Computational Logic
A “Hands-on” Introduction to Pure Logic Programming
Syntax: Terms (Variables, Constants, and Structures)

(using Prolog notation conventions)

- **Variables**: start with uppercase character (or “_”), may include “_” and digits:

 Examples: X, Im4u, A_little_garden, _, _x, _22

- **Constants**: lowercase first character, may include “_” and digits. Also, numbers and some special characters. Quoted, any character:

 Examples: a, dog, a_big_cat, 23, ’Hungry man’, []

- **Structures**: a functor (the structure name, is like a constant name) followed by a fixed number of arguments between parentheses:

 Example: date(monday, Month, 1994)

 Arguments can in turn be variables, constants and structures.

 - ◊ **Arity**: is the number of arguments of a structure. Functors are represented as *name/arity*. A constant can be seen as a structure with arity zero.

Variables, constants, and structures as a whole are called **terms** (they are the terms of a “first–order language”): the *data structures* of a logic program.
Syntax: Terms

(using Prolog notation conventions)

- **Examples of terms:**

<table>
<thead>
<tr>
<th>Term</th>
<th>Type</th>
<th>Main functor:</th>
</tr>
</thead>
<tbody>
<tr>
<td>dad</td>
<td>constant</td>
<td>dad/0</td>
</tr>
<tr>
<td>time(min, sec)</td>
<td>structure</td>
<td>time/2</td>
</tr>
<tr>
<td>pair(Calvin, tiger(Hobbes))</td>
<td>structure</td>
<td>pair/2</td>
</tr>
<tr>
<td>Tee(Alf, rob)</td>
<td>illegal</td>
<td>—</td>
</tr>
<tr>
<td>A_good_time</td>
<td>variable</td>
<td>—</td>
</tr>
</tbody>
</table>

- **Functors** can be defined as *prefix*, *postfix*, or *infix* operators (just syntax!):

<table>
<thead>
<tr>
<th>Term</th>
<th>Type</th>
<th>Operator</th>
<th>Main functor:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a + b</td>
<td></td>
<td>’+’(a,b)</td>
<td>+/2</td>
</tr>
<tr>
<td>- b</td>
<td></td>
<td>’-’(b)</td>
<td>-/1</td>
</tr>
<tr>
<td>a < b</td>
<td></td>
<td>’<’(a,b)</td>
<td></2</td>
</tr>
<tr>
<td>john father mary</td>
<td></td>
<td>father(john,mary)</td>
<td>father/2</td>
</tr>
</tbody>
</table>

We assume that some such operator definitions are always preloaded.
Syntax: Rules and Facts (Clauses)

- **Rule:** an expression of the form:

 \[p_0(t_1, t_2, \ldots, t_{n_0}) \leftarrow p_1(t_1^1, t_2^1, \ldots, t_{n_1}^1), \]
 \[\quad \ldots \]
 \[\quad p_m(t_1^m, t_2^m, \ldots, t_{n_m}^m). \]

 - \(p_0(\ldots) \) to \(p_m(\ldots) \) are *syntactically* like terms.
 - \(p_0(\ldots) \) is called the **head** of the rule.
 - The \(p_i \) to the right of the arrow are called *literals* and form the **body** of the rule. They are also called **procedure calls**.
 - Usually, \(\leftarrow \) is called the **neck** of the rule.

- **Fact:** an expression of the form \(p(t_1, t_2, \ldots, t_n) \) (i.e., a rule with empty body).

Example:

- `meal(soup, beef, coffee).` % ← A fact.
- `meal(First, Second, Third) :- appetizer(First),
 main_dish(Second),
 dessert(Third).` % ← A rule.

- Rules and facts are both called **clauses**.
Syntax: Predicates, Programs, and Queries

- **Predicate** (or *procedure definition*): a set of clauses whose heads have the same name and arity (called the **predicate name**).

 Examples:

  ```
  pet(spot).
  pet(X) :- animal(X), barks(X).
  pet(X) :- animal(X), meows(X).
  animal(spot).
  animal(barry).
  animal(hobbes).
  ```

 Predicate `pet/1` has three clauses. Of those, one is a fact and two are rules. Predicate `animal/1` has three clauses, all facts.

- **Logic Program**: a set of predicates.

- **Query**: an expression of the form:

 \[\leftarrow p_1(t_{11}, \ldots, t_{1n_1}), \ldots, p_n(t_{n1}, \ldots, t_{nm}). \]

 (i.e., a clause without a head).

 A query represents a question to the program.

 Example: \(\leftarrow \) `pet(X)`

 In most systems written as: `?- pet(X)`
“Declarative” Meaning of Facts and Rules

The declarative meaning is the corresponding one in first order logic, according to certain conventions:

- **Facts:** state things that are true.

 (Note that a fact “p.” can be seen as the rule “p :- true.”)

 Example: the fact `animal(spot)`.

 can be read as “spot is an animal”.

- **Rules:**

 - Commas in rule bodies represent conjunction, i.e.,

 \[p ← p_1, \ldots, p_m. \text{ represents } p ← p_1 ∧ \cdots ∧ p_m. \]

 “←” represents as usual logical implication.

 Thus, a rule \[p ← p_1, \ldots, p_m. \] means “if \[p_1 \] and \ldots and \[p_m \] are true, then \[p \] is true”

 Example: the rule `pet(X):- animal(X), barks(X)`. can be read as “X is a pet if it is an animal and it barks”.

“Declarative” Meaning of Predicates and Queries

- **Predicates**: clauses in the same predicate

 \[
 p \leftarrow p_1, \ldots, p_n \\
 p \leftarrow q_1, \ldots, q_m \\
 \ldots
 \]

 provide different *alternatives* (for \(p \)).

 Example: the rules

  ```
  pet(X) :- animal(X), barks(X).
  pet(X) :- animal(X), meows(X).
  ```

 express two ways for \(X \) to be a pet.

- **Note** (variable *scope*): the \(X \) vars. in the two clauses above are different, despite the same name. Vars. are *local to clauses* (and are *renamed* any time a clause is used —as with vars. local to a procedure in conventional languages).

- **A query** represents a *question to the program*.

 Examples:

  ```
  ?- pet(spot).
  ?- pet(X).
  ```

 asks whether \(\text{spot} \) is a pet. asks: “Is there an \(X \) which is a pet?”
“Execution” and Semantics

- Example of a logic program:

```
pet(X) :- animal(X), barks(X).
pet(X) :- animal(X), meows(X).
animal(spot). barks(spot).
animal(barry). meows(barry).
animal(hobbes). roars(hobbes).
```

- Execution: given a program and a query, executing the logic program is attempting to find an answer to the query.

 Example: given the program above and the query `:- pet(X).` the system will try to find a “substitution” for `X` which makes `pet(X)` true.

 - The **declarative semantics** specifies what should be computed (all possible answers).
 ⇒ Intuitively, we have two possible answers: `X = spot` and `X = barry`.
 - The **operational semantics** specifies how answers are computed (which allows us to determine how many steps it will take).
File `pets.pl` contains (explained later):

```
:- module(_,_,['bf/bfall']).
```

+ *the pet example code as in previous slides.*

Interaction with the system query evaluator (the “top level”):

```
?- Ciao 1.XX ...
?- use_module(pets).
yes
?- pet(spot).
yes
?- pet(X).
X = spot ? ;
X = barry ? ;
no
?- 
```

See the part on **Developing Programs with a Logic Programming System** for more details on the particular system used in the course (Ciao).
Simple (Top-Down) Operational Meaning of Programs

- A logic program is operationally a set of *procedure definitions* (the predicates).
- A query \(\leftarrow p \) is an initial *procedure call*.
- A procedure definition with one *clause* \(p \leftarrow p_1, \ldots, p_m \) means:
 "to execute a call to \(p \) you have to call \(p_1 \) and \(\ldots \) and \(p_m \)"

 ◦ In principle, the order in which \(p_1, \ldots, p_n \) are called does not matter, but, in practical systems it is fixed.

- If several clauses (definitions) \(p \leftarrow p_1, \ldots, p_n \)
 \(p \leftarrow q_1, \ldots, q_m \)
 means:
 "to execute a call to \(p \), call \(p_1 \land \ldots \land p_n \), or, alternatively, \(q_1 \land \ldots \land q_n \), or ..."

 ◦ Unique to logic programming – it is like having several alternative procedure definitions.
 ◦ Means that several possible paths may exist to a solution and they *should be explored*.
 ◦ System usually stops when the first solution found, user can ask for more.
 ◦ Again, in principle, the order in which these paths are explored does not matter (*if certain conditions are met*), but, for a given system, this is typically also fixed.

In the following we define a more precise operational semantics.
Unification: uses

- **Unification** is the mechanism used in *procedure calls* to:
 - Pass parameters.
 - “Return” values.

- It is also used to:
 - Access parts of structures.
 - Give values to variables.

- Unification is a procedure to solve equations on data structures.
 - As usual, it returns a minimal solution to the equation (or the equation system).
 - As many equation solving procedures it is based on isolating variables and then *instantiating* them with their values.
Unification

- **Unifying two terms (or literals) A and B:** is asking if they can be made syntactically identical by giving (minimal) values to their variables.

 - I.e., find a **variable substitution** θ such that $[A\theta = B\theta]$ (or, if impossible, fail).

 - Only variables can be given values!

 - Two structures can be made identical only by making their arguments identical.

E.g.:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>θ</td>
<td>$A\theta$</td>
<td>$B\theta$</td>
<td></td>
</tr>
<tr>
<td>dog</td>
<td>dog</td>
<td>\emptyset</td>
<td>dog</td>
<td>dog</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>a</td>
<td>${X = a}$</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Y</td>
<td>${X = Y}$</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>$f(X, g(t))$</td>
<td>$f(m(h), g(M))$</td>
<td>${X=m(h), M=t}$</td>
<td>$f(m(h), g(t))$</td>
<td>$f(m(h), g(t))$</td>
<td></td>
</tr>
<tr>
<td>$f(X, g(t))$</td>
<td>$f(m(h), t(M))$</td>
<td>Impossible (1)</td>
<td>$f(m(h), g(t))$</td>
<td>$f(m(h), g(t))$</td>
<td></td>
</tr>
<tr>
<td>$f(X, X)$</td>
<td>$f(Y, l(Y))$</td>
<td>Impossible (2)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- (1) Structures with different name and/or arity cannot be unified.
- (2) A variable cannot be given as value a term which contains that variable, because it would create an infinite term. This is known as the **occurs check**. (See, however, **cyclic terms** later.)
Unification

• Often several solutions exist, e.g.:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>θ₁</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>θ₁</td>
<td>Aθ₁ and Bθ₁</td>
</tr>
<tr>
<td>f(X, g(T))</td>
<td>f(m(H), g(M))</td>
<td>{ X=m(a), H=a, M=b, T=b }</td>
<td>f(m(a), g(b))</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>{ X=m(H), M=f(A), T=f(A) }</td>
<td>f(m(H), g(f(A)))</td>
</tr>
</tbody>
</table>

These are correct, but a simpler ("more general") solution exists:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>θ₁</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>θ₁</td>
<td>Aθ₁ and Bθ₁</td>
</tr>
<tr>
<td>f(X, g(T))</td>
<td>f(m(H), g(M))</td>
<td>{ X=m(H), T=M }</td>
<td>f(m(H), g(M))</td>
</tr>
</tbody>
</table>

• Always a unique (modulo variable renaming) most general solution exists (unless unification fails).

• This is the one that we are interested in.

• The unification algorithm finds this solution.
Unification Algorithm

- Let A and B be two terms:

1. $\theta = \emptyset$, $E = \{A = B\}$

2. while not $E = \emptyset$:

 2.1 delete an equation $T = S$ from E

 2.2 case T or S (or both) are (distinct) variables. Assuming T variable:
 * (occur check) if T occurs in the term S → halt with failure
 * substitute variable T by term S in all terms in θ
 * substitute variable T by term S in all terms in E
 * add $T = S$ to θ

2.3 case T and S are non-variable terms:
 * if their names or arities are different → halt with failure
 * obtain the arguments $\{T_1, \ldots, T_n\}$ of T and $\{S_1, \ldots, S_n\}$ of S
 * add $\{T_1 = S_1, \ldots, T_n = S_n\}$ to E

3. halt with θ being the m.g.u of A and B
Unification Algorithm Examples (I)

- **Unify:** \(A = p(X, X) \) and \(B = p(f(Z), f(W)) \)

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(E)</th>
<th>(T)</th>
<th>(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>({})</td>
<td>({ p(X, X) = p(f(Z), f(W)) })</td>
<td>(p(X, X))</td>
<td>(p(f(Z), f(W)))</td>
</tr>
<tr>
<td>({})</td>
<td>({ X = f(Z), X = f(W) })</td>
<td>(X)</td>
<td>(f(Z))</td>
</tr>
<tr>
<td>({ X = f(Z) })</td>
<td>({ f(Z) = f(W) })</td>
<td>(f(Z))</td>
<td>(f(W))</td>
</tr>
<tr>
<td>({ X = f(Z) })</td>
<td>({ Z = W })</td>
<td>(Z)</td>
<td>(W)</td>
</tr>
<tr>
<td>({ X = f(W), Z = W })</td>
<td>({})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Unify:** \(A = p(X, f(Y)) \) and \(B = p(Z, X) \)

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(E)</th>
<th>(T)</th>
<th>(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>({})</td>
<td>({ p(X, f(Y)) = p(Z, X) })</td>
<td>(p(X, f(Y)))</td>
<td>(p(Z, X))</td>
</tr>
<tr>
<td>({})</td>
<td>({ X = Z, f(Y) = X })</td>
<td>(X)</td>
<td>(Z)</td>
</tr>
<tr>
<td>({ X = Z })</td>
<td>({ f(Y) = Z })</td>
<td>(f(Y))</td>
<td>(Z)</td>
</tr>
<tr>
<td>({ X = f(Y), Z = f(Y) })</td>
<td>({})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Unification Algorithm Examples (II)

- Unify: \(A = p(X, f(Y)) \) and \(B = p(a, g(b)) \)

\[
\begin{array}{c|c|c}
\theta & E & T \\
\hline
\{ \} & \{ p(X, f(Y)) = p(a, g(b)) \} & p(X, f(Y)) \quad p(a, g(b)) \\
\{ \} & \{ X = a, f(Y) = g(b) \} & \text{fail} \\
\{ X = a \} & \{ f(Y) = g(b) \} & f(Y) \quad g(b) \\
\end{array}
\]

- Unify: \(A = p(X, f(X)) \) and \(B = p(Z, Z) \)

\[
\begin{array}{c|c|c}
\theta & E & T \\
\hline
\{ \} & \{ p(X, f(X)) = p(Z, Z) \} & p(X, f(X)) \quad p(Z, Z) \\
\{ \} & \{ X = Z, f(X) = Z \} & \text{fail} \\
\{ X = Z \} & \{ f(Z) = Z \} & f(Z) \quad Z \\
\end{array}
\]
A (Schematic) Interpreter for Logic Programs (SLD–resolution)

Input: A logic program P, a query Q
Output: Q_{μ} (answer substitution) if Q is provable from P, failure otherwise

Algorithm:

1. Initialize the “resolvent” R to be \{Q\}
2. While R is nonempty do:
 2.1. Take the leftmost literal A in R
 2.2. Choose a (renamed) clause $A' \leftarrow B_1, \ldots, B_n$ from P, such that A and A' unify with unifier θ
 (if no such clause can be found, branch is failed; explore another branch)
 2.3. Remove A from R, add B_1, \ldots, B_n to R
 2.4. Apply θ to R and Q
3. If R is empty, output Q (a solution). Explore another branch for more sol’s.

• Step 2.2 defines alternative paths to be explored to find answer(s); execution explores this tree (for example, breadth-first).
• Since step 2.2 is left open, a given logic programming system must specify how it deals with this by providing one (or more)

 ◇ Search rule(s): “how are clauses/branches selected in 2.2.”

• If the search rule is not specified execution can be nondeterministic, since choosing a different clause (in step 2.2) could lead to different solutions (finding solutions in a different order).

Example (two valid executions):

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>?- pet(X).</td>
<td>?- pet(X).</td>
</tr>
<tr>
<td>X = spot ?</td>
<td>X = barry ?</td>
</tr>
<tr>
<td>;</td>
<td>;</td>
</tr>
<tr>
<td>X = barry ?</td>
<td>X = spot ?</td>
</tr>
<tr>
<td>;</td>
<td>;</td>
</tr>
<tr>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>?-</td>
<td>?-</td>
</tr>
</tbody>
</table>

• In fact, there is also some freedom in step 2.1, i.e., a system may also specify:

 ◇ Computation rule(s): “how are literals selected in 2.1.”
Running programs

C₁: pet(X) :- animal(X), barks(X).
C₂: pet(X) :- animal(X), meows(X).
C₃: animal(spot).
C₄: animal(barry).
C₅: animal(hobbes).
C₆: barks(spot).
C₇: meows(barry).
C₈: roars(hobbes).

• :- pet(P).

<table>
<thead>
<tr>
<th>Q</th>
<th>R</th>
<th>Clause</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>pet(P)</td>
<td>pet(P)</td>
<td>C₂*</td>
<td>{P = X₁}</td>
</tr>
<tr>
<td>pet(X₁)</td>
<td>animal(X₁), meows(X₁)</td>
<td>C₄*</td>
<td>{X₁ = barry}</td>
</tr>
<tr>
<td>pet(barry)</td>
<td>meows(barry)</td>
<td>C₇</td>
<td>{}</td>
</tr>
<tr>
<td>pet(barry)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

* means there is a choice-point, i.e., there are other clauses whose head unifies.

• System response: P = barry ?

• If we type “;” after the ? prompt (i.e., we ask for another solution) the system can go and execute a different branch (i.e., a different choice in C₂* or C₄*).
Running programs (different strategy)

\(\text{C}_1: \) pet(X) :- animal(X), barks(X).
\(\text{C}_2: \) pet(X) :- animal(X), meows(X).
\(\text{C}_3: \) animal(spot).
\(\text{C}_4: \) animal(barry).
\(\text{C}_5: \) animal(hobbes).
\(\text{C}_6: \) barks(spot).
\(\text{C}_7: \) meows(barry).
\(\text{C}_8: \) roars(hobbes).

\[\text{:- pet(P).} \qquad \text{(different strategy)} \]

<table>
<thead>
<tr>
<th>(Q)</th>
<th>(R)</th>
<th>Clause</th>
<th>(\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pet(P)</td>
<td>pet(P)</td>
<td>(\text{C}_1^*)</td>
<td>({ P = X_1 })</td>
</tr>
<tr>
<td>pet((X_1))</td>
<td>animal((X_1)), barks((X_1))</td>
<td>(\text{C}_5^*)</td>
<td>({ X_1 = \text{hobbes} })</td>
</tr>
<tr>
<td>pet(hobbes)</td>
<td>barks(hobbes)</td>
<td>???</td>
<td>failure</td>
</tr>
</tbody>
</table>

→ explore another branch (different choice in \(\text{C}_1^* \) or \(\text{C}_5^* \)) to find a solution. We take \(\text{C}_3 \) instead of \(\text{C}_5 \):

<table>
<thead>
<tr>
<th>(Q)</th>
<th>(R)</th>
<th>Clause</th>
<th>(\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pet(P)</td>
<td>pet(P)</td>
<td>(\text{C}_1^*)</td>
<td>({ P = X_1 })</td>
</tr>
<tr>
<td>pet((X_1))</td>
<td>animal((X_1)), barks((X_1))</td>
<td>(\text{C}_3^*)</td>
<td>({ X_1 = \text{spot} })</td>
</tr>
<tr>
<td>pet(spot)</td>
<td>barks(spot)</td>
<td>(\text{C}_6)</td>
<td>{ }</td>
</tr>
<tr>
<td>pet(spot)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Search Tree

- A query + a logic program together specify a search tree.

 Example: query `:- pet(X)` with the previous program generates this search tree (the boxes represent the “and” parts [except leaves]):

- Different query → different tree.

- The search and computation rules explain how the search tree will be explored during execution.

- How can we achieve completeness (guarantee that all solutions will be found)?
Characterization of The Search Tree

- All solutions are at *finite depth* in the tree.
- Failures can be at finite depth or, in some cases, be an infinite branch.
• Incomplete: may fall through an infinite branch before finding all solutions.
• But very efficient: it can be implemented with a call stack, very similar to a traditional programming language.
Breadth-First Search

- Will find all solutions before falling through an infinite branch.
- But costly in terms of time and memory.
- Used in all the following examples (via Ciao’s bf package).
Selecting breadth-first or depth-first search

- In the Ciao system we can select the search rule using the packages mechanism.

- Files should start with the following line:
 - To execute in breadth-first mode:
    ```prolog
    :- module(_,_,['bf/bfall']).
    ```
 - To execute in depth-first mode:
    ```prolog
    :- module(_,_,[]).
    ```

See the part on Developing Programs with a Logic Programming System for more details on the particular system used in the course (Ciao).
As mentioned before, unification used to *access data* and *give values to variables*.

Example: Consider query

\[\text{:- animal}(A), \text{named}(A, \text{Name}). \]

with:

\[\text{animal}(\text{dog}(\text{barry})). \quad \text{named}(\text{dog}(\text{Name}), \text{Name}). \]

Also, unification is used to *pass parameters* in procedure calls and to *return values* upon procedure exit.

<table>
<thead>
<tr>
<th>(Q)</th>
<th>(R)</th>
<th>Clause</th>
<th>(\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pet(P)</td>
<td>pet(P)</td>
<td>(C_1^*)</td>
<td>{ P=X_1 }</td>
</tr>
<tr>
<td>pet((X_1))</td>
<td>animal((X_1)), barks((X_1))</td>
<td>(C_3^*)</td>
<td>{ (X_1=\text{spot} })</td>
</tr>
<tr>
<td>pet(\text{spot})</td>
<td>barks(\text{spot})</td>
<td>(C_6)</td>
<td>{}</td>
</tr>
<tr>
<td>pet(\text{spot})</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
“Modes”

- In fact, argument positions are not fixed a priori to be input or output.

 Example: Consider query

 \[\text{ :- pet(spot). } \quad \text{ vs. } \quad \text{ :- pet(X). } \]

 or

 \[\text{ :- plus(s(0), s(s(0)), Z). } \quad \% \text{ Adds } \]

 vs.

 \[\text{ :- plus(s(0), Y, s(s(s(0))))}. \quad \% \text{ Subtracts } \]

- Thus, procedures can be used in different **modes**
 s.t. different sets of arguments are input or output in each mode.

- We sometimes use `+` and `-` to refer to, respectively, and argument being an input or an output, e.g.:

 `plus(+X, +Y, -Z)` means we call `plus` with

 - `X` instantiated,
 - `Y` instantiated, and
 - `Z` free.
Database Programming

• A Logic Database is a set of facts and rules (i.e., a logic program):

father_of(john, peter).
father_of(john, mary).
father_of(peter, michael).
mother_of(mary, david).

grandfather_of_of(L, M) :- father_of(L, N),
father_of(N, M).

grandfather_of(X, Y) :- father_of(X, Z),
mother_of(Z, Y).

• Given such database, a logic programming system can answer questions (queries) such as:

?- father_of(john, peter).
yes

?- father_of(john, david).
no

?- father_of(john, X).
X = peter ;
X = mary

?- grandfather_of(X, michael).
X = john

?- grandfather_of(X, Y).
X = john, Y = michael ;
X = john, Y = david

?- grandfather_of(X, X).
no

• Rules for grandmother_of(X, Y)?
• Another example:

resistor(power,n1).
resistor(power,n2).
transistor(n2,ground,n1).
transistor(n3,n4,n2).
transistor(n5,ground,n4).

inveter(Input,Output) :-
 transistor(Input,ground,Output), resistor(power,Output).

nand_gate(Input1,Input2,Output) :-
 transistor(Input1,X,Output), transistor(Input2,ground,X), resistor(power,Output).

and_gate(Input1,Input2,Output) :-
 nand_gate(Input1,Input2,X), inveter(X, Output).

• Query and_gate(In1,In2,Out) has solution: In1=n3, In2=n5, Out=n1
Structured Data and Data Abstraction (and the ’=’ Predicate)

- **Data structures** are created using (complex) terms.

- Structuring data is important:

```
  course(complog,wed,18,30,20,30,'M.','Hermenegildo',new,5102).
```

- When is the Computational Logic course?

```
```

- Structured version:

```
course(complog,Time,Lecturer, Location) :-
    Time = t(wed,18:30,20:30),
    Lecturer = lect('M.','Hermenegildo'),
    Location = loc(new,5102).
```

Note: “X=Y” is equivalent to “’=’(X,Y)” where the predicate =/2 is defined as the fact “’=’(X,X).” – Plain unification!

- Equivalent to:

```
course(complog, t(wed,18:30,20:30),
    lect('M.','Hermenegildo'), loc(new,5102)).
```
Structured Data and Data Abstraction (and The Anonymous Variable)

- **Given:**

 \[
 \text{course(complog,Time,Lecturer, Location)} :\quad \\
 \text{Time} = t(\text{wed},18:30,20:30), \\
 \text{Lecturer} = \text{lect('M.'},'\text{Hermenegildo'}), \\
 \text{Location} = \text{loc(new,5102)}. \\
 \]

- **When is the Computational Logic course?**

 \[-\text{course(complog, Time, A, B)}.\]

 has solution:

 \[
 \text{Time}=t(\text{wed},18:30,20:30), \text{A}=\text{lect('M.'},'\text{Hermenegildo'}), \text{B}=\text{loc(new,5102)}
 \]

- **Using the *anonymous variable* (“_”):**

 \[-\text{course(complog,Time, _, _)}.\]

 has solution:

 \[
 \text{Time}=t(\text{wed},18:30,20:30)
 \]
Terms as Data Structures with Pointers

- **main** below is a procedure, that:
 - **creates** some data structures, with *pointers* and *aliasing*.
 - **calls** other *procedures*, *passing* to them *pointers* to these structures.

```
main :-
  X = f(K, g(K)),
  Y = a,
  Z = g(L),
  W = h(b, L),
  % Heap memory at this point ➝
  p(X, Y),
  q(Y, Z),
  r(W).
```

- Terms are data structures with pointers.
- Logical variables are *declarative* pointers.
 - **Declarative**: they can only be assigned once.
Structured Data and Data Abstraction (Contd.)

- The circuit example revisited:

```
resistor(r1,power,n1).  transistor(t1,n2,ground,n1).
resistor(r2,power,n2).  transistor(t2,n3,n4,n2).
transistor(t3,n5,ground,n4).

inverter(inv(T,R),Input,Output) :-
  transistor(T,Input,ground,Output),
  resistor(R,power,Output).

nand_gate(nand(T1,T2,R),Input1,Input2,Output) :-
  transistor(T1,Input1,X,Output),
  transistor(T2,Input2,ground,X),
  resistor(R,power,Output).

and_gate(and(N,I),Input1,Input2,Output) :-
  nand_gate(N,Input1,Input2,X), inverter(I,X,Output).
```

- The query

\[\text{:- and_gate(G,In1,In2,Out).} \]

has solution:

\[G=\text{and(nand(t2,t3,r2),inv(t1,r1))}, \text{In1=n3}, \text{In2=n5}, \text{Out=n1} \]
Logic Programs and the Relational DB Model

Relational Database

<table>
<thead>
<tr>
<th>Relation Name</th>
<th>Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Attribute</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tuple</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Age</td>
</tr>
<tr>
<td>Brown</td>
<td>20</td>
</tr>
<tr>
<td>Jones</td>
<td>21</td>
</tr>
<tr>
<td>Smith</td>
<td>36</td>
</tr>
</tbody>
</table>

“Person”

```
person(brown, 20, male).
person(jones, 21, female).
person(smith, 36, male).
```

“Lived in”

```
lived_in(brown, london, 15).
lived_in(brown, york, 5).
lived_in(jones, paris, 21).
lived_in(smith, brussels, 15).
lived_in(smith, santander, 5).
```

Logic Programming

<table>
<thead>
<tr>
<th>Relation Name</th>
<th>Predicate symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relation</td>
<td>Procedure consisting of ground facts</td>
</tr>
<tr>
<td></td>
<td>(facts without variables)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tuple</th>
<th>Ground fact</th>
</tr>
</thead>
</table>

```
:::
Logic Programs and the Relational DB Model (Contd.)

• The operations of the relational model are easily implemented as rules.

  ◦ **Union:** \[ r_{\text{union}}(X_1, \ldots, X_n) \leftarrow r(X_1, \ldots, X_n). \]
  \[ r_{\text{union}}(X_1, \ldots, X_n) \leftarrow s(X_1, \ldots, X_n). \]

  ◦ **Cartesian Product:**
  \[ r \times s(X_1, \ldots, X_m, X_{m+1}, \ldots, X_{m+n}) \leftarrow r(X_1, \ldots, X_m), s(X_{m+1}, \ldots, X_{m+n}). \]

  ◦ **Projection:** \[ r_{\text{proj}}(X_1, X_3) \leftarrow r(X_1, X_2, X_3). \]

  ◦ **Selection:** \[ r_{\text{select}}(X_1, X_2, X_3) \leftarrow r(X_1, X_2, X_3), \leq(X_2, X_3). \]
  \[ (\leq/2 \text{ can be, e.g., Peano, Prolog built-in, constraints...}) \]

  ◦ **Set Difference:**
  \[ r_{\text{diff}}(X_1, \ldots, X_n) \leftarrow r(X_1, \ldots, X_n), \neg s(X_1, \ldots, X_n). \]
  \[ r_{\text{diff}}(X_1, \ldots, X_n) \leftarrow s(X_1, \ldots, X_n), \neg r(X_1, \ldots, X_n). \]
  \[ (\text{we postpone the discussion on negation until later.}) \]

• Derived operations – some can be expressed more directly in LP:

  ◦ **Intersection:** \[ r_{\text{meet}}(X_1, \ldots, X_n) \leftarrow r(X_1, \ldots, X_n), s(X_1, \ldots, X_n). \]

  ◦ **Join:** \[ r_{\text{join}}(X_1, \ldots, X_{2n}) \leftarrow r(X_1, X_2, X_3, \ldots, X_n), s(X_1', X_2, X_3', \ldots, X_n'). \]

• Duplicates an issue: see “setof” later in Prolog.
Deductive Databases

- The subject of “deductive databases” uses these ideas to develop *logic-based databases*.
  - Often syntactic restrictions (a subset of definite programs) used (e.g. “Datalog” – no functors, no existential variables).
  - Variations of a “bottom-up” execution strategy used: Use the $T_p$ operator (explained in the theory part) to compute the model, restrict to the query.
  - Powerful notions of negation supported: S-models
    - Answer Set Programming (ASP)
    - powerful knowledge representation and reasoning systems.
Recursive Programming

- Example: ancestors.

```
parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).
ancestor(X,Y) :- parent(X,Z), parent(Z,W), ancestor(Z,Y).
ancestor(X,Y) :- parent(X,Z), parent(Z,W), parent(W,K), ancestor(Z,Y).
```

- Defining ancestor recursively:

```
parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).
```

- Exercise: define “related”, “cousin”, “same generation”, etc.
Types

- **Type**: a (possibly infinite) set of terms.
- **Type definition**: A program defining a type.
- **Example**: Weekday:
  - Set of terms to represent: 'Monday', 'Tuesday', 'Wednesday', ...
  - Type definition:
    weekday('Monday').
    weekday('Tuesday'). ...

- **Example**: Date (weekday * day in the month):
  - Set of terms to represent: date('Monday',23), date('Tuesday',24), ...
  - Type definition:
    date(date(W,D)) :- weekday(W), day_of_month(D).
    day_of_month(1).
    day_of_month(2).
    ...
    day_of_month(31).
Recursive Programming: Recursive Types

- **Recursive types**: defined by recursive logic programs.
- **Example**: natural numbers (simplest recursive data type):
  - Set of terms to represent: 0, s(0), s(s(0)), ...
  - Type definition:
    
    ```
 nat(0).
 nat(s(X)) :- nat(X).
    ```

    A minimal recursive predicate: one unit clause and one recursive clause (with a single body literal).

- Types are *runnable* and can be used to check or produce values:
  - ?- nat(X) ⇒ X=0; X=s(0); X=s(s(0)); ...

- We can reason about *complexity*, for a given class of queries (“mode”). E.g., for mode nat(ground) complexity is linear in size of number.

- **Example**: integers:
  - Set of terms to represent: 0, s(0), -s(0), ...
  - Type definition:
    
    ```
 integer(X) :- nat(X).
 integer(-X) :- nat(X).
    ```
Recursive Programming: Arithmetic

- Defining the natural order ($\leq$) of natural numbers:

  \[
  \text{less_or_equal}(0, X) :- \text{nat}(X).
  \]
  \[
  \text{less_or_equal}(s(X), s(Y)) :- \text{less_or_equal}(X, Y).
  \]

  - Multiple uses (modes):
    \[
    \text{less_or_equal}(s(0), s(s(0))), \text{less_or_equal}(X, 0), \ldots
    \]
  
  - Multiple solutions:
    \[
    \text{less_or_equal}(X, s(0)), \text{less_or_equal}(s(s(0)), Y), \text{etc.}
    \]

- Addition:

  \[
  \text{plus}(0, X, X) :- \text{nat}(X).
  \]
  \[
  \text{plus}(s(X), Y, s(Z)) :- \text{plus}(X, Y, Z).
  \]

  - Multiple uses (modes):
    \[
    \text{plus}(s(s(0)), s(0), Z), \text{plus}(s(s(0)), Y, s(0))
    \]
  
  - Multiple solutions:
    \[
    \text{plus}(X, Y, s(s(s(0)))), \text{etc.}
    \]
Another possible definition of addition:

\[
\begin{align*}
\text{plus}(X, 0, X) & :\text{nat}(X). \\
\text{plus}(X, s(Y), s(Z)) & :\text{plus}(X, Y, Z).
\end{align*}
\]

The meaning of plus is the same if both definitions are combined.

Not recommended: several proof trees for the same query \(\rightarrow\) not efficient, not concise. We look for minimal axiomatizations.

The art of logic programming: finding compact and computationally efficient formulations!

Try to define: \textbf{times}(X, Y, Z) \(Z = X \times Y\), \textbf{exp}(N, X, Y) \(Y = X^N\), \textbf{factorial}(N, F) \(F = N!\), \textbf{minimum}(N1, N2, Min), ...
Recursive Programming: Arithmetic

- Definition of \( \text{mod}(X, Y, Z) \)
  
  “Z is the remainder from dividing X by Y”

  \[ \exists Q \text{ s.t. } X = Y \times Q + Z \land Z < Y \]

  \[ \Rightarrow \]

  \( \text{mod}(X, Y, Z) : - \text{ less}(Z, Y), \text{ times}(Y, Q, W), \text{ plus}(W, Z, X). \)

- Another possible definition:

  \( \text{mod}(X, Y, X) : - \text{ less}(X, Y). \)

  \( \text{mod}(X, Y, Z) : - \text{ plus}(X1, Y, X), \text{ mod}(X1, Y, Z). \)

- The second is much more efficient than the first one (compare the size of the proof trees).
Recursive Programming: Arithmetic/Functions

- The Ackermann function:

  \[
  \text{ackermann}(0, N) = N + 1 \\
  \text{ackermann}(M, 0) = \text{ackermann}(M - 1, 1) \\
  \text{ackermann}(M, N) = \text{ackermann}(M - 1, \text{ackermann}(M, N - 1))
  \]

- In Peano arithmetic:

  \[
  \text{ackermann}(0, N) = s(N) \\
  \text{ackermann}(s(M1), 0) = \text{ackermann}(M1, s(0)) \\
  \text{ackermann}(s(M1), s(N1)) = \text{ackermann}(M1, \text{ackermann}(s(M1), N1))
  \]

- Can be defined as:

  \[
  \text{ackermann}(0, N, s(N)). \\
  \text{ackermann}(s(M1), 0, Val) :- \text{ackermann}(M1, s(0), Val). \\
  \text{ackermann}(s(M1), s(N1), Val) :- \text{ackermann}(s(M1), N1, Val1), \text{ackermann}(M1, Val1, Val).
  \]

- In general, \textit{functions} can be coded as a predicate with one more argument, which represents the output (and additional syntactic sugar often available).
Recursive Programming: Arithmetic/Functions (Functional Syntax)

- Syntactic support available (see, e.g., the Ciao \textit{fsyntax} and \textit{functional} packages).
- The Ackermann function (Peano) in Ciao’s functional Syntax and defining \texttt{s} as a prefix operator:

\begin{verbatim}
:- use_package(functional).
:- op(500,fy,s).

ackermann(0, N) := s N.
ackermann(s M, 0) := ackermann(M, s 0).
ackermann(s M, s N) := ackermann(M, ackermann(s M, N) ).
\end{verbatim}

- Convenient in other cases – e.g. for defining types:

\begin{verbatim}
nat(0).
nat(s(X)) :- nat(X).
\end{verbatim}

Using special := notation for the “return” (last) the argument:

\begin{verbatim}
nat := 0.
nat := s(X) :- nat(X).
\end{verbatim}
Recursive Programming: Arithmetic/Functions (Funct. Syntax, Contd.)

Moving body call to head using the ~ notation (“evaluate and replace with result”):

\[
\begin{align*}
nat & := 0. \\
nat & := s(\sim \text{nat}).
\end{align*}
\]

“~” not needed with functional package if inside its own definition:

\[
\begin{align*}
nat & := 0. \\
nat & := s(\text{nat}).
\end{align*}
\]

Using an \texttt{:- op} declaration to define \texttt{s} as a prefix operator:

\[
\begin{align*}
nat & := 0. \\
nat & := s \text{ nat}.
\end{align*}
\]

Using “|” (disjunction):

\[
\begin{align*}
nat & := 0 \mid s \text{ nat}.
\end{align*}
\]

Which is exactly equivalent to:

\[
\begin{align*}
nat(0). \\
nat(s(X)) & := \text{nat}(X).
\end{align*}
\]
Functional Syntax: Packages and Directives

- **:- use_package(fsyntax).**
  Allows the use of := for definitions, ~ for eval, | for or, etc.:
  ackmann(s M, s N) := ~ackmann(M, ~ackmann(s M, N) ).

- To evaluate automatically functors that are defined as functions
  (no need for ~ for them):
  
  **:- fun_eval ackmann/2.**
  ackmann(s M, s N) := ackmann(M, ackmann(s M, N) ).

  To enable this for all functions defined in file:
  
  **:- fun_eval defined(true).**

- To evaluate arithmetic functors automatically (no need for ~ for them):
  
  **:- fun_eval arith(true).**
  add_one(X,X+1).

- The functional package includes fsyntax + both fun_eval’s above:
  
  **:- use_package(functional).**
**Recursive Programming: Lists**

- Binary structure: first argument is *element*, second argument is *rest* of the list.

- We need:
  - A constant symbol: we use the *constant*  \([\ ]\)  (→ denotes the empty list).
  - A functor of arity 2: traditionally the dot “.” (which is overloaded).

- Syntactic sugar: the term \(.(X,Y)\) is denoted by \([X|Y]\) (X is the *head*, Y is the *tail***).

<table>
<thead>
<tr>
<th>Formal object</th>
<th>“Cons pair” syntax</th>
<th>“Element” syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>(.(a,[]))</td>
<td>([a</td>
<td>[]])</td>
</tr>
<tr>
<td>(.(a,.(b,[])))</td>
<td>([a</td>
<td>[b</td>
</tr>
<tr>
<td>(.(a,.(b,.(c,[</td>
<td>]))))</td>
<td>([a</td>
</tr>
<tr>
<td>(.(a,X))</td>
<td>([a</td>
<td>X])</td>
</tr>
<tr>
<td>(.(a,.(b,X)))</td>
<td>([a</td>
<td>[b</td>
</tr>
</tbody>
</table>

- Note that:
  - \([a,b]\) and \([a|X]\) unify with \(\{X = [b]\}\)
  - \([a]\) and \([a|X]\) unify with \(\{X = []\}\)
  - \([a]\) and \([a,b|X]\) do not unify
  - \([a,b]\) and \([X]\) do not unify
Recursive Programming: Lists (Contd.)

- Type definition (no syntactic sugar):
  
  ```prolog
 list([]).
 list((X,Y)) :- list(Y).
  ```

- Type definition, with some syntactic sugar ([ ] notation):
  
  ```prolog
 list([]).
 list([X|Y]) :- list(Y).
  ```

- Type definition, using also functional package:
  
  ```prolog
 list := [] | [_|list].
  ```

- "Exploring" the type:
  
  ```prolog
 ?- list(L).
 L = [] ? ;
 L = [_] ? ;
 L = [_,_] ? ;
 L = [_,_,_] ?
 ...
  ```
Recursive Programming: Lists (Contd.)

- X is a *member* of the list Y:
  
  \[\text{member}(a, [a]). \quad \text{member}(b, [b]). \quad \text{etc.} \Rightarrow \text{member}(X, [X]).\]
  
  \[\text{member}(a, [a, c]). \quad \text{member}(b, [b, d]). \quad \text{etc.} \Rightarrow \text{member}(X, [X, Y]).\]
  
  \[\text{member}(a, [a, c, d]). \quad \text{member}(b, [b, d, l]). \quad \text{etc.} \Rightarrow \text{member}(X, [X, Y, Z]).\]
  
  \[\Rightarrow \text{member}(X, [X|Y]) \text{ :- } \text{list}(Y).\]
  
  \[\text{member}(a, [c, a]), \quad \text{member}(b, [d, b]). \quad \text{etc.} \Rightarrow \text{member}(X, [Y, X]).\]
  
  \[\text{member}(a, [c, d, a]). \quad \text{member}(b, [s, t, b]). \quad \text{etc.} \Rightarrow \text{member}(X, [Y, Z, X]).\]
  
  \[\Rightarrow \text{member}(X, [Y|Z]) \text{ :- } \text{member}(X, Z).\]

- Resulting definition:

  \[
  \begin{align*}
  \text{member}(X, [X|Y]) & \text{ :- } \text{list}(Y). \\
  \text{member}(X, [_|T]) & \text{ :- } \text{member}(X, T).
  \end{align*}
  \]

- Uses of \text{member}(X,Y):
  
  - checking whether an element is in a list (\text{member}(b, [a, b, c]))
  
  - finding an element in a list (\text{member}(X, [a, b, c]))
  
  - finding a list containing an element (\text{member}(a, Y))
Recursive Programming: Lists (Contd.)

- Combining lists and naturals:

  ◦ Computing the length of a list:

    ```prolog
 len([], 0).
 len([H|T], s(LT)) :- len(T, LT).
    ```

  ◦ Adding all elements of a list:

    ```prolog
 sumlist([], 0).
 sumlist([H|T], S) :- sumlist(T, ST), plus(ST, H, S).
    ```

  ◦ The type of lists of natural numbers:

    ```prolog
 natlist([]).
 natlist([H|T]) :- nat(H), natlist(T).
    ```

    or:

    ```prolog
 natlist := [] | [~nat|natlist].
    ```
Exercises:

- Define: \texttt{prefix}(X, Y) (the list \( X \) is a prefix of the list \( Y \)), e.g. \texttt{prefix([a, b], [a, b, c, d])}
- Define: \texttt{suffix}(X, Y), \texttt{sublist}(X, Y),...
• Concatenation of lists:
  ◇ Base case:
  \[
  \text{append}([], [a], [a]) . \text{append}([], [a, b], [a, b]) . \text{etc.} \\
  \Rightarrow \text{append}([], Ys, Ys) :- \text{list}(Ys).
  \]
  
  ◇ Rest of cases (first step):
  \[
  \text{append}([a], [b], [a, b]) . \\
  \text{append}([a], [b, c], [a, b, c]) . \text{etc.} \\
  \Rightarrow \text{append}([X], Ys, [X|Ys]) :- \text{list}(Ys).
  \]
  \[
  \text{append}([a, b], [c], [a, b, c]) . \\
  \text{append}([a, b], [c, d], [a, b, c, d]) . \text{etc.} \\
  \Rightarrow \text{append}([X, Z], Ys, [X, Z|Ys]) :- \text{list}(Ys).
  \]
  
  This is still infinite \(\Rightarrow\) we need to generalize more.
Recursive Programming: Lists (Contd.)

- Second generalization:
  
  \[
  \begin{align*}
  \text{append}([X], Ys, [X|Ys]) & : \text{- list}(Ys). \\
  \text{append}([X, Z], Ys, [X, Z|Ys]) & : \text{- list}(Ys). \\
  \text{append}([X, Z, W], Ys, [X, Z, W|Ys]) & : \text{- list}(Ys).
  \end{align*}
  \]

  \[\Rightarrow \text{append}([X|Xs], Ys, [X|Zs]) : \text{- append}(Xs, Ys, Zs).\]

- So, we have:

\[
\begin{align*}
\text{append}([], Ys, Ys) & : \text{- list}(Ys). \\
\text{append}([X|Xs], Ys, [X|Zs]) & : \text{- append}(Xs, Ys, Zs).
\end{align*}
\]

- Another way of reasoning: thinking inductively.
  
  ◦ The base case is: \text{append}([], Ys, Ys):\text{-list}(Ys).
  
  ◦ If we assume that \text{append}(Xs, Ys, Zs) works for some iteration, then, in the next one, the following holds: \text{append}([X|Xs], Ys, [X|Zs]).
Recursive Programming: Lists (Contd.)

• Uses of append:
  ◦ Concatenate two given lists:

  ```prolog
 ?- append([a, b, c], [d, e], L).
 L = [a, b, c, d, e] ?
  ```

  ◦ Find differences between lists:

  ```prolog
 ?- append(D, [d, e], [a, b, c, d, e]).
 D = [a, b, c] ?
  ```

  ◦ Split a list:

  ```prolog
 ?- append(A, B, [a, b, c, d, e]).
 A = [],
 B = [a, b, c, d, e] ? ;
 A = [a],
 B = [b, c, d, e] ? ;
 A = [a, b],
 B = [c, d, e] ? ;
 A = [a, b, c],
 B = [d, e] ?
 ...
Recursive Programming: Lists (Contd.)

- `reverse(Xs, Ys)`: Ys is the list obtained by reversing the elements in the list Xs.
 It is clear that we will need to traverse the list Xs.
 For each element X of Xs, we must put X at the end of the rest of the Xs list already reversed:

  ```prolog
  reverse([X|Xs], Ys) :-
     reverse(Xs, Zs),
     append(Zs, [X], Ys).
  ```

 How can we stop?
  ```prolog
  reverse([], []).
  ```

- As defined, `reverse(Xs,Ys)` is very inefficient. Another possible definition:
 (uses an *accumulating parameter*)
  ```prolog
  reverse(Xs, Ys) :- reverse(Xs, [], Ys).
  ```

  ```prolog
  reverse([], Ys, Ys).
  ```
  ```prolog
  reverse([X|Xs], Acc, Ys) :- reverse(Xs, [X|Acc], Ys).
  ```

⇒ Find the differences in terms of efficiency between the two definitions.
Recursive Programming: Binary Trees

- Represented by a ternary functor \texttt{tree(Element,Left,Right)}.
- Empty tree represented by \texttt{void}.
- Definition:

\begin{verbatim}
binary_tree(void).
binary_tree(tree(Element,Left,Right)) :-
 binary_tree(Left),
 binary_tree(Right).
\end{verbatim}

- Defining \texttt{tree_member(Element,Tree)}:

\begin{verbatim}
tree_member(X,tree(X,Left,Right)) :-
 binary_tree(Left),
 binary_tree(Right).
tree_member(X,tree(Y,Left,Right)) :- tree_member(X,Left).
tree_member(X,tree(Y,Left,Right)) :- tree_member(X,Right).
\end{verbatim}
Recursive Programming: Binary Trees

- Defining `pre_order(Tree,Elements)`:
 Elements is a list containing the elements of Tree traversed in *preorder*.

```
pre_order(void, []).
pre_order(tree(X,Left,Right),Elements) :-
    pre_order(Left,ElementsLeft),
    pre_order(Right,ElementsRight),
    append([X | ElementsLeft], ElementsRight, Elements).
```

- Exercise – define:
 - `in_order(Tree,Elements)`
 - `post_order(Tree,Elements)`
Note that the two definitions of member/2 can be used *simultaneously*:

```prolog
lt_member(X, [X|Y]) :- list(Y).
literal_member(X, [_|T]) :- lt_member(X, T).

lt_member(X, tree(X,L,R)) :- binary_tree(L), binary_tree(R).
literal_member(X, tree(Y,L,R)) :- lt_member(X, L).
literal_member(X, tree(Y,L,R)) :- lt_member(X, R).
```

Lists only unify with the first two clauses, trees with clauses 3–5!

- :- lt_member(X, [b,a,c]).
 \[X = b \ ; \ X = a \ ; \ X = c \]

- :- lt_member(X, tree(b, tree(a, void, void), tree(c, void, void))).
 \[X = b \ ; \ X = a \ ; \ X = c \]

- Also, try (somewhat surprising): :- lt_member(M, T).
Recognizing (and generating!) polynomials in some term X:

- X is a polynomial in X
- a constant is a polynomial in X
- sums, differences and products of polynomials in X are polynomials
- also polynomials raised to the power of a natural number and the quotient of a polynomial by a constant

```
polynomial(X,X).
polynomial(Term,X) :- pconstant(Term).
polynomial(Term1+Term2,X) :- polynomial(Term1,X), polynomial(Term2,X).
polynomial(Term1-Term2,X) :- polynomial(Term1,X), polynomial(Term2,X).
polynomial(Term1*Term2,X) :- polynomial(Term1,X), polynomial(Term2,X).
polynomial(Term1/Term2,X) :- polynomial(Term1,X), pconstant(Term2).
polynomial(Term1\^N,X) :- polynomial(Term1,X), \text{nat}(N).
```
• Symbolic differentiation: deriv(Expression, X, Derivative)

 deriv(X, X, s(0)).
 deriv(C, X, 0) :- pconstant(C).
 deriv(U + V, X, DU + DV) :- deriv(U, X, DU), deriv(V, X, DV).
 deriv(U - V, X, DU - DV) :- deriv(U, X, DU), deriv(V, X, DV).
 deriv(U * V, X, DU * V + U * DV) :- deriv(U, X, DU), deriv(V, X, DV).
 deriv(U / V, X, (DU * V - U * DV) / V ^ s(s(0))) :- deriv(U, X, DU), deriv(V, X, DV).
 deriv(U ^ s(N), X, s(N) * U ^ N * DU) :- deriv(U, X, DU), nat(N).
 deriv(log(U), X, DU / U) :- deriv(U, X, DU).
...

• ?- deriv(s(s(s(0))) * x + s(s(0)), x, Y).

• A simplification step can be added.
Recursive Programming: Graphs

- A common approach: make use of another data structure, e.g., lists:
 - Graphs as lists of edges.
- Alternative: make use of Prolog’s program database:
 - Declare the graph using facts in the program.

  ```
  edge(a,b). edge(c,a).
  edge(b,c). edge(d,a).
  ```

- Paths in a graph: path(X,Y) iff there is a path in the graph from node X to node Y.

  ```
  path(A,B) :- edge(A,B).
  path(A,B) :- edge(A,X), path(X,B).
  ```

- Circuit: a closed path. circuit iff there is a path in the graph from a node to itself.

  ```
  circuit :- path(A,A).
  ```
• Modify `circuit/0` so that it gives the circuit. (You have to modify also `path/2`)

• Propose a solution for handling several graphs in our representation.

• Propose a suitable representation of graphs as data structures.

• Define the previous predicates for your representation.

• Consider unconnected graphs (there is a subset of nodes not connected in any way to the rest) versus connected graphs.

• Consider directed versus undirected graphs.

• Try `path(a,d)`. Solve the problem.
Recursive Programming: Automata (Graphs)

- Recognizing the sequence of characters accepted by the following *non-deterministic, finite automaton* (NDFA):

 ![Diagram of NDFA]

 where \(q_0 \) is both the *initial* and the *final* state.

- Strings are represented as lists of constants (e.g., \([a, b, b]\)).

- Program:

  ```prolog
  initial(q0). delta(q0, a, q1).
  delta(q1, b, q0).
  final(q0). delta(q1, b, q1).

  accept(S) :- initial(Q), accept_from(S, Q).

  accept_from([], Q) :- final(Q).
  accept_from([X|Xs], Q) :- delta(Q, X, NewQ), accept_from(Xs, NewQ).
  ```
A non-deterministic, stack, finite automaton (NDSFA):

accept(S) :- initial(Q), accept_from(S,Q,[]).

accept_from([],Q,[]) :- final(Q).
accept_from([X|Xs],Q,S) :- delta(Q,X,S,NewQ,NewS),
 accept_from(Xs,NewQ,NewS).

initial(q0).
final(q1).

delta(q0,X,Xs,q0,[X|Xs]).
delta(q0,X,Xs,q1,[X|Xs]).
delta(q0,X,Xs,q1,Xs).
delta(q1,X,[X|Xs],q1,Xs).

What sequence does it recognize?
Recursive Programming: Towers of Hanoi

Objective:
- Move tower of N disks from peg a to peg b, with the help of peg c.

Rules:
- Only one disk can be moved at a time.
- A larger disk can never be placed on top of a smaller disk.

<table>
<thead>
<tr>
<th>$N = 1$</th>
<th>$N = 2$</th>
<th>$N = 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Recursive Programming: Towers of Hanoi (Contd.)

- We will call the main predicate `hanoi_moves(N,Moves)`.
- \(N \) is the number of disks and \(Moves \) the corresponding list of “moves”.
- Each move `move(A, B)` represents that the top disk in \(A \) should be moved to \(B \).
- **Example:**

![Diagram of the Towers of Hanoi problem]

is represented by:

```prolog
hanoi_moves(\( s(s(s(0))) \),
            [move(a,b), move(a,c), move(b,c), move(a,b),
             move(c,a), move(c,b), move(a,b)])
```
A general rule:

We capture this in a predicate $hanoi(N,\text{Orig},\text{Dest},\text{Help},\text{Moves})$ where "Moves contains the moves needed to move a tower of N disks from peg Orig to peg Dest, with the help of peg Help.”

$hanoi(s(0),\text{Orig},\text{Dest},_\text{Help},[\text{move(Orig, Dest)}])$.

$hanoi(s(N),\text{Orig},\text{Dest},\text{Help},\text{Moves}) :-$

$hanoi(N,\text{Orig},\text{Help},\text{Dest},\text{Moves1}),$

$hanoi(N,\text{Help},\text{Dest},\text{Orig},\text{Moves2}),$

$\text{append}(\text{Moves1},[\text{move(Orig, Dest)}|\text{Moves2}],\text{Moves})$.

And we simply call this predicate:

$hanoi_moves(N,\text{Moves}) :-$

$hanoi(N,a,b,c,\text{Moves})$.

Recursive Programming: Towers of Hanoi (Contd.)
Learning to Compose Recursive Programs

- To some extent it is a simple question of practice.
- By generalization (as in the previous examples): elegant, but sometimes difficult? (Not the way most people do it.)
- Think inductively: state first the base case(s), and then think about the general recursive case(s).
- Sometimes it may help to compose programs with a given use in mind (e.g., “forwards execution”), making sure it is declaratively correct. Consider then also if alternative uses make sense.
- Sometimes it helps to look at well-written examples and use the same “schemas.”
- Using a global top-down design approach can help (in general, not just for recursive programs):
 - State the general problem.
 - Break it down into subproblems.
 - Solve the pieces.
- Again, the best approach: practice, practice, practice.