Computational Logic

A “Hands-on” Introduction to Pure Logic Programming
Syntax: Terms (Variables, Constants, and Structures)

(using Prolog notation conventions)

- **Variables:** start with an uppercase character (or “_”), may include “_” and digits:

 Examples: X, Im4u, A_little_garden, _, _x, _22

- **Constants:** lowercase first character, may include “_” and digits. Also, numbers and some special characters. Quoted, any character:

 Examples: a, dog, a_big_cat, 23, 'Hungry man’, [],

- **Structures:** a functor (the structure name, is like a constant name) followed by a fixed number of arguments between parentheses:

 Example: date(monday, Month, 1994)

 Arguments can in turn be variables, constants and structures.

 ◊ **Arity:** is the number of arguments of a structure. Functors are represented as name/arity. A constant can be seen as a structure with arity zero.

Variables, constants, and structures as a whole are called **terms** (they are the terms of a “first–order language”): the **data structures** of a logic program.
Syntax: Terms

(Using Prolog notation conventions)

• **Examples of terms:**

<table>
<thead>
<tr>
<th>Term</th>
<th>Type</th>
<th>Main functor:</th>
</tr>
</thead>
<tbody>
<tr>
<td>dad</td>
<td>constant</td>
<td>dad/0</td>
</tr>
<tr>
<td>time(min, sec)</td>
<td>structure</td>
<td>time/2</td>
</tr>
<tr>
<td>pair(Calvin, tiger(Hobbes))</td>
<td>structure</td>
<td>pair/2</td>
</tr>
<tr>
<td>Tee(Alf, rob)</td>
<td>illegal</td>
<td>—</td>
</tr>
<tr>
<td>A_good_time</td>
<td>variable</td>
<td>—</td>
</tr>
</tbody>
</table>

• **Functors** can be defined as **prefix**, **postfix**, or **infix operators** (just syntax!):

<table>
<thead>
<tr>
<th>a + b</th>
<th>is the term</th>
<th>’+’(a, b)</th>
<th>if +/2 declared infix</th>
</tr>
</thead>
<tbody>
<tr>
<td>- b</td>
<td>is the term</td>
<td>’-’(b)</td>
<td>if -/1 declared prefix</td>
</tr>
<tr>
<td>a < b</td>
<td>is the term</td>
<td>’<’(a, b)</td>
<td>if </2 declared infix</td>
</tr>
</tbody>
</table>

john father mary is the term father(john, mary) if father/2 declared infix

We assume that some such operator definitions are always preloaded.
Syntax: Rules and Facts (Clauses)

- **Rule**: an expression of the form:

 \[p_0(t_1, t_2, \ldots, t_{n_0}) \leftarrow p_1(t_1^1, t_2^1, \ldots, t_{n_1}^1), \ldots, p_m(t_1^m, t_2^m, \ldots, t_{n_m}^m). \]

 - \(p_0(\ldots) \) to \(p_m(\ldots) \) are **syntactically** like **terms**.
 - \(p_0(\ldots) \) is called the **head** of the rule.
 - The \(p_i \) to the right of the arrow are called **literals** and form the **body** of the rule. They are also called **procedure calls**.
 - Usually, \(\leftarrow \) is called the **neck** of the rule.

- **Fact**: an expression of the form \(p(t_1, t_2, \ldots, t_n) \). (i.e., a rule with empty body).

 Example:

<table>
<thead>
<tr>
<th>Expression</th>
<th>% ←</th>
</tr>
</thead>
<tbody>
<tr>
<td>meal(soup, beef, coffee).</td>
<td>A fact.</td>
</tr>
<tr>
<td>meal(First, Second, Third) :-</td>
<td>A rule.</td>
</tr>
<tr>
<td>appetizer(First),</td>
<td>%</td>
</tr>
<tr>
<td>main_dish(Second),</td>
<td>%</td>
</tr>
<tr>
<td>dessert(Third).</td>
<td>%</td>
</tr>
</tbody>
</table>

- Rules and facts are both called **clauses**.
Syntax: Predicates, Programs, and Queries

- **Predicate** (or *procedure definition*): a set of clauses whose heads have the same name and arity (called the **predicate name**).

 Examples:

 - `pet(spot)`.
 - `pet(X) :- animal(X), barks(X)`.
 - `pet(X) :- animal(X), meows(X)`.
 - `animal(spot)`.
 - `animal(barry)`.
 - `animal(hobbes)`.

 Predicate `pet/1` has three clauses. Of those, one is a fact and two are rules. Predicate `animal/1` has three clauses, all facts.

- **Logic Program**: a set of predicates.

- **Query**: an expression of the form:

 \[\leftarrow p_1(t_1^1, \ldots, t_{n_1}) , \ldots , p_n(t_1^n, \ldots, t_{n_m}) . \]

(i.e., a clause without a head).

A query represents a question to the program.

Example: `pet(X)`.

In most systems written as: `?- pet(X)`.
“Declarative” Meaning of Facts and Rules

The declarative meaning is the corresponding one in first order logic, according to certain conventions:

- **Facts**: state things that are true.
 (Note that a fact “p.” can be seen as the rule “p :- true.”)

 Example: the fact `animal(spot).` can be read as “spot is an animal”.

- **Rules**:
 - Commas in rule bodies represent conjunction, i.e.,
 \[p \leftarrow p_1, \ldots, p_m \]
 represents
 \[p \leftarrow p_1 \land \cdots \land p_m. \]
 - “\(\leftarrow\)” represents as usual logical implication.

 Thus, a rule \(p \leftarrow p_1, \ldots, p_m \) means “if \(p_1 \) and . . . and \(p_m \) are true, then \(p \) is true”

 Example: the rule `pet(X):- animal(X), barks(X).` can be read as “X is a pet if it is an animal and it barks”.
“Declarative” Meaning of Predicates and Queries

- **Predicates**: clauses in the same predicate

 \[p \leftarrow p_1, \ldots, p_n \]

 \[p \leftarrow q_1, \ldots, q_m \]

 ...

 provide different *alternatives* (for \(p \)).

 Example: the rules

 \[
 \text{pet}(X) :- \ \text{animal}(X), \ \text{barks}(X).
 \]

 \[
 \text{pet}(X) :- \ \text{animal}(X), \ \text{meows}(X).
 \]

 express two ways for \(x \) to be a pet.

- **Note** (variable *scope*): the \(x \) vars. in the two clauses above are different, despite
 the same name. Vars. are *local to clauses* (and are *renamed* any time a clause is used—as with vars. local to a procedure in conventional languages).

- **A query** represents a *question to the program*.

 Examples:

 \[
 ?- \text{pet}(\text{spot}).
 \]

 asks whether \(\text{spot} \) is a pet.

 \[
 ?- \text{pet}(X).
 \]

 asks: “Is there an \(X \) which is a pet?”
“Execution” and Semantics

- **Example of a logic program:**

```prolog
pet(X) :- animal(X), barks(X).
pet(X) :- animal(X), meows(X).
animal(spot).  barks(spot).
animal(barry). meows(barry).
animal(hobbes). roars(hobbes).
```

- **Execution:** given a program and a query, *executing* the logic program is attempting to find an answer to the query.

 Example: given the program above and the query `:- pet(X).` the system will try to find a “substitution” for X which makes pet(X) true.

 ◦ **The declarative semantics** specifies *what* should be computed (all possible answers).
 ⇒ Intuitively, we have two possible answers: X = spot and X = barry.

 ◦ **The operational semantics** specifies *how* answers are computed (which allows us to determine *how many steps* it will take).
Running Programs in a Logic Programming System

- File `pets.pl` contains (explained later):

\[
\text{:- module(_,_,[\'bf/bfall\']).}
\]

+ the pet example code as in previous slides.

- Interaction with the system query evaluator (the “top level”):

```prolog
?- Ciao 1.XX ...
?- use_module(pets).
yes
?- pet(spot).
yes
?- pet(X).
X = spot ? ;
X = barry ? ;
nono
?- 
```

See the part on Developing Programs with a Logic Programming System
for more details on the particular system used in the course (Ciao).
Simple (Top-Down) Operational Meaning of Programs

- A logic program is operationally a set of *procedure definitions* (the predicates).
- A query $\leftarrow p$ is an initial *procedure call*.

- A procedure definition with one clause $p \leftarrow p_1, \ldots, p_m$. means:

 “to execute a call to p you have to *call* p_1 and \ldots and p_m”

 ◇ In principle, the order in which p_1, \ldots, p_n are called does not matter, but, in practical systems it is fixed.

- If several clauses (definitions) $p \leftarrow p_1, \ldots, p_n$ means:

 $p \leftarrow q_1, \ldots, q_m$

 “to execute a call to p, call $p_1 \land \ldots \land p_n$, or, alternatively, $q_1 \land \ldots \land q_n$, or …”

 ◇ Unique to logic programming –it is like having several alternative procedure definitions.
 ◇ Means that several possible paths may exist to a solution and they *should be explored*.
 ◇ System usually stops when the first solution found, user can ask for more.
 ◇ Again, in principle, the order in which these paths are explored does not matter (*if certain conditions are met*), but, for a given system, this is typically also fixed.

In the following we define a more precise operational semantics.
Unification: uses

- **Unification** is the mechanism used in *procedure calls* to:
 - Pass parameters.
 - “Return” values.

- It is also used to:
 - Access parts of structures.
 - Give values to variables.

- Unification is a procedure to solve equations on data structures.
 - As usual, it returns a minimal solution to the equation (or the equation system).
 - As many equation solving procedures it is based on isolating variables and then *instantiating* them with their values.
Unification

- **Unifying two terms (or literals) A and B**: is asking if they can be made syntactically identical by giving (minimal) values to their variables.
 - I.e., find a **variable substitution** θ such that $A\theta = B\theta$ (or, if impossible, fail).
 - Only variables can be given values!
 - Two structures can be made identical only by making their arguments identical.

E.g.:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>θ</th>
<th>Aθ</th>
<th>Bθ</th>
</tr>
</thead>
<tbody>
<tr>
<td>dog</td>
<td>dog</td>
<td>∅</td>
<td>dog</td>
<td>dog</td>
</tr>
<tr>
<td>X</td>
<td>a</td>
<td>{X = a}</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>X</td>
<td>Y</td>
<td>{X = Y}</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>f(X, g(t))</td>
<td>f(m(h), g(M))</td>
<td>{X=m(h), M=t}</td>
<td>f(m(h), g(t))</td>
<td>f(m(h), g(t))</td>
</tr>
<tr>
<td>f(X, g(t))</td>
<td>f(m(h), t(M))</td>
<td>Impossible (1)</td>
<td>Impossible (1)</td>
<td></td>
</tr>
<tr>
<td>f(X, X)</td>
<td>f(Y, l(Y))</td>
<td>Impossible (2)</td>
<td>Impossible (2)</td>
<td></td>
</tr>
</tbody>
</table>

- (1) Structures with different name and/or arity cannot be unified.
- (2) A variable cannot be given as value a term which contains that variable, because it would create an infinite term. This is known as the **occurs check**. (See, however, *cyclic terms* later.)
Unification

- Often several solutions exist, e.g.:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>θ_1</td>
<td>$A\theta_1$ and $B\theta_1$</td>
</tr>
<tr>
<td>$f(X, g(T))$</td>
<td>$f(m(H), g(M))$</td>
<td>{ $X=m(a), H=a, M=b, T=b$ }</td>
<td>$f(m(a), g(b))$</td>
</tr>
<tr>
<td>" "</td>
<td>" "</td>
<td>{ $X=m(H), M=f(A), T=f(A)$ }</td>
<td>$f(m(H), g(f(A)))$</td>
</tr>
</tbody>
</table>

These are correct, but a simpler ("more general") solution exists:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>θ_1</td>
<td>$A\theta_1$ and $B\theta_1$</td>
</tr>
<tr>
<td>$f(X, g(T))$</td>
<td>$f(m(H), g(M))$</td>
<td>{ $X=m(H), T=M$ }</td>
<td>$f(m(H), g(M))$</td>
</tr>
</tbody>
</table>

- Always a unique (modulo variable renaming) most general solution exists (unless unification fails).
- This is the one that we are interested in.
- The unification algorithm finds this solution.
Unification Algorithm

- Let A and B be two terms:

1. $\theta = \emptyset$, $E = \{A = B\}$
2. while not $E = \emptyset$:
 2.1 delete an equation $T = S$ from E
 2.2 case T or S (or both) are (distinct) variables. Assuming T variable:
 * (occur check) if T occurs in the term S → halt with failure
 * substitute variable T by term S in all terms in θ
 * substitute variable T by term S in all terms in E
 * add $T = S$ to θ
 2.3 case T and S are non-variable terms:
 * if their names or arities are different → halt with failure
 * obtain the arguments $\{T_1, \ldots, T_n\}$ of T and $\{S_1, \ldots, S_n\}$ of S
 * add $\{T_1 = S_1, \ldots, T_n = S_n\}$ to E
3. halt with θ being the m.g.u of A and B
Unification Algorithm Examples (I)

- **Unify:** \(A = p(X, X) \) and \(B = p(f(Z), f(W)) \)

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(E)</th>
<th>(T)</th>
<th>(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ }</td>
<td>{ } { p(X, X) = p(f(Z), f(W)) } }</td>
<td>p(X, X)</td>
<td>p(f(Z), f(W))</td>
</tr>
<tr>
<td>{ }</td>
<td>{ } { X = f(Z), X = f(W) } }</td>
<td>X</td>
<td>f(Z)</td>
</tr>
<tr>
<td>{ X = f(Z) }</td>
<td>{ } { f(Z) = f(W) } }</td>
<td>f(Z)</td>
<td>f(W)</td>
</tr>
<tr>
<td>{ X = f(Z) }</td>
<td>{ } { Z = W } }</td>
<td>Z</td>
<td>W</td>
</tr>
<tr>
<td>{ X = f(W), Z = W }</td>
<td>{ } }</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Unify:** \(A = p(X, f(Y)) \) and \(B = p(Z, X) \)

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(E)</th>
<th>(T)</th>
<th>(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ }</td>
<td>{ } { p(X, f(Y)) = p(Z, X) } }</td>
<td>p(X, f(Y))</td>
<td>p(Z, X)</td>
</tr>
<tr>
<td>{ }</td>
<td>{ } { X = Z, f(Y) = X } }</td>
<td>X</td>
<td>Z</td>
</tr>
<tr>
<td>{ X = Z }</td>
<td>{ } { f(Y) = Z } }</td>
<td>f(Y)</td>
<td>Z</td>
</tr>
<tr>
<td>{ X = f(Y), Z = f(Y) }</td>
<td>{ } }</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Unification Algorithm Examples (II)

- Unify: $A = p(X, f(Y))$ and $B = p(a, g(b))$

<table>
<thead>
<tr>
<th>θ</th>
<th>E</th>
<th>T</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>{}</td>
<td>{ $p(X, f(Y)) = p(a, g(b))$ }</td>
<td>$p(X, f(Y))$</td>
<td>$p(a, g(b))$</td>
</tr>
<tr>
<td>{}</td>
<td>{ \begin{align*} X &= a, \quad f(Y) &= g(b) \end{align*} }</td>
<td>X</td>
<td>a</td>
</tr>
<tr>
<td>{ $X=a$ }</td>
<td>{ \begin{align*} f(Y) &= g(b) \end{align*} }</td>
<td>$f(Y)$</td>
<td>$g(b)$</td>
</tr>
<tr>
<td>$fail$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Unify: $A = p(X, f(X))$ and $B = p(Z, Z)$

<table>
<thead>
<tr>
<th>θ</th>
<th>E</th>
<th>T</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>{}</td>
<td>{ $p(X, f(X)) = p(Z, Z)$ }</td>
<td>$p(X, f(X))$</td>
<td>$p(Z, Z)$</td>
</tr>
<tr>
<td>{}</td>
<td>{ \begin{align*} X &= Z, \quad f(X) &= Z \end{align*} }</td>
<td>X</td>
<td>Z</td>
</tr>
<tr>
<td>{ $X=Z$ }</td>
<td>{ \begin{align*} f(Z) &= Z \end{align*} }</td>
<td>$f(Z)$</td>
<td>Z</td>
</tr>
<tr>
<td>$fail$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A (Schematic) Interpreter for Logic Programs (SLD–resolution)

Input: A logic program P, a query Q
Output: Q_μ (answer substitution) if Q is provable from P, failure otherwise

Algorithm:

1. Initialize the “resolvent” R to be $\{Q\}$
2. While R is nonempty do:
 2.1. Take the leftmost literal A in R
 2.2. Choose a (renamed) clause $A' \leftarrow B_1, \ldots, B_n$ from P, such that A and A' unify with unifier θ
 (if no such clause can be found, branch is failed; explore another branch)
 2.3. Remove A from R, add B_1, \ldots, B_n to R
 2.4. Apply θ to R and Q
3. If R is empty, output Q (a solution). Explore another branch for more sol’s.

- Step 2.2 defines alternative paths to be explored to find answer(s); execution explores this tree (for example, breadth-first).
A (Schematic) Interpreter for Logic Programs (Contd.)

- Since step 2.2 is left open, a given logic programming system must specify how it deals with this by providing one (or more)
 - **Search rule(s):** “how are clauses/branches selected in 2.2.”

- If the search rule is not specified execution can be nondeterministic, since choosing a different clause (in step 2.2) could lead to different solutions (finding solutions in a different order).

 Example (two valid executions):

  ```prolog
  ?- pet(X).
  X = spot ? ;
  X = barry ? ;
  no
  ?-
  ?- pet(X).
  X = barry ? ;
  X = spot ? ;
  no
  ?-
  ```

- In fact, there is also some freedom in step 2.1, i.e., a system may also specify:
 - **Computation rule(s):** “how are literals selected in 2.1.”
Running programs

C₁: pet(X) :- animal(X), barks(X).
C₂: pet(X) :- animal(X), meows(X).
C₃: animal(spot).
C₄: animal(barry).
C₅: animal(hobbes).
C₆: barks(spot).
C₇: meows(barry).
C₈: roars(hobbes).

• :- pet(P).

<table>
<thead>
<tr>
<th>Q</th>
<th>R</th>
<th>Clause</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>pet(P)</td>
<td>pet(P)</td>
<td>C₂*</td>
<td>{P = X₁}</td>
</tr>
<tr>
<td>pet(X₁)</td>
<td>animal(X₁), meows(X₁)</td>
<td>C₄*</td>
<td>{X₁ = barry}</td>
</tr>
<tr>
<td>pet(barry)</td>
<td>meows(barry)</td>
<td>C₇</td>
<td>{}</td>
</tr>
<tr>
<td>pet(barry)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

* means there is a choice-point, i.e., there are other clauses whose head unifies.

• System response: \(P = \text{barry} \) ?

• If we type “;” after the ? prompt (i.e., we ask for another solution) the system can go and execute a different branch (i.e., a different choice in C₂* or C₄*).
Running programs (different strategy)

C_1: \(\text{pet}(X) :- \text{animal}(X), \text{barks}(X). \)

C_2: \(\text{pet}(X) :- \text{animal}(X), \text{meows}(X). \)

C_3: \(\text{animal}(\text{spot}). \)

C_4: \(\text{animal}(\text{barry}). \)

C_5: \(\text{animal}(\text{hobbes}). \)

C_6: \(\text{barks}(\text{spot}). \)

C_7: \(\text{meows}(\text{barry}). \)

C_8: \(\text{roars}(\text{hobbes}). \)

\[\vdash \text{pet}(P). \] (different strategy)

<table>
<thead>
<tr>
<th>Q</th>
<th>R</th>
<th>Clause</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{pet}(P)$</td>
<td>$\text{pet}(P)$</td>
<td>C_1^*</td>
<td>({ P = X_1 })</td>
</tr>
<tr>
<td>$\text{pet}(X_1)$</td>
<td>$\text{animal}(X_1), \text{barks}(X_1)$</td>
<td>C_5^*</td>
<td>({ X_1 = \text{hobbes} })</td>
</tr>
<tr>
<td>$\text{pet}($ hobbes $)$</td>
<td>$\text{barks}($ hobbes $)$</td>
<td>???</td>
<td>failure</td>
</tr>
</tbody>
</table>

→ explore another branch (different choice in C_1^* or C_5^*) to find a solution. We take C_3 instead of C_5:

<table>
<thead>
<tr>
<th>Q</th>
<th>R</th>
<th>Clause</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{pet}(P)$</td>
<td>$\text{pet}(P)$</td>
<td>C_1^*</td>
<td>({ P = X_1 })</td>
</tr>
<tr>
<td>$\text{pet}(X_1)$</td>
<td>$\text{animal}(X_1), \text{barks}(X_1)$</td>
<td>C_3^*</td>
<td>({ X_1 = \text{spot} })</td>
</tr>
<tr>
<td>$\text{pet}($ spot $)$</td>
<td>$\text{barks}($ spot $)$</td>
<td>C_6</td>
<td>{ }</td>
</tr>
<tr>
<td>$\text{pet}($ spot $)$</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
The Search Tree

- A query + a logic program together specify a search tree.

Example: query `:- pet(X)` with the previous program generates this search tree (the boxes represent the “and” parts [except leaves]):

- Different query → different tree.
- The search and computation rules explain how the search tree will be explored during execution.
- How can we achieve completeness (guarantee that all solutions will be found)?
Characterization of The Search Tree

- All solutions are at *finite depth* in the tree.
- Failures can be at finite depth or, in some cases, be an infinite branch.
Depth-First Search

- Incomplete: may fall through an infinite branch before finding all solutions.
- But very efficient: it can be implemented with a call stack, very similar to a traditional programming language.
Breadth-First Search

- Will find all solutions before falling through an infinite branch.
- But costly in terms of time and memory.
- Used in all the following examples (via Ciao’s bf package).
Selecting breadth-first or depth-first search

- In the Ciao system we can select the search rule using the *packages* mechanism.

- Files should start with the following line:
 - To execute in *breadth-first* mode:
    ```prolog
    :- module(_,_,[’bf/bfall’]).
    ```
 - To execute in *depth-first* mode:
    ```prolog
    :- module(_,_,[]).
    ```

See the part on Developing Programs with a Logic Programming System for more details on the particular system used in the course (Ciao).
Role of Unification in Execution

• As mentioned before, unification used to access data and give values to variables. Example: Consider query `:- animal(A), named(A,Name).` with:
 `animal(dog(barry)).` `named(dog(Name),Name).`

• Also, unification is used to pass parameters in procedure calls and to return values upon procedure exit.

<table>
<thead>
<tr>
<th>Q</th>
<th>R</th>
<th>Clause</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>pet(P)</td>
<td>pet(P)</td>
<td>C_1^*</td>
<td>{ P=X_1 }</td>
</tr>
<tr>
<td>pet(X_1)</td>
<td>animal(X_1), barks(X_1)</td>
<td>C_3^*</td>
<td>{ X_1=spot }</td>
</tr>
<tr>
<td>pet(spot)</td>
<td>barks(spot)</td>
<td>C_6</td>
<td>{}</td>
</tr>
<tr>
<td>pet(spot)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
“Modes”

• In fact, argument positions are not fixed a priori to be input or output.

Example: Consider query

\[
\text{\:- \ pet(spot). vs. \ :- \ pet(X).}
\]

or

\[
\text{\:- \ plus(s(0), s(s(0)), Z). % Adds}
\]

vs.

\[
\text{\:- \ plus(s(0), Y, s(s(s(0)))). % Subtracts}
\]

• Thus, procedures can be used in different **modes**
 s.t. different sets of arguments are input or output in each mode.

• We sometimes use \(+ \) and \(- \) to refer to, respectively, and argument being an input or an output, e.g.:

\[
\text{\texttt{plus(+X, +Y, -Z)}} \quad \text{means we call \texttt{plus} with}
\]

\[
\diamond \text{X instantiated,}
\]

\[
\diamond \text{Y instantiated, and}
\]

\[
\diamond \text{Z free.}
\]
Database Programming

- A Logic Database is a set of facts and rules (i.e., a logic program):

 father_of(john, peter).
 father_of(john, mary).
 father_of(peter, michael).
 mother_of(mary, david).

 grandfather_of(L, M) :- father_of(L, N),
 father_of(N, M).
 grandfather_of(X, Y) :- father_of(X, Z),
 mother_of(Z, Y).

- Given such database, a logic programming system can answer questions (queries) such as:

 ?- father_of(john, peter).
 yes

 ?- father_of(john, david).
 no

 ?- father_of(john, X).
 X = peter ;
 X = mary

- Rules for grandmother_of(X, Y)?
Another example:

resistor(power, n1).
resistor(power, n2).

transistor(n2, ground, n1).
transistor(n3, n4, n2).
transistor(n5, ground, n4).

\[
\text{inverter(Input, Output) :-}
\text{transistor(Input, ground, Output), resistor(power, Output).}
\]

\[
\text{nand_gate(Input1, Input2, Output) :-}
\text{transistor(Input1, X, Output), transistor(Input2, ground, X),}
\text{resistor(power, Output).}
\]

\[
\text{and_gate(Input1, Input2, Output) :-}
\text{nand_gate(Input1, Input2, X), inverter(X, Output).}
\]

• Query \(\text{and_gate(In1, In2, Out)}\) has solution: \(\text{In1=n3, In2=n5, Out=n1}\)
Structured Data and Data Abstraction (and the '=' Predicate)

- **Data structures** are created using (complex) terms.

- Structuring data is important:

  ```prolog
  course(complog,wed,18,30,20,30,'M.','.','Hermenegildo',new,5102).
  ```

- When is the Computational Logic course?

  ```prolog
  ```

- Structured version:

  ```prolog
  course(complog,Time,Lecturer, Location) :-
  Time = t(wed,18:30,20:30),
  Lecturer = lect('M.','.','Hermenegildo'),
  Location = loc(new,5102).
  ```

Note: “X=Y” is equivalent to “’=’(X,Y)”
where the predicate /=2 is defined as the fact “’=’(X,X).” – Plain unification!

- Equivalent to:

  ```prolog
  course(complog, t(wed,18:30,20:30),
  lect('M.','.','Hermenegildo'), loc(new,5102)).
  ```
Structured Data and Data Abstraction (and The Anonymous Variable)

- Given:

```prolog
course(complog, Time, Lecturer, Location) :-
    Time = t(wed, 18:30, 20:30),
    Lecturer = lect('M.', 'Hermenegildo'),
    Location = loc(new, 5102).
```

- When is the Computational Logic course?

```prolog
?- course(complog, Time, A, B).
```

has solution:

```prolog
Time = t(wed, 18:30, 20:30), A = lect('M.', 'Hermenegildo'), B = loc(new, 5102)
```

- Using the *anonymous variable* (“_”):

```prolog
:- course(complog, Time, _, _).
```

has solution:

```prolog
Time = t(wed, 18:30, 20:30)
```
Terms as Data Structures with Pointers

- **main** below is a procedure, that:
 - creates some data structures, with *pointers* and *aliasing*.
 - *calls* other *procedures*, *passing* to them *pointers* to these structures.

```
main :-
    X = f(K, g(K)),
    Y = a,
    Z = g(L),
    W = h(b, L),
    % Heap memory at this point →
    p(X, Y),
    q(Y, Z),
    r(W).
```

- Terms are data structures with pointers.
- Logical variables are *declarative* pointers.
 - *Declarative*: they can only be assigned once.
The circuit example revisited:

```
resistor(r1,power,n1).
resistor(r2,power,n2).
transistor(t1,n2,ground,n1).
transistor(t2,n3,n4,n2).
transistor(t3,n5,ground,n4).
inverter(inv(T,R),Input,Output) :-
    transistor(T,Input,ground,Output),
    resistor(R,power,Output).

nand_gate(nand(T1,T2,R),Input1,Input2,Output) :-
    transistor(T1,Input1,X,Output),
    transistor(T2,Input2,ground,X),
    resistor(R,power,Output).

and_gate(and(N,I),Input1,Input2,Output) :-
    nand_gate(N,Input1,Input2,X),
    inverter(I,X,Output).
```

- The query `:- and_gate(G,In1,In2,Out).` has solution: `G=and(nand(t2,t3,r2),inv(t1,r1)), In1=n3, In2=n5, Out=n1`
Logic Programs and the Relational DB Model

<table>
<thead>
<tr>
<th>Relational Database</th>
<th>Logic Programming</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relation Name</td>
<td>Predicate symbol</td>
</tr>
<tr>
<td>Relation</td>
<td>Procedure consisting of ground facts (facts without variables)</td>
</tr>
<tr>
<td>Tuple</td>
<td>Ground fact</td>
</tr>
<tr>
<td>Attribute</td>
<td>Argument of predicate</td>
</tr>
</tbody>
</table>

Name	Age	Sex
Brown | 20 | M
Jones | 21 | F
Smith | 36 | M

“Person”

Name	Town	Years
Brown | London | 15
Brown | York | 5
Jones | Paris | 21
Smith | Brussels | 15
Smith | Santander | 5

“Lived in”

person(brown,20,male).
person(jones,21,female).
person(smith,36,male).
lived_in(brown, london, 15).
lived_in(brown, york, 5).
lived_in(jones, paris, 21).
lived_in(smith, brussels, 15).
lived_in(smith, santander, 5).
Logic Programs and the Relational DB Model (Contd.)

- The operations of the relational model are easily implemented as rules.
 - **Union:** \(r \cup s(X_1, \ldots, X_n) \leftarrow r(X_1, \ldots, X_n). \)
 \(r \cup s(X_1, \ldots, X_n) \leftarrow s(X_1, \ldots, X_n). \)
 - **Set Difference:** \(r \setminus s(X_1, \ldots, X_n) \leftarrow r(X_1, \ldots, X_n), \neg s(X_1, \ldots, X_n). \)
 \(r \setminus s(X_1, \ldots, X_n) \leftarrow s(X_1, \ldots, X_n), \neg r(X_1, \ldots, X_n). \)
 (we postpone the discussion on *negation* until later.)
 - **Cartesian Product:** \(r \times s(X_1, \ldots, X_m, X_{m+1}, \ldots, X_{m+n}) \leftarrow r(X_1, \ldots, X_m), s(X_{m+1}, \ldots, X_{m+n}). \)
 - **Projection:** \(r_1(X_1, X_3) \leftarrow r(X_1, X_2, X_3). \)
 - **Selection:** \(r_{\text{selected}}(X_1, X_2, X_3) \leftarrow r(X_1, X_2, X_3), \leq(X_2, X_3). \)
 (see later for definition of \(\leq \))
- Derived operations – some can be expressed more directly in LP:
 - **Intersection:** \(r \cap s(X_1, \ldots, X_n) \leftarrow r(X_1, \ldots, X_n), s(X_1, \ldots, X_n). \)
 - **Join:** \(r_{\text{joinX2}}(X_1, \ldots, X_n) \leftarrow r(X_1, X_2, X_3, \ldots, X_n), s(X'_1, X_2, X'_3, \ldots, X'_n). \)
- Duplicates an issue: see “setof” later in Prolog.
The subject of “deductive databases” uses these ideas to develop *logic-based databases*.

- Often syntactic restrictions (a subset of definite programs) used (e.g. “Datalog” – no functors, no existential variables).
- Variations of a “bottom-up” execution strategy used: Use the T_p operator (explained in the theory part) to compute the model, restrict to the query.
- Powerful notions of negation supported: S-models
 - **Answer Set Programming** (ASP)
 - powerful knowledge representation and reasoning systems.
Recursive Programming

- **Example: ancestors.**

  ```prolog
  parent(X,Y) :- father(X,Y).
  parent(X,Y) :- mother(X,Y).
  
  ancestor(X,Y) :- parent(X,Y).
  ancestor(X,Y) :- parent(X,Z), parent(Z,Y).
  ancestor(X,Y) :- parent(X,Z), parent(Z,W), parent(W,Y).
  ancestor(X,Y) :- parent(X,Z), parent(Z,W), parent(W,K), parent(K,Y).
  ...
  ```

- **Defining ancestor recursively:**

  ```prolog
  parent(X,Y) :- father(X,Y).
  parent(X,Y) :- mother(X,Y).
  
  ancestor(X,Y) :- parent(X,Y).
  ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).
  ```

- **Exercise:** define “related”, “cousin”, “same generation”, etc.
Types

- **Type**: a (possibly infinite) set of terms.
- **Type definition**: A program defining a type.

Example: Weekday:
- Set of terms to represent: ‘Monday’, ‘Tuesday’, ‘Wednesday’, ...
- Type definition:

 weekday(‘Monday’).
 weekday(‘Tuesday’). ...

Example: Date (weekday * day in the month):
- Set of terms to represent: date(‘Monday’, 23), date(‘Tuesday’, 24), ...
- Type definition:

 date(date(W,D)) :- weekday(W), day_of_month(D).
 day_of_month(1).
 day_of_month(2).
 ...
 day_of_month(31).
Recursive Programming: Recursive Types

- **Recursive types**: defined by recursive logic programs.
- **Example**: natural numbers (simplest recursive data type):
 - Set of terms to represent: $0, s(0), s(s(0)), \ldots$
 - Type definition:

    ```prolog
    nat(0).
    nat(s(X)) :- nat(X).
    ```

 A *minimal recursive predicate*: one unit clause and one recursive clause (with a single body literal).

- Types are *runnable* and can be used to check or produce values:
 - `?- nat(X) ⇒ X=0; X=s(0); X=s(s(0)); \ldots`

- We can reason about *complexity*, for a given class of queries (“mode”).
 E.g., for mode $\text{nat}(\text{ground})$ complexity is *linear* in size of number.

- **Example**: integers:
 - Set of terms to represent: $0, s(0), -s(0), \ldots$
 - Type definition:

    ```prolog
    integer(X) :- nat(X).
    integer(-X) :- nat(X).
    ```
Recursive Programming: Arithmetic

- Defining the natural order (≤) of natural numbers:

 \[
 \text{less_or_equal}(0, X) \leftarrow \text{nat}(X).
 \]
 \[
 \text{less_or_equal}(s(X), s(Y)) \leftarrow \text{less_or_equal}(X, Y).
 \]

 ◇ Multiple uses (modes):

 \[
 \text{less_or_equal}(s(0), s(s(0))), \text{less_or_equal}(X, 0), ...
 \]

 ◇ Multiple solutions:

 \[
 \text{less_or_equal}(X, s(0)), \text{less_or_equal}(s(s(0)), Y), \text{etc}.
 \]

- Addition:

 \[
 \text{plus}(0, X, X) \leftarrow \text{nat}(X).
 \]
 \[
 \text{plus}(s(X), Y, s(Z)) \leftarrow \text{plus}(X, Y, Z).
 \]

 ◇ Multiple uses (modes):

 \[
 \text{plus}(s(s(0)), s(0), Z), \text{plus}(s(s(0)), Y, s(0))
 \]

 ◇ Multiple solutions:

 \[
 \text{plus}(X, Y, s(s(s(0)))), \text{etc}.
 \]
Recursive Programming: Arithmetic

- Another possible definition of addition:

 \[
 \text{plus}(X, 0, X) \leftarrow \text{nat}(X).
 \]

 \[
 \text{plus}(X, s(Y), s(Z)) \leftarrow \text{plus}(X, Y, Z).
 \]

- The meaning of \texttt{plus} is the same if both definitions are combined.

- Not recommended: several proof trees for the same query \(\rightarrow\) not efficient, not concise. We look for minimal axiomatizations.

- The art of logic programming: finding compact and computationally efficient formulations!

- Try to define: \texttt{times}(X, Y, Z) (\(Z = X \times Y\)), \texttt{exp}(N, X, Y) (\(Y = X^N\)), \texttt{factorial}(N, F) (\(F = N!\)), \texttt{minimum}(N1, N2, Min), \ldots
Recursive Programming: Arithmetic

- Definition of \(\text{mod}(X, Y, Z) \)
 “Z is the remainder from dividing X by Y”

 \[\exists Q \text{ s.t. } X = Y \ast Q + Z \land Z < Y \]

 \[\Rightarrow \]

 \[
 \text{mod}(X, Y, Z) \leftarrow \text{less}(Z, Y), \text{times}(Y, Q, W), \text{plus}(W, Z, X).
 \]

- Another possible definition:

 \[
 \text{mod}(X, Y, X) \leftarrow \text{less}(X, Y).
 \]

 \[
 \text{mod}(X, Y, Z) \leftarrow \text{plus}(X_1, Y, X), \text{mod}(X_1, Y, Z).
 \]

- The second is much more efficient than the first one (compare the size of the proof trees).
Recursive Programming: Arithmetic/Functions

- The Ackermann function:
 \[
 \text{ackermann}(0,N) = N+1 \\
 \text{ackermann}(M,0) = \text{ackermann}(M-1,1) \\
 \text{ackermann}(M,N) = \text{ackermann}(M-1,\text{ackermann}(M,N-1))
 \]

- In Peano arithmetic:
 \[
 \text{ackermann}(0,N) = s(N) \\
 \text{ackermann}(s(M1),0) = \text{ackermann}(M1,s(0)) \\
 \text{ackermann}(s(M1),s(N1)) = \text{ackermann}(M1,\text{ackermann}(s(M1),N1))
 \]

- Can be defined as:
 \[
 \text{ackermann}(0,N,s(N)). \\
 \text{ackermann}(s(M1),0,Val) :- \text{ackermann}(M1,s(0),Val). \\
 \text{ackermann}(s(M1),s(N1),Val) :- \text{ackermann}(s(M1),N1,Val1), \text{ackermann}(M1,Val1,Val).
 \]

- In general, \textit{functions} can be coded as a predicate with one more argument, which represents the output (and additional syntactic sugar often available).
Recursive Programming: Arithmetic/Functions (Functional Syntax)

- Syntactic support available (see, e.g., the Ciao *fsyntax* and *functional* packages).
- The Ackermann function (Peano) in Ciao’s functional Syntax and defining \(s \) as a prefix operator:

\[
\begin{align*}
 &\text{:- use_package(functional).} \\
 &\text{:- op(500, fy, s).} \\
 &\text{ackermann(0, N) := s N.} \\
 &\text{ackermann(s M, 0) := ackermann(M, s 0).} \\
 &\text{ackermann(s M, s N) := ackermann(M, ackermann(s M, N)).}
\end{align*}
\]

- Convenient in other cases – e.g. for defining types:

\[
\begin{align*}
 &\text{nat(0).} \\
 &\text{nat(s(X)) :- nat(X).}
\end{align*}
\]

Using special := notation for the “return” (last) the argument:

\[
\begin{align*}
 &\text{nat := 0.} \\
 &\text{nat := s(X) :- nat(X).}
\end{align*}
\]
Moving body call to head using the \(\sim \) notation ("evaluate and replace with result"):

\[
\begin{align*}
nat & := 0. \\
nat & := s(\sim nat).
\end{align*}
\]

"\(\sim \)" not needed with functional package if inside its own definition:

\[
\begin{align*}
nat & := 0. \\
nat & := s(nat).
\end{align*}
\]

Using an \(:- \text{op}(500, fy, s) \) declaration to define \(s \) as a prefix operator:

\[
\begin{align*}
nat & := 0. \\
nat & := s \ nat.
\end{align*}
\]

Using "|" (disjunction):

\[
\begin{align*}
nat & := 0 \mid s \ nat.
\end{align*}
\]

Which is exactly equivalent to:

\[
\begin{align*}
nat(0). \\
nat(s(X) :- \ nat(X).
\end{align*}
\]
Recursive Programming: Lists

- Binary structure: first argument is *element*, second argument is *rest* of the list.

- We need:
 - A constant symbol: we use the *constant* `{ [] }` (→ denotes the empty list).
 - A functor of arity 2: traditionally the dot “.” (which is overloaded).

- Syntactic sugar: the term `.X,Y` is denoted by `[X|Y]` (*X* is the *head*, *Y* is the *tail*).

<table>
<thead>
<tr>
<th>Formal object</th>
<th>“Cons pair” syntax</th>
<th>“Element” syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>(a,[])</code></td>
<td>`[a</td>
<td>[]]`</td>
</tr>
<tr>
<td><code>(a,.(b,[]))</code></td>
<td>`[a</td>
<td>[b</td>
</tr>
<tr>
<td><code>(a,.((b,.((c,[]))))</code></td>
<td>`[a</td>
<td>[b</td>
</tr>
<tr>
<td><code>(a,X)</code></td>
<td>`[a</td>
<td>X]`</td>
</tr>
<tr>
<td><code>(a,.((b,X)))</code></td>
<td>`[a</td>
<td>[b</td>
</tr>
</tbody>
</table>

- Note that:
 - `[a,b]` and `[a|X]` unify with `{X = [b]}`
 - `[a]` and `[a|X]` unify with `{X = []}`
 - `[a]` and `[a,b|X]` do not unify
 - `[]` and `[X]` do not unify
Recursive Programming: Lists (Contd.)

- Type definition (no syntactic sugar):

  ```
  list([]).
  list.(X,Y)) :- list(Y).
  ```

- Type definition, with some syntactic sugar ([] notation):

  ```
  list([]).
  list([X|Y]) :- list(Y).
  ```

- Type definition, using also functional package:

  ```
  list := [] | [_|list].
  ```

- “Exploring” the type:

  ```
  ?- list(L).
  L = [] ? ;
  L = [_] ? ;
  L = [_,_] ? ;
  L = [_,_,_] ?
  ...
  ```
Recursive Programming: Lists (Contd.)

- X is a member of the list Y:

 \[
 \text{member}(a, [a]). \quad \text{member}(b, [b]). \quad \text{etc. } \Rightarrow \text{member}(X, [X]). \\
 \text{member}(a, [a,c]). \quad \text{member}(b, [b,d]). \quad \text{etc. } \Rightarrow \text{member}(X, [X,Y]). \\
 \text{member}(a, [a,c,d]). \quad \text{member}(b, [b,d,l]). \quad \text{etc. } \Rightarrow \text{member}(X, [X,Y,Z]). \\
 \]

 \[
 \implies \text{member}(X, [X|Y]) \ :- \ \text{list}(Y). \\
 \text{member}(a, [c,a]), \quad \text{member}(b, [d,b]). \quad \text{etc. } \Rightarrow \text{member}(X, [Y,X]). \\
 \text{member}(a, [c,d,a]). \quad \text{member}(b, [s,t,b]). \quad \text{etc. } \Rightarrow \text{member}(X, [Y,Z,X]). \\
 \]

 \[
 \implies \text{member}(X, [Y|Z]) \ :- \ \text{member}(X,Z). \\
 \]

- Resulting definition:

 \[
 \text{member}(X, [X|Y]) \ :- \ \text{list}(Y). \\
 \text{member}(X, [_|T]) \ :- \ \text{member}(X,T). \\
 \]

- Uses of member(X,Y):

 - checking whether an element is in a list (member(b, [a,b,c]))
 - finding an element in a list (member(X, [a,b,c]))
 - finding a list containing an element (member(a, Y))
• Combining lists and naturals:
 ◇ Computing the length of a list:

  ```prolog
  len([], 0).
  len([H|T], S) :- len(T, ST), S(LT).
  ```

 ◇ Adding all elements of a list:

  ```prolog
  sumlist([], 0).
  sumlist([H|T], S) :- sumlist(T, ST), plus(ST, H, S).
  ```

 ◇ The type of lists of natural numbers:

  ```prolog
  natlist([], 0).
  natlist([H|T]) :- natlist(T, ST), nat(ST, H, S).
  ```

 or:

  ```prolog
  natlist := [～nat|natlist].
  ```
Recursive Programming: Lists (Contd.)

- Exercises:
 - Define: `prefix(X, Y)` (the list X is a prefix of the list Y), e.g. `prefix([a, b], [a, b, c, d])`
 - Define: `suffix(X, Y)`, `sublist(X, Y)`, ...
Recursive Programming: Lists (Contd.)

- Concatenation of lists:
 - Base case:
 \[
 \text{append}([], [a], [a]). \quad \text{append}([], [a,b], [a,b]). \quad \text{etc.}
 \]
 \[
 \Rightarrow \quad \text{append}([], Ys, Ys) :- \text{list}(Ys).
 \]
 - Rest of cases (first step):
 \[
 \text{append}([a], [b], [a,b]). \quad \text{etc.}
 \]
 \[
 \Rightarrow \quad \text{append}([X], Ys, [X|Ys]) :- \text{list}(Ys).
 \]
 \[
 \text{append}([a,b], [c], [a,b,c]).
 \]
 \[
 \Rightarrow \quad \text{append}([X,Z], Ys, [X,Z|Ys]) :- \text{list}(Ys).
 \]

This is still infinite → we need to generalize more.
Recursive Programming: Lists (Contd.)

- Second generalization:
 \[
 \text{append([X], Ys, [X|Ys]) :- list(Ys).}
 \]
 \[
 \text{append([X,Z], Ys, [X,Z|Ys]) :- list(Ys).}
 \]
 \[
 \text{append([X,Z,W], Ys, [X,Z,W|Ys]) :- list(Ys).}
 \]
 \[
 \Rightarrow \text{append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).}
 \]

- So, we have:

\[
\begin{align*}
\text{append([], Ys, Ys) :- list(Ys).} \\
\text{append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).}
\end{align*}
\]

- Another way of reasoning: thinking inductively.
 - The base case is: \text{append([], Ys, Ys):-list(Ys).}
 - If we assume that \text{append(Zs, Ys, Zs)} works for some iteration, then, in the next one, the following holds: \text{append(s(Zs), Ys, s(Zs))}.
Uses of append:

- Concatenate two given lists:
 \[\text{?- append}([a, b, c], [d, e], L). \]
 \[L = [a, b, c, d, e] ? \]

- Find differences between lists:
 \[\text{?- append}(D, [d, e], [a, b, c, d, e]). \]
 \[D = [a, b, c] ? \]

- Split a list:
 \[\text{?- append}(A, B, [a, b, c, d, e]). \]
 \[A = [], \]
 \[B = [a, b, c, d, e] ? ; \]
 \[A = [a], \]
 \[B = [b, c, d, e] ? ; \]
 \[A = [a, b], \]
 \[B = [c, d, e] ? ; \]
 \[A = [a, b, c], \]
 \[B = [d, e] ? \]
 \[\ldots \]
Recursive Programming: Lists (Contd.)

• `reverse(Xs, Ys)`: Ys is the list obtained by reversing the elements in the list Xs.

It is clear that we will need to traverse the list Xs. For each element X of Xs, we must put X at the end of the rest of the Xs list already reversed:

\[
\text{reverse}([X | Xs], Ys) \leftarrow \text{reverse}(Xs, Zs), \text{append}(Zs, [X], Ys).
\]

How can we stop?

\[
\text{reverse}([], []).
\]

• As defined, `reverse(Xs, Ys)` is very inefficient. Another possible definition: (uses an accumulating parameter)

\[
\text{reverse}(Xs, Ys) \leftarrow \text{reverse}(Xs, [], Ys). \\
\text{reverse}([], Ys, Ys). \\
\text{reverse}([X | Xs], Acc, Ys) \leftarrow \text{reverse}(Xs, [X | Acc], Ys).
\]

⇒ Find the differences in terms of efficiency between the two definitions.
Recursive Programming: Binary Trees

- Represented by a ternary functor `tree(Element,Left,Right)`.
- Empty tree represented by `void`.
- Definition:

  ```prolog
  binary_tree(void).
  binary_tree(tree(Element,Left,Right)) :-
      binary_tree(Left),
      binary_tree(Right).
  ```

- Defining `tree_member(Element,Tree)`:

  ```prolog
  tree_member(X,tree(X,Left,Right)) :-
      binary_tree(Left),
      binary_tree(Right).
  tree_member(X,tree(Y,Left,Right)) :-
      tree_member(X,Left).
  tree_member(X,tree(Y,Left,Right)) :-
      tree_member(X,Right).
  ```
Recursive Programming: Binary Trees

- Defining `pre_order(Tree,Elements)`: Elements is a list containing the elements of Tree traversed in *preorder*.

  ```prolog
  pre_order(void,[]).
  pre_order(tree(X,Left,Right),Elements) :-
      pre_order(Left,ElementsLeft),
      pre_order(Right,ElementsRight),
      append([X|ElementsLeft],ElementsRight,Elements).
  ```

- Exercise – define:
 - `in_order(Tree,Elements)`
 - `post_order(Tree,Elements)`
Polymorphism

- Note that the two definitions of `member/2` can be used *simultaneously*:

  ```prolog
  lt_member(X, [X|Y]) :- list(Y).
  lt_member(X, [_|T]) :- lt_member(X, T).
  lt_member(X, tree(X,L,R)) :- binary_tree(L), binary_tree(R).
  lt_member(X, tree(Y,L,R)) :- lt_member(X, L).
  lt_member(X, tree(Y,L,R)) :- lt_member(X, R).
  ```

 Lists only unify with the first two clauses, trees with clauses 3–5!

- `:- lt_member(X, [b,a,c]).`

 `X = b ; X = a ; X = c`

- `:- lt_member(X, tree(b, tree(a, void, void), tree(c, void, void))).`

 `X = b ; X = a ; X = c`

- Also, try (somewhat surprising): `:- lt_member(M, T).`
Recognizing (and generating!) polynomials in some term X:

- X is a polynomial in X
- A constant is a polynomial in X
- Sums, differences and products of polynomials in X are polynomials
- Also polynomials raised to the power of a natural number and the quotient of a polynomial by a constant

```prolog
polynomial(X, X).
polynomial(Term, X) :- pconstant(Term).
polynomial(Term1 + Term2, X) :- polynomial(Term1, X), polynomial(Term2, X).
polynomial(Term1 - Term2, X) :- polynomial(Term1, X), polynomial(Term2, X).
polynomial(Term1 * Term2, X) :- polynomial(Term1, X), polynomial(Term2, X).
polynomial(Term1 / Term2, X) :- polynomial(Term1, X), pconstant(Term2).
polynomial(Term1 ^ N, X) :- polynomial(Term1, X), nat(N).
```
Recursive Programming: Manipulating Symb. Expressions (Contd.)

- Symbolic differentiation: deriv(Expression, X, DifferentiatedExpression)

 deriv(X, X, s(0)).
 deriv(C, X, 0) :- pconstant(C).
 deriv(U + V, X, DU + DV) :- deriv(U, X, DU), deriv(V, X, DV).
 deriv(U - V, X, DU - DV) :- deriv(U, X, DU), deriv(V, X, DV).
 deriv(U * V, X, DU * V + U * DV) :- deriv(U, X, DU), deriv(V, X, DV).
 deriv(U / V, X, (DU * V - U * DV) / V^s(s(0))) :- deriv(U, X, DU), deriv(V, X, DV).
 deriv(U^s(N), X, s(N) * U^N * DU) :- deriv(U, X, DU), nat(N).
 deriv(log(U), X, DU / U) :- deriv(U, X, DU).
 ...

- ?- deriv(s(s(s(0))) * x + s(s(0)), x, Y).

- A simplification step can be added.
Recursive Programming: Automata (Graphs)

- Recognizing the sequence of characters accepted by the following *non-deterministic, finite automaton* (NDFA):

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_0 \xrightarrow{b} q_1 \]

where \(q_0 \) is both the *initial* and the *final* state.

- Strings are represented as lists of constants (e.g., \([a,b,b]\)).

- Program:

\[
\begin{align*}
\text{initial}(q_0). & \quad \text{delta}(q_0,a,q_1). \\
& \quad \text{delta}(q_1,b,q_0). \\
\text{final}(q_0). & \quad \text{delta}(q_1,b,q_1). \\
\text{accept}(S) & \quad :\quad \text{initial}(Q), \text{accept_from}(S,Q). \\
\text{accept_from}([],Q) & \quad :\quad \text{final}(Q). \\
\text{accept_from}([X|Xs],Q) & \quad :\quad \text{delta}(Q,X,NewQ), \text{accept_from}(Xs,NewQ).
\end{align*}
\]
A nondeterministic, stack, finite automaton (NDSFA):

\[
\text{accept}(S) :- \text{initial}(Q), \text{accept}_\text{from}(S,Q,[]) .
\]

\[
\text{accept}_\text{from}([],Q,[]) :- \text{final}(Q) .
\]

\[
\text{accept}_\text{from}([X|Xs],Q,S) :- \delta(Q,X,S,\text{NewQ},\text{NewS}),
\text{accept}_\text{from}(Xs,\text{NewQ},\text{NewS}) .
\]

\[
\text{initial}(q_0) .
\]

\[
\text{final}(q_1) .
\]

\[
\delta(q_0,X,Xs,q_0,[X|Xs]) .
\]

\[
\delta(q_0,X,Xs,q_1,[X|Xs]) .
\]

\[
\delta(q_0,X,Xs,q_1,Xs) .
\]

\[
\delta(q_1,X,[X|Xs],q_1,Xs) .
\]

What sequence does it recognize?
Recursive Programming: Towers of Hanoi

- **Objective:**
 - Move tower of N disks from peg a to peg b, with the help of peg c.

- **Rules:**
 - Only one disk can be moved at a time.
 - A larger disk can never be placed on top of a smaller disk.
We will call the main predicate hanoi_moves(N,Moves)

N is the number of disks and Moves the corresponding list of “moves”.

Each move move(A, B) represents that the top disk in A should be moved to B.

Example:

is represented by:

```
  hanoi_moves( s(s(s(0))),
               [ move(a,b), move(a,c), move(b,c), move(a,b),
                 move(c,a), move(c,b), move(a,b) ])
```
A general rule:

We capture this in a predicate \(hanoi(N, \text{Orig}, \text{Dest}, \text{Help}, \text{Moves}) \) where “Moves contains the moves needed to move a tower of \(N \) disks from peg \(\text{Orig} \) to peg \(\text{Dest} \), with the help of peg \(\text{Help} \).”

\[
\begin{align*}
\text{hanoi}(s(0), \text{Orig}, \text{Dest}, _\text{Help}, [\text{move}(\text{Orig}, \text{Dest})]). \\
\text{hanoi}(s(N), \text{Orig}, \text{Dest}, \text{Help}, \text{Moves}) & : - \\
& \text{hanoi}(N, \text{Orig}, \text{Help}, \text{Dest}, \text{Moves1}), \\
& \text{hanoi}(N, \text{Help}, \text{Dest}, \text{Orig}, \text{Moves2}), \\
& \text{append}(\text{Moves1}, [\text{move}(\text{Orig}, \text{Dest})|\text{Moves2}], \text{Moves}).
\end{align*}
\]

And we simply call this predicate:

\[
\begin{align*}
\text{hanoi_moves}(N, \text{Moves}) & : - \\
& \text{hanoi}(N, a, b, c, \text{Moves}).
\end{align*}
\]
Learning to Compose Recursive Programs

- To some extent it is a simple question of practice.
- By generalization (as in the previous examples): elegant, but sometimes difficult? (Not the way most people do it.)
- Think inductively: state first the base case(s), and then think about the general recursive case(s).
- Sometimes it may help to compose programs with a given use in mind (e.g., “forwards execution”), making sure it is declaratively correct. Consider then also if alternative uses make sense.
- Sometimes it helps to look at well-written examples and use the same “schemas.”
- Using a global top-down design approach can help (in general, not just for recursive programs):
 - State the general problem.
 - Break it down into subproblems.
 - Solve the pieces.
- Again, the best approach: practice, practice, practice.