td>${ X_1 = \text{spot} }$</td>
</tr>
<tr>
<td>pet(spot)</td>
<td>barks(spot)</td>
<td>C_6</td>
<td>${ }$</td>
</tr>
<tr>
<td>pet(spot)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
The Search Tree

- A query + a logic program together specify a search tree.
 Example: query `:- pet(X)` with the previous program generates this search tree (the boxes represent the “and” parts [except leaves]):

- Different query \rightarrow different tree.
- The search and computation rules explain how the search tree will be explored during execution.
- How can we achieve completeness (guarantee that all solutions will be found)?
Characterization of The Search Tree

- All solutions are at *finite depth* in the tree.
- Failures can be at finite depth or, in some cases, be an infinite branch.
Depth-First Search

- Incomplete: may fall through an infinite branch before finding all solutions.
- But very efficient: it can be implemented with a call stack, very similar to a traditional programming language.
Breadth-First Search

- Will find all solutions before falling through an infinite branch.
- But costly in terms of time and memory.
- Used in all the following examples (via Ciao’s bf package).
Selecting breadth-first or depth-first search

- In the Ciao system we can select the search rule using the packages mechanism.

- Files should start with the following line:
 - To execute in breadth-first mode:
    ```prolog
    :- module(_,_,['bf/bfall']).
    ```
 - To execute in depth-first mode:
    ```prolog
    :- module(_,_,[]).
    ```

See the part on Developing Programs with a Logic Programming System for more details on the particular system used in the course (Ciao).
Role of Unification in Execution

- As mentioned before, unification used to access data and give values to variables.

 Example: Consider query `:- animal(A), named(A,Name).` with:

 `animal(dog(barry)).` `named(dog(Name),Name).`

- Also, unification is used to pass parameters in procedure calls and to return values upon procedure exit.

<table>
<thead>
<tr>
<th>Q</th>
<th>R</th>
<th>Clause</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>pet(P)</td>
<td>pet(P)</td>
<td>C_1 *</td>
<td>{ P=X_1 }</td>
</tr>
<tr>
<td>pet(X_1)</td>
<td>animal(X_1), barks(X_1)</td>
<td>C_3 *</td>
<td>{ X_1=spot }</td>
</tr>
<tr>
<td>pet(spot)</td>
<td>barks(spot)</td>
<td>C_6</td>
<td>{}</td>
</tr>
<tr>
<td>pet(spot)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
“Modes”

- In fact, argument positions are not fixed a priori to be input or output.

 Example: Consider query

 \[
 \text{:- pet(spot). vs. :- pet(X).}
 \]

 or

 \[
 \text{:- plus(s(0), s(s(0)), Z). vs. :- plus(s(0), Y, s(s(s(0))))).}
 \]

 % Adds

 % Subtracts

- Thus, procedures can be used in different **modes** s.t. different sets of arguments are input or output in each mode.

- We sometimes use $+$ and $-$ to refer to, respectively, and argument being an input or an output, e.g.:

 \[
 \text{plus(}+X, +Y, -Z) \quad \text{means we call plus with}
 \]

 \[
 \begin{align*}
 &\diamond X \text{ instantiated,} \\
 &\diamond Y \text{ instantiated, and} \\
 &\diamond Z \text{ free.}
 \end{align*}
 \]
Database Programming

- A Logic Database is a set of facts and rules (i.e., a logic program):

$\text{father_of}(\text{john}, \text{peter}).$
$\text{father_of}(\text{john}, \text{mary}).$
$\text{father_of}(\text{peter}, \text{michael}).$
$\text{mother_of}(\text{mary}, \text{david}).$

$\text{grandfather_of}(\text{L}, \text{M}) :\text{-} \text{father_of}(\text{L}, \text{N}),$
$\text{father_of}(\text{N}, \text{M}).$
$\text{grandfather_of}(\text{X}, \text{Y}) :\text{-} \text{father_of}(\text{X}, \text{Z}),$
$\text{mother_of}(\text{Z}, \text{Y}).$

- Given such database, a logic programming system can answer questions (queries) such as:

 $? -$ father_of(\text{john}, \text{peter}).$
 yes

 $? -$ father_of(\text{john}, \text{david}).$
 no

 $? -$ father_of(\text{john}, \text{X}).$
 $\text{X} = \text{peter}$;
 $\text{X} = \text{mary}$

- Rules for \text{grandmother_of}(\text{X}, \text{Y})?

 $? -$ \text{grandfather_of}(\text{X}, \text{michael}).$
 $\text{X} = \text{john}$

 $? -$ \text{grandfather_of}(\text{X}, \text{Y}).$
 $\text{X} = \text{john}, \text{Y} = \text{michael}$;
 $\text{X} = \text{john}, \text{Y} = \text{david}$

 $? -$ \text{grandfather_of}(\text{X}, \text{X}).$
 no
Another example:

resistor(power, n1).
resistor(power, n2).
transistor(n2, ground, n1).
transistor(n3, n4, n2).
transistor(n5, ground, n4).

\[
\begin{align*}
\text{inverter} & (\text{Input}, \text{Output}) \leftarrow \\
& \text{transistor} (\text{Input}, \text{ground}, \text{Output}), \text{resistor} (\text{power}, \text{Output})
\end{align*}
\]

\[
\begin{align*}
\text{nand} & \text{ gate} (\text{Input}1, \text{Input}2, \text{Output}) \leftarrow \\
& \text{transistor} (\text{Input}1, X, \text{Output}), \text{transistor} (\text{Input}2, \text{ground}, X), \text{resistor} (\text{power}, \text{Output})
\end{align*}
\]

\[
\begin{align*}
\text{and} & \text{ gate} (\text{Input}1, \text{Input}2, \text{Output}) \leftarrow \\
& \text{nand} \text{ gate} (\text{Input}1, \text{Input}2, X), \text{inverter} (X, \text{Output})
\end{align*}
\]

Query \text{and}_\text{gate}(\text{In}1, \text{In}2, \text{Out}) has solution: \text{In}1=\text{n}3, \text{In}2=\text{n}5, \text{Out}=\text{n}1
Structured Data and Data Abstraction (and the ’=’ Predicate)

- **Data structures** are created using (complex) terms.

- Structuring data is important:
  ```prolog
  course(complog,wed,18,30,20,30,'M.','Hermenegildo',new,5102).
  ```

- When is the Computational Logic course?
  ```prolog
  ```

- Structured version:
  ```prolog
  course(complog,Time, Lecturer, Location) :-
  Time = t(wed,18:30,20:30),
  Lecturer = lect('M.', 'Hermenegildo'),
  Location = loc(new,5102).
  ```

Note: “X=Y” is equivalent to “’=’(X,Y)” where the predicate =/2 is defined as the fact “’=’(X,X).” – Plain unification!

- Equivalent to:
  ```prolog
  course(complog, t(wed,18:30,20:30),
  lect('M.', 'Hermenegildo'), loc(new,5102)).
  ```
Structured Data and Data Abstraction (and The Anonymous Variable)

- Given:

 \[
 \text{course(complog, Time, Lecturer, Location) :-}
 \]
 \[
 \text{Time = t(wed,18:30,20:30),}
 \]
 \[
 \text{Lecturer = lect('M.', 'Hermenegildo'),}
 \]
 \[
 \text{Location = loc(new,5102).}
 \]

- When is the Computational Logic course?

 \[\text{?- course(complog, Time, A, B).}\]

 has solution:

 \[
 \text{Time=t(wed,18:30,20:30), A=lect('M.', 'Hermenegildo'), B=loc(new,5102)}
 \]

- Using the *anonymous variable* (“_”):

 \[\text{:- course(complog,Time, _, _).}\]

 has solution:

 \[
 \text{Time=t(wed,18:30,20:30)}
 \]
Terms as Data Structures with Pointers

- **main** below is a procedure, that:
 - creates some data structures, with pointers and aliasing.
 - calls other procedures, passing to them pointers to these structures.

\[
\text{main : -}
\begin{align*}
X &= f(K, g(K)), \\
Y &= a, \\
Z &= g(L), \\
W &= h(b, L),
\end{align*}
\%
\text{Heap memory at this point} \rightarrow
\begin{align*}
p(X, Y), \\
q(Y, Z), \\
r(W).
\end{align*}

- Terms are data structures with pointers.
- Logical variables are \textit{declarative} pointers.
 - Declarative: they can only be assigned once.
Structured Data and Data Abstraction (Contd.)

- The circuit example revisited:

```prolog
resistor(r1, power, n1).  transistor(t1, n2, ground, n1).
resistor(r2, power, n2).  transistor(t2, n3, n4, n2).
   transistor(t3, n5, ground, n4).
inverter(inv(T, R), Input, Output) :-
   transistor(T, Input, ground, Output),
   resistor(R, power, Output).

nand_gate(nand(T1, T2, R), Input1, Input2, Output) :-
   transistor(T1, Input1, X, Output),
   transistor(T2, Input2, ground, X),
   resistor(R, power, Output).

and_gate(and(N, I), Input1, Input2, Output) :-
   nand_gate(N, Input1, Input2, X),
   inverter(I, X, Output).
```

- The query

```
:- and_gate(G, In1, In2, Out).
```

has solution:

```
G = and(nand(t2, t3, r2), inv(t1, r1)), In1 = n3, In2 = n5, Out = n1
```
Logic Programs and the Relational DB Model

<table>
<thead>
<tr>
<th>Relational Database</th>
<th>Logic Programming</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relation Name</td>
<td>→ Predicate symbol</td>
</tr>
<tr>
<td>Relation</td>
<td>→ Procedure consisting of ground facts</td>
</tr>
<tr>
<td></td>
<td>(facts without variables)</td>
</tr>
<tr>
<td>Tuple</td>
<td>→ Ground fact</td>
</tr>
<tr>
<td>Attribute</td>
<td>→ Argument of predicate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>Sex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>20</td>
<td>M</td>
</tr>
<tr>
<td>Jones</td>
<td>21</td>
<td>F</td>
</tr>
<tr>
<td>Smith</td>
<td>36</td>
<td>M</td>
</tr>
</tbody>
</table>

Person

<table>
<thead>
<tr>
<th>Name</th>
<th>Town</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>London</td>
<td>15</td>
</tr>
<tr>
<td>Brown</td>
<td>York</td>
<td>5</td>
</tr>
<tr>
<td>Jones</td>
<td>Paris</td>
<td>21</td>
</tr>
<tr>
<td>Smith</td>
<td>Brussels</td>
<td>15</td>
</tr>
<tr>
<td>Smith</td>
<td>Santander</td>
<td>5</td>
</tr>
</tbody>
</table>

Lived in

- person(brown, 20, male).
- person(jones, 21, female).
- person(smith, 36, male).
- lived_in(brown, london, 15).
- lived_in(brown, york, 5).
- lived_in(jones, paris, 21).
- lived_in(smith, brussels, 15).
- lived_in(smith, santander, 5).
• The operations of the relational model are easily implemented as rules.

 ◦ **Union:** \(r \cup s(X_1, \ldots, X_n) \leftarrow r(X_1, \ldots, X_n) \).
 \(r \cup s(X_1, \ldots, X_n) \leftarrow s(X_1, \ldots, X_n) \).

 ◦ **Set Difference:** \(r \setminus s(X_1, \ldots, X_n) \leftarrow r(X_1, \ldots, X_n), \neg s(X_1, \ldots, X_n) \).
 \(r \setminus s(X_1, \ldots, X_n) \leftarrow s(X_1, \ldots, X_n), \neg r(X_1, \ldots, X_n) \).

 (we postpone the discussion on *negation* until later.)

 ◦ **Cartesian Product:**
 \(r \times s(X_1, \ldots, X_m, X_{m+1}, \ldots, X_{m+n}) \leftarrow r(X_1, \ldots, X_m), s(X_{m+1}, \ldots, X_{m+n}) \).

 ◦ **Projection:** \(r_{13}(X_1, X_3) \leftarrow r(X_1, X_2, X_3) \).

 ◦ **Selection:** \(r_{\text{selected}}(X_1, X_2, X_3) \leftarrow r(X_1, X_2, X_3), \leq(X_2, X_3) \).

 (see later for definition of \(\leq/2 \))

• Derived operations – some can be expressed more directly in LP:

 ◦ **Intersection:** \(r \cap s(X_1, \ldots, X_n) \leftarrow r(X_1, \ldots, X_n), s(X_1, \ldots, X_n) \).

 ◦ **Join:** \(r_{\text{join}X2}(X_1, \ldots, X_n) \leftarrow r(X_1, X_2, X_3, \ldots, X_n), s(X'_1, X_2, X'_3, \ldots, X'_n) \).

• Duplicates an issue: see "setof" later in Prolog.
Deductive Databases

- The subject of “deductive databases” uses these ideas to develop logic-based databases.
 - Often syntactic restrictions (a subset of definite programs) used (e.g. “Datalog” – no functors, no existential variables).
 - Variations of a “bottom-up” execution strategy used: Use the T_p operator (explained in the theory part) to compute the model, restrict to the query.
 - Powerful notions of negation supported: S-models
 - \textbf{Answer Set Programming} (ASP)
 - powerful knowledge representation and reasoning systems.
Recursive Programming

- Example: ancestors.

```prolog
parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).
ancestor(X,Y) :- parent(X,Z), parent(Z,W), ancestor(Z,Y).
ancestor(X,Y) :- parent(X,Z), parent(Z,W), parent(W,K), ancestor(Z,Y).
...```

- Defining ancestor recursively:

```prolog
parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

```

- Exercise: define “related”, “cousin”, “same generation”, etc.
Types

- **Type**: a (possibly infinite) set of terms.
- **Type definition**: A program defining a type.
- **Example**: Weekday:
  - Set of terms to represent: 'Monday', 'Tuesday', 'Wednesday', ...
  - Type definition:
    weekday('Monday').
    weekday('Tuesday'). ...

- **Example**: Date (weekday * day in the month):
  - Set of terms to represent: date('Monday',23), date('Tuesday',24), ...
  - Type definition:
    date(date(W,D)) :- weekday(W), day_of_month(D).
    day_of_month(1).
    day_of_month(2).
    ...
    day_of_month(31).
Recursive Programming: Recursive Types

- **Recursive types**: defined by recursive logic programs.
- **Example**: natural numbers (simplest recursive data type):
  - Set of terms to represent: $0$, $s(0)$, $s(s(0))$, ...
  - Type definition:
  
  
  ```
 nat(0).
 nat(s(X)) :- nat(X).
  ```

  A minimal recursive predicate:
  one unit clause and one recursive clause (with a single body literal).

- Types are *runnable* and can be used to check or produce values:
  - ?- nat(X) ⇒ X=0; X=s(0); X=s(s(0)); ...

- We can reason about complexity, for a given class of queries ("mode").
  E.g., for mode nat(ground) complexity is linear in size of number.

- **Example**: integers:
  - Set of terms to represent: $0$, $s(0)$, $-s(0)$, ...
  - Type definition:
  
  
  ```
 integer(X) :- nat(X).
 integer(-X) :- nat(X).
  ```
Recursive Programming: Arithmetic

- Defining the natural order (\(\leq\)) of natural numbers:

```
less_or_equal(0, X) :- nat(X).
less_or_equal(s(X), s(Y)) :- less_or_equal(X, Y).
```

- Multiple uses (modes):

```
less_or_equal(s(0), s(s(0))), less_or_equal(X, 0), ...
```

- Multiple solutions:

```
less_or_equal(X, s(0)), less_or_equal(s(s(0)), Y), etc.
```

- Addition:

```
plus(0, X, X) :- nat(X).
plus(s(X), Y, s(Z)) :- plus(X, Y, Z).
```

- Multiple uses (modes):

```
plus(s(s(0)), s(0), Z), plus(s(s(0)), Y, s(0))
```

- Multiple solutions:

```
plus(X, Y, s(s(s(0)))), etc.
```
Another possible definition of addition:

\begin{align*}
\text{plus}(X, 0, X) & : - \text{nat}(X). \\
\text{plus}(X, \text{s}(Y), \text{s}(Z)) & : - \text{plus}(X, Y, Z).
\end{align*}

The meaning of plus is the same if both definitions are combined.

Not recommended: several proof trees for the same query → not efficient, not concise. We look for minimal axiomatizations.

The art of logic programming: finding compact and computationally efficient formulations!

Try to define: \text{times}(X, Y, Z) \ (Z = X \times Y), \ \text{exp}(N, X, Y) \ (Y = X^N), \ \text{factorial}(N, F) \ (F = N!), \ \text{minimum}(N1, N2, \text{Min}), \ldots
Recursive Programming: Arithmetic

- Definition of $\text{mod}(X, Y, Z)$
  "Z is the remainder from dividing X by Y"

$\exists Q \text{s.t. } X = Y \ast Q + Z \land Z < Y$

$\implies$

\[
\text{mod}(X, Y, Z) \leftarrow \text{less}(Z, Y), \ \text{times}(Y, Q, W), \ \text{plus}(W, Z, X).
\]

\[
\text{less}(0, s(X)) \leftarrow \text{nat}(X).
\]

\[
\text{less}(s(X), s(Y)) \leftarrow \text{less}(X, Y).
\]

- Another possible definition:

\[
\text{mod}(X, Y, X) \leftarrow \text{less}(X, Y).
\]

\[
\text{mod}(X, Y, Z) \leftarrow \text{plus}(X1, Y, X), \ \text{mod}(X1, Y, Z).
\]

- The second is much more efficient than the first one (compare the size of the proof trees).
The Ackermann function:

\[
\begin{align*}
\text{ackermann}(0,N) &= N + 1 \\
\text{ackermann}(M,0) &= \text{ackermann}(M-1,1) \\
\text{ackermann}(M,N) &= \text{ackermann}(M-1,\text{ackermann}(M,N-1))
\end{align*}
\]

In Peano arithmetic:

\[
\begin{align*}
\text{ackermann}(0,N) &= s(N) \\
\text{ackermann}(s(M1),0) &= \text{ackermann}(M1,s(0)) \\
\text{ackermann}(s(M1),s(N1)) &= \text{ackermann}(M1,\text{ackermann}(s(M1),N1))
\end{align*}
\]

Can be defined as:

\[
\begin{align*}
\text{ackermann}(0,N,s(N)). \\
\text{ackermann}(s(M1),0,Val) &:= \text{ackermann}(M1,s(0),Val). \\
\text{ackermann}(s(M1),s(N1),Val) &:= \text{ackermann}(s(M1),N1,Val1), \\
& \phantom{:= }\text{ackermann}(M1,Val1,Val).
\end{align*}
\]

In general, *functions* can be coded as a predicate with one more argument, which represents the output (and additional syntactic sugar often available).
Recursive Programming: Arithmetic/Functions (Functional Syntax)

- Syntactic support available (see, e.g., the Ciao *fsyntax* and *functional* packages).
- The Ackermann function (Peano) in Ciao’s functional Syntax and defining \( s \) as a prefix operator:

```prolog
:- use_package(functional).
:- op(500,fy,s).

ackermann(0, N) := s N.
ackermann(s M, 0) := ackermann(M, s 0).
ackermann(s M, s N) := ackermann(M, ackermann(s M, N)).
```

- Convenient in other cases – e.g. for defining types:

```prolog
nat(0).
nat(s(X)) :- nat(X).
```

Using special := notation for the “return” (last) the argument:

```prolog
nat := 0.
nat := s(X) :- nat(X).
```
Recursive Programming: Arithmetic/Functions (Funct. Syntax, Contd.)

Moving body call to head using the \( \sim \) notation ("evaluate and replace with result"):  

\[
\text{nat} := 0 . \\
\text{nat} := s(\sim \text{nat}).
\]

"\( \sim \)" not needed with functional package if inside its own definition:

\[
\text{nat} := 0 . \\
\text{nat} := s(\text{nat}).
\]

Using an \( :- \text{op}(500, fy, s) \) declaration to define \( s \) as a prefix operator:

\[
\text{nat} := 0 . \\
\text{nat} := s \text{ nat}.
\]

Using "|" (disjunction):

\[
\text{nat} := 0 \mid s \text{ nat}.
\]

Which is exactly equivalent to:

\[
\text{nat}(0). \\
\text{nat}(s(X)) :- \text{nat}(X).
\]
Recursive Programming: Lists

- Binary structure: first argument is *element*, second argument is *rest* of the list.

- We need:
  - A constant symbol: we use the constant \([ ]\) (\(\rightarrow\) denotes the empty list).
  - A functor of arity 2: traditionally the dot “.” (which is overloaded).

- Syntactic sugar: the term \((X, Y)\) is denoted by \([X|Y]\) (\(X\) is the *head*, \(Y\) is the *tail*).

<table>
<thead>
<tr>
<th>Formal object</th>
<th>“Cons pair” syntax</th>
<th>“Element” syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>((a, []))</td>
<td>([a</td>
<td>[]])</td>
</tr>
<tr>
<td>((a, (b, [])))</td>
<td>([a</td>
<td>[b</td>
</tr>
<tr>
<td>((a, (b, (c, []))))</td>
<td>([a</td>
<td>[b</td>
</tr>
<tr>
<td>((a, X))</td>
<td>([a</td>
<td>X])</td>
</tr>
<tr>
<td>((a, (b, X)))</td>
<td>([a</td>
<td>[b</td>
</tr>
</tbody>
</table>

- Note that:
  - \([a,b]\) and \([a|X]\) unify with \(\{X = [b]\}\)
  - \([a]\) and \([a|X]\) unify with \(\{X = []\}\)
  - \([a]\) and \([a,b|X]\) do not unify
  - \([\]\) and \([X]\) do not unify
Recursive Programming: Lists (Contd.)

- Type definition (no syntactic sugar):
  
  ```prolog
 list([]).
 list.(X,Y)) :- list(Y).
  ```

- Type definition, with some syntactic sugar ([ ] notation):
  
  ```prolog
 list([]).
 list([X|Y]) :- list(Y).
  ```

- Type definition, using also functional package:
  
  ```prolog
 list := [] | [_|list].
  ```

- “Exploring” the type:
  
  ```prolog
 ?- list(L).
 L = [] ? ;
 L = [_] ? ;
 L = [_,_] ? ;
 L = [_,_,_] ?
 ...
  ```
Recursive Programming: Lists (Contd.)

• X is a *member* of the list Y:

  \[
  \text{member}(a,[a]). \quad \text{member}(b,[b]). \quad \text{etc.} \implies \text{member}(X,[X]).
  \]

  \[
  \text{member}(a,[a,c]). \quad \text{member}(b,[b,d]). \quad \text{etc.} \implies \text{member}(X,[X,Y]).
  \]

  \[
  \text{member}(a,[a,c,d]). \quad \text{member}(b,[b,d,l]). \quad \text{etc.} \implies \text{member}(X,[X,Y,Z]).
  \]

  \[
  \implies \text{member}(X,[X|Y]) \leftarrow \text{list}(Y).
  \]

  \[
  \text{member}(a,[c,a]), \quad \text{member}(b,[d,b]). \quad \text{etc.} \implies \text{member}(X,[Y,X]).
  \]

  \[
  \text{member}(a,[c,d,a]). \quad \text{member}(b,[s,t,b]). \quad \text{etc.} \implies \text{member}(X,[Y,Z,X]).
  \]

  \[
  \implies \text{member}(X,[Y|Z]) \leftarrow \text{member}(X,Z).
  \]

• Resulting definition:

  \[
  \text{member}(X,[X|Y]) \leftarrow \text{list}(Y).
  \]

  \[
  \text{member}(X,[\_|T]) \leftarrow \text{member}(X,T).
  \]

• Uses of member(X,Y):

  ◊ checking whether an element is in a list (member(b,[a,b,c]))
  ◊ finding an element in a list (member(X,[a,b,c]))
  ◊ finding a list containing an element (member(a,Y))
• Combining lists and naturals:

○ Computing the length of a list:

\[
\text{len}([], 0). \\
\text{len}([H|T], \text{s}(L)) :- \text{len}(T, LT)
\]

○ Adding all elements of a list:

\[
\text{sumlist}([], 0). \\
\text{sumlist}([H|T], S) :- \text{sumlist}(T, ST), \text{plus}(ST, H, S).
\]

○ The type of lists of natural numbers:

\[
\text{natlist}([], 0). \\
\text{natlist}([H|T]) :- \text{natlist}(T, ST), \text{nat}(ST, H, S).
\]

or:

\[
\text{natlist} := [\sim \text{nat} | \text{natlist}].
\]
Recursive Programming: Lists (Contd.)

• Exercises:
  ◊ Define: prefix(X, Y) (the list X is a prefix of the list Y), e.g.
    prefix([a, b], [a, b, c, d])
  ◊ Define: suffix(X, Y), sublist(X, Y),...
Recursive Programming: Lists (Contd.)

- Concatenation of lists:
  - Base case:
    
    \[\text{append}([], [a], [a]) \quad \text{append}([], [a,b], [a,b]) \quad \text{etc.}\]
    \[\Rightarrow \text{append}([], \text{Ys}, \text{Ys}) :- \text{list(Ys)}.\]

  - Rest of cases (first step):
    
    \[\text{append}([a], [b], [a,b]). \quad \text{append}([a], [b,c], [a,b,c]). \quad \text{etc.}\]
    \[\Rightarrow \text{append}([X], \text{Ys}, [X|\text{Ys}]) :- \text{list(Ys)}.\]
    \[\text{append}([a,b], [c], [a,b,c]). \quad \text{append}([a,b], [c,d], [a,b,c,d]). \quad \text{etc.}\]
    \[\Rightarrow \text{append}([X,Z], \text{Ys}, [X,Z|\text{Ys}]) :- \text{list(Ys)}.\]

This is still infinite \(\Rightarrow\) we need to generalize more.
• Second generalization:
  append([X], Ys, [X|Ys]) :- list(Ys).
  append([X,Z], Ys, [X,Z|Ys]) :- list(Ys).
  append([X,Z,W], Ys, [X,Z,W|Ys]) :- list(Ys).
  \[
  \Rightarrow \text{append}([X|Xs], Ys, [X|Zs]) :- \text{append}(Xs, Ys, Zs).
  \]

• So, we have:
  \[
  \text{append}([], Ys, Ys) :- \text{list}(Ys).
  \text{append}([X|Xs], Ys, [X|Zs]) :- \text{append}(Xs, Ys, Zs).
  \]

• Another way of reasoning: thinking inductively.
  ◦ The base case is: \text{append}([], Ys, Ys) :- \text{list}(Ys).
  ◦ If we assume that \text{append}(Zs, Ys, Zs) works for some iteration, then, in the
    next one, the following holds: \text{append}(s(Zs), Ys, s(Zs)).
Recursive Programming: Lists (Contd.)

- Uses of `append`:
  - Concatenate two given lists:
    ```prolog
 ?- append([a,b,c],[d,e],L).
 L = [a,b,c,d,e] ?
 ``
 - Find differences between lists:
    ```prolog
    ?- append(D,[d,e],[a,b,c,d,e]).
    D = [a,b,c] ?
    ``
  - Split a list:
    ```prolog
 ?- append(A,B,[a,b,c,d,e]).
 A = [],
 B = [a,b,c,d,e] ? ;
 A = [a],
 B = [b,c,d,e] ? ;
 A = [a,b],
 B = [c,d,e] ? ;
 A = [a,b,c],
 B = [d,e] ?
 ...
    ```
Recursive Programming: Lists (Contd.)

- \texttt{reverse(Xs, Ys)}: Ys is the list obtained by reversing the elements in the list Xs
  It is clear that we will need to traverse the list Xs
  For each element X of Xs, we must put X at the end of the rest of the Xs list already reversed:
  \[
  \texttt{reverse([X|Xs], Ys) :- reverse(Xs, Zs), append(Zs, [X], Ys).}
  \]

  How can we stop?
  \[
  \texttt{reverse([], []).}
  \]

- As defined, \texttt{reverse(Xs, Ys)} is very inefficient. Another possible definition:
  (uses an \textit{accumulating parameter})
  \[
  \texttt{reverse(Xs, Ys) :- reverse(Xs, [], Ys).}
  \]

  \[
  \texttt{reverse([], Ys, Ys).}
  \]

  \[
  \texttt{reverse([X|Xs], Acc, Ys) :- reverse(Xs, [X|Acc], Ys).}
  \]

  \implies \text{Find the differences in terms of efficiency between the two definitions.}
Recursive Programming: Binary Trees

- Represented by a ternary functor tree(Element,Left,Right).
- Empty tree represented by void.
- Definition:

  ```prolog
 binary_tree(void).
 binary_tree(tree(Element,Left,Right)) :-
 binary_tree(Left),
 binary_tree(Right).
  ```

- Defining tree_member(Element,Tree):

  ```prolog
 tree_member(X,tree(X,Left,Right)) :-
 binary_tree(Left),
 binary_tree(Right).
 tree_member(X,tree(Y,Left,Right)) :- tree_member(X,Left).
 tree_member(X,tree(Y,Left,Right)) :- tree_member(X,Right).
  ```
• Defining `pre_order(Tree,Elements)`: Elements is a list containing the elements of Tree traversed in preorder.

```prolog
pre_order(void,[]).
pre_order(tree(X,Left,Right),Elements) :-
 pre_order(Left,ElementsLeft),
 pre_order(Right,ElementsRight),
 append([X|ElementsLeft],ElementsRight,Elements).
```

• Exercise – define:

  ◯ `in_order(Tree,Elements)`
  ◯ `post_order(Tree,Elements)`
Polymorphism

- Note that the two definitions of `member/2` can be used *simultaneously*:

```
lt_member(X, [X|Y]) :- list(Y).
lt_member(X, [_|T]) :- lt_member(X, T).
```

```
lt_member(X, tree(X,L,R)) :- binary_tree(L), binary_tree(R).
lt_member(X, tree(Y,L,R)) :- lt_member(X, L).
lt_member(X, tree(Y,L,R)) :- lt_member(X, R).
```

Lists only unify with the first two clauses, trees with clauses 3–5!

- `:- lt_member(X, [b,a,c]).`
  
  `X = b ; X = a ; X = c`

- `:- lt_member(X, tree(b, tree(a, void, void), tree(c, void, void))).`
  
  `X = b ; X = a ; X = c`

- Also, try (somewhat surprising): `:- lt_member(M, T).`
Recursive Programming: Manipulating Symbolic Expressions

- Recognizing (and generating!) polynomials in some term X:
  - X is a polynomial in X
  - a constant is a polynomial in X
  - sums, differences and products of polynomials in X are polynomials
  - also polynomials raised to the power of a natural number and the quotient of a polynomial by a constant

```
polynomial(X,X).
polynomial(Term,X) :- pconstant(Term).
polynomial(Term1+Term2,X) :- polynomial(Term1,X), polynomial(Term2,X).
polynomial(Term1-Term2,X) :- polynomial(Term1,X), polynomial(Term2,X).
polynomial(Term1*Term2,X) :- polynomial(Term1,X), polynomial(Term2,X).
polynomial(Term1/Term2,X) :- polynomial(Term1,X), pconstant(Term2).
polynomial(Term1^N,X) :- polynomial(Term1,X), nat(N).
```
Recursive Programming: Manipulating Symb. Expressions (Contd.)

- **Symbolic differentiation**: deriv(Expression, X, DifferentiatedExpression)
  
  ```prolog
 deriv(X,X,s(0)).
 deriv(C,X,0) :- pconstant(C).
 deriv(U+V,X,DU+DV) :- deriv(U,X,DU), deriv(V,X,DV).
 deriv(U-V,X,DU-DV) :- deriv(U,X,DU), deriv(V,X,DV).
 deriv(U*V,X,DU*V+U*DV) :- deriv(U,X,DU), deriv(V,X,DV).
 deriv(U/V,X,(DU*V-U*DV)/V^s(s(0))) :- deriv(U,X,DU), deriv(V,X,DV).
 deriv(U^s(N),X,s(N)*U^N*DU) :- deriv(U,X,DU), nat(N).
 deriv(log(U),X,DU/U) :- deriv(U,X,DU).
 ...
  ```

- ?- deriv(s(s(s(0))))*x+s(s(0)),x,Y).

- A simplification step can be added.
Recognizing the sequence of characters accepted by the following non-deterministic, finite automaton (NDFA):

Where \( q_0 \) is both the initial and the final state.

Strings are represented as lists of constants (e.g., \([a,b,b]\)).

**Program:**

```prolog
initial(q0).
delta(q0,a,q1).
delta(q1,b,q0).
final(q0).
delta(q1,b,q1).

accept(S) :- initial(Q), accept_from(S,Q).
accept_from([],Q) :- final(Q).
accept_from([X|Xs],Q) :- delta(Q,X,NewQ), accept_from(Xs,NewQ).
```
A nondeterministic, stack, finite automaton (NDSFA):

\[
\text{accept}(S) :- \text{initial}(Q), \text{accept}_\text{from}(S,Q,[]) \text{.}
\]

\[
\text{accept}_\text{from}([],Q,[]) :- \text{final}(Q) \text{.}
\]

\[
\text{accept}_\text{from}([X|Xs],Q,S) :- \text{delta}(Q,X,S,\text{NewQ},\text{NewS}),
\]

\[
\quad \text{accept}_\text{from}(\text{Xs},\text{NewQ},\text{NewS}) \text{.}
\]

\[
\text{initial}(q0) \text{.}
\]

\[
\text{final}(q1) \text{.}
\]

\[
\text{delta}(q0,X,Xs,q0,[X|Xs]) \text{.}
\]

\[
\text{delta}(q0,X,Xs,q1,[X|Xs]) \text{.}
\]

\[
\text{delta}(q0,X,Xs,q1,Xs) \text{.}
\]

\[
\text{delta}(q1,X,[X|Xs],q1,Xs) \text{.}
\]

What sequence does it recognize?
Recursive Programming: Towers of Hanoi

- **Objective:**
  - Move tower of $N$ disks from peg $a$ to peg $b$, with the help of peg $c$.

- **Rules:**
  - Only one disk can be moved at a time.
  - A larger disk can never be placed on top of a smaller disk.

![Diagram of Towers of Hanoi for $N=1$, $N=2$, and $N=3$](image-url)
Recursive Programming: Towers of Hanoi (Contd.)

- We will call the main predicate `hanoi_moves(N,Moves)`
- `N` is the number of disks and `Moves` the corresponding list of "moves".
- Each move `move(A, B)` represents that the top disk in `A` should be moved to `B`.
- **Example:**

![Diagram of the Towers of Hanoi problem]

is represented by:

```prolog
hanoi_moves(s(s(s(0))),
 [move(a,b), move(a,c), move(b,c), move(a,b),
 move(c,a), move(c,b), move(a,b)])
```
• A general rule:

```
 A general rule:
```

• We capture this in a predicate \( \text{hanoi}(N, \text{Orig}, \text{Dest}, \text{Help}, \text{Moves}) \) where
  “Moves contains the moves needed to move a tower of \( N \) disks from peg \( \text{Orig} \) to
  peg \( \text{Dest} \), with the help of peg \( \text{Help} \).”

\[
\text{hanoi}(s(0), \text{Orig}, \text{Dest}, _, \text{Help}, [\text{move}((\text{Orig}, \text{Dest})])].
\]
\[
\text{hanoi}(s(N), \text{Orig}, \text{Dest}, \text{Help}, \text{Moves}) :-
\]
\[
    \text{hanoi}(N, \text{Orig}, \text{Help}, \text{Dest}, \text{Moves1}),
\]
\[
    \text{hanoi}(N, \text{Help}, \text{Dest}, \text{Orig}, \text{Moves2}),
\]
\[
    \text{append}(\text{Moves1}, [\text{move}((\text{Orig}, \text{Dest})|\text{Moves2}], \text{Moves}).
\]

• And we simply call this predicate:

\[
\text{hanoi_moves}(N, \text{Moves}) :-
\]
\[
    \text{hanoi}(N, a, b, c, \text{Moves}).
\]
Learning to Compose Recursive Programs

• To some extent it is a simple question of practice.

• By generalization (as in the previous examples): elegant, but sometimes difficult? (Not the way most people do it.)

• Think inductively: state first the base case(s), and then think about the general recursive case(s).

• Sometimes it may help to compose programs with a given use in mind (e.g., “forwards execution”), making sure it is declaratively correct. Consider then also if alternative uses make sense.

• Sometimes it helps to look at well-written examples and use the same “schemas.”

• Using a global top-down design approach can help (in general, not just for recursive programs):
  ◊ State the general problem.
  ◊ Break it down into subproblems.
  ◊ Solve the pieces.

• Again, the best approach: practice, practice, practice.