Computational Logic
A “Hands-on” Introduction to Pure Logic Programming
Syntax: Terms (Variables, Constants, and Structures)

(using Prolog notation conventions)

- **Variables**: start with an uppercase character (or “_”), may include “_” and digits:

 Examples: X, Im4u, A_little_garden, _, _x, _22

- **Constants**: lowercase first character, may include “_” and digits. Also, numbers and some special characters. Quoted, any character:

 Examples: a, dog, a_big_cat, 23, 'Hungry man', []

- **Structures**: a functor (the structure name, is like a constant name) followed by a fixed number of arguments between parentheses:

 Example: date(monday, Month, 1994)

 Arguments can in turn be variables, constants and structures.

 ◊ **Arity**: is the number of arguments of a structure. Functors are represented as name/arity. A constant can be seen as a structure with arity zero.

Variables, constants, and structures as a whole are called terms (they are the terms of a “first–order language”): the data structures of a logic program.
Syntax: Terms

(-using Prolog notation conventions)

• **Examples of terms:**

<table>
<thead>
<tr>
<th>Term</th>
<th>Type</th>
<th>Main functor:</th>
</tr>
</thead>
<tbody>
<tr>
<td>dad</td>
<td>constant</td>
<td>dad/0</td>
</tr>
<tr>
<td>time(min, sec)</td>
<td>structure</td>
<td>time/2</td>
</tr>
<tr>
<td>pair(Calvin, tiger(Hobbes))</td>
<td>structure</td>
<td>pair/2</td>
</tr>
<tr>
<td>Tee(Alf, rob)</td>
<td>illegal</td>
<td>—</td>
</tr>
<tr>
<td>A_good_time</td>
<td>variable</td>
<td>—</td>
</tr>
</tbody>
</table>

• **Functors** can be defined as **prefix, postfix, or infix operators** (just syntax!):

<table>
<thead>
<tr>
<th>Expr</th>
<th>Is the term</th>
<th>As (functor)</th>
<th>As declared</th>
</tr>
</thead>
<tbody>
<tr>
<td>a + b</td>
<td>’+’(a,b)</td>
<td>+/2</td>
<td>infix</td>
</tr>
<tr>
<td>- b</td>
<td>’-’(b)</td>
<td>-/1</td>
<td>prefix</td>
</tr>
<tr>
<td>a < b</td>
<td>’<’(a,b)</td>
<td></2</td>
<td>infix</td>
</tr>
<tr>
<td>john father mary</td>
<td>father(john,mary)</td>
<td>father/2 declared infix</td>
<td></td>
</tr>
</tbody>
</table>

We assume that some such operator definitions are always preloaded.
• **Rule:** an expression of the form:

\[p_0(t_1, t_2, \ldots, t_n) \leftarrow p_1(t_1^1, t_2^1, \ldots, t_n^1), \]
\[\ldots \]
\[p_m(t_1^m, t_2^m, \ldots, t_n^m). \]

- \(p_0(\ldots) \) to \(p_m(\ldots) \) are syntactically like terms.
- \(p_0(\ldots) \) is called the head of the rule.
- The \(p_i \) to the right of the arrow are called literals and form the body of the rule. They are also called procedure calls.
- Usually, \(:- \) is called the neck of the rule.

• **Fact:** an expression of the form \(p(t_1, t_2, \ldots, t_n) \). (i.e., a rule with empty body).

Example:

<table>
<thead>
<tr>
<th>meal(soup, beef, coffee).</th>
<th>% ← A fact.</th>
</tr>
</thead>
<tbody>
<tr>
<td>meal(First, Second, Third) :- appetizer(First), main_dish(Second), dessert(Third).</td>
<td>% ← A rule.</td>
</tr>
</tbody>
</table>

- Rules and facts are both called **clauses**.
Syntax: Predicates, Programs, and Queries

- **Predicate** (or *procedure definition*): a set of clauses whose heads have the same name and arity (called the **predicate name**).

 Examples:

 \[
 \begin{align*}
 \text{pet(spot).} & \quad \text{animal(spot).} \\
 \text{pet(X) :- animal(X), barks(X).} & \quad \text{animal(barry).} \\
 \text{pet(X) :- animal(X), meows(X).} & \quad \text{animal(hobbes).}
 \end{align*}
 \]

 Predicate `pet/1` has three clauses. Of those, one is a fact and two are rules. Predicate `animal/1` has three clauses, all facts.

- **Logic Program**: a set of predicates.

- **Query**: an expression of the form:
 \[
 \leftarrow p_1(t_1^1, \ldots, t_{n_1}^1), \ldots, p_n(t_1^n, \ldots, t_{n_m}^n).
 \]
 (i.e., a clause without a head).

 A query represents a question to the program.

 Example: \(\leftarrow \text{pet(X).}\)
 \[
 \text{In most systems written as: } \text{?- pet(X).}
 \]
“Declarative” Meaning of Facts and Rules

The declarative meaning is the corresponding one in first order logic, according to certain conventions:

- **Facts**: state things that are true.
 (Note that a fact “p.” can be seen as the rule “p :- true.”)

 Example: the fact `animal(spot).` can be read as “spot is an animal”.

- **Rules**:

 - Commas in rule bodies represent conjunction, i.e.,

 \[p ← p_1, \ldots, p_m \] represents \[p ← p_1 \land \cdots \land p_m. \]

 - “\(← \)” represents as usual logical implication.

 Thus, a rule \(p ← p_1, \ldots, p_m. \) means “if \(p_1 \) and \(\ldots \) and \(p_m \) are true, then \(p \) is true”

 Example: the rule `pet(X) :- animal(X), barks(X).` can be read as “\(X \) is a pet if it is an animal and it barks”.
“Declarative” Meaning of Predicates and Queries

- **Predicates**: clauses in the same predicate

 \[p \leftarrow p_1, \ldots, p_n \]
 \[p \leftarrow q_1, \ldots, q_m \]

 ... provide different **alternatives** (for \(p \)).

 Example: the rules

 \[
 \text{pet}(X) :- \text{animal}(X), \text{barks}(X).
 \]
 \[
 \text{pet}(X) :- \text{animal}(X), \text{meows}(X).
 \]

 express two ways for \(X \) to be a pet.

- **Note** (variable scope): the \(X \) vars. in the two clauses above are different, despite the same name. Vars. are local to clauses (and are renamed any time a clause is used –as with vars. local to a procedure in conventional languages).

- **A query** represents a question to the program.
 Examples:

 \[
 ?- \text{pet}(\text{spot}).
 \]
 asks whether \(\text{spot} \) is a pet.

 \[
 ?- \text{pet}(X).
 \]
 asks: “Is there an \(X \) which is a pet?”
“Execution” and Semantics

- Example of a logic program:

 pet(X) :- animal(X), barks(X).
 pet(X) :- animal(X), meows(X).
 animal(spot). barks(spot).
 animal(barry). meows(barry).
 animal(hobbes). roars(hobbes).

- Execution: given a program and a query, executing the logic program is attempting to find an answer to the query.

 Example: given the program above and the query `:- pet(X).`

 the system will try to find a “substitution” for `X` which makes `pet(X)` true.

 - The declarative semantics specifies what should be computed (all possible answers).
 ⇒ Intuitively, we have two possible answers: `X = spot` and `X = barry`.
 - The operational semantics specifies how answers are computed (which allows us to determine how many steps it will take).
Running Programs in a Logic Programming System

- File \texttt{pets.pl} contains (explained later):

\begin{verbatim}
:- module(_,_,['bf/bfall']).
\end{verbatim}

+ \textit{the pet example code as in previous slides}.

- Interaction with the system query evaluator (the “top level”):

\begin{verbatim}
?- Ciao 1.XX ...
?- use_module(pets).
yes
?- pet(spot).
yes
?- pet(X).
X = spot ;
X = barry ;
no
?-
\end{verbatim}

See the part on \textbf{Developing Programs with a Logic Programming System} for more details on the particular system used in the course (Ciao).
Simple (Top-Down) Operational Meaning of Programs

- A logic program is operationally a set of *procedure definitions* (the predicates).
- A query $\leftarrow p$ is an initial *procedure call*.
- A procedure definition with one clause $p \leftarrow p_1, \ldots, p_m$. means:
 “to execute a call to p you have to call p_1 and \ldots and p_m”
 - In principle, the order in which p_1, \ldots, p_n are called does not matter, but, in practical systems it is fixed.
- If several clauses (definitions) $p \leftarrow p_1, \ldots, p_n$ means:
 $p \leftarrow q_1, \ldots, q_m$
 “to execute a call to p, call $p_1 \land \ldots \land p_n$, or, alternatively, $q_1 \land \ldots \land q_n$, or \ldots”
 - Unique to logic programming –it is like having several alternative procedure definitions.
 - Means that several possible paths may exist to a solution and they should be explored.
 - System usually stops when the first solution found, user can ask for more.
 - Again, in principle, the order in which these paths are explored does not matter (if certain conditions are met), but, for a given system, this is typically also fixed.

In the following we define a more precise operational semantics.
Unification: uses

- **Unification** is the mechanism used in *procedure calls* to:
 - Pass parameters.
 - “Return” values.

- It is also used to:
 - Access parts of structures.
 - Give values to variables.

- Unification is a procedure to solve equations on data structures.
 - As usual, it returns a minimal solution to the equation (or the equation system).
 - As many equation solving procedures it is based on isolating variables and then *instantiating* them with their values.
Unification

- **Unifying two terms (or literals)** A and B: is asking if they can be made syntactically identical by giving (minimal) values to their variables.

 - i.e., find a **variable substitution** θ such that $A\theta = B\theta$ (or, if impossible, fail).
 - Only variables can be given values!
 - Two structures can be made identical only by making their arguments identical.

E.g.:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>θ</th>
<th>$A\theta$</th>
<th>$B\theta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>dog</td>
<td>dog</td>
<td>\emptyset</td>
<td>dog</td>
<td>dog</td>
</tr>
<tr>
<td>X</td>
<td>a</td>
<td>${X = a}$</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>X</td>
<td>Y</td>
<td>${X = Y}$</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>$f(X, g(t))$</td>
<td>$f(m(h), g(M))$</td>
<td>${X=m(h), M=t}$</td>
<td>$f(m(h), g(t))$</td>
<td>$f(m(h), g(t))$</td>
</tr>
<tr>
<td>$f(X, g(t))$</td>
<td>$f(m(h), t(M))$</td>
<td>Impossible (1)</td>
<td>$f(m(h), g(t))$</td>
<td>$f(m(h), g(t))$</td>
</tr>
<tr>
<td>$f(X, X)$</td>
<td>$f(Y, l(Y))$</td>
<td>Impossible (2)</td>
<td>$f(m(h), g(t))$</td>
<td>$f(m(h), g(t))$</td>
</tr>
</tbody>
</table>

- (1) Structures with different name and/or arity cannot be unified.
- (2) A variable cannot be given as value a term which contains that variable, because it would create an infinite term. This is known as the **occurs check**. (See, however, *cyclic terms* later.)
Unification

- Often several solutions exist, e.g.:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>θ_1</th>
<th>$A\theta_1$ and $B\theta_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(X, g(T))$</td>
<td>$f(m(H), g(M))$</td>
<td>{ $X=m(a), H=a, M=b, T=b$ }</td>
<td>$f(m(a), g(b))$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>{ $X=m(H), M=f(A), T=f(A)$ }</td>
<td>$f(m(H), g(f(A)))$</td>
</tr>
</tbody>
</table>

These are correct, but a simpler (“more general”) solution exists:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>θ_1</th>
<th>$A\theta_1$ and $B\theta_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(X, g(T))$</td>
<td>$f(m(H), g(M))$</td>
<td>{ $X=m(H), T=M$ }</td>
<td>$f(m(H), g(M))$</td>
</tr>
</tbody>
</table>

- Always a unique (modulo variable renaming) *most general* solution exists (unless unification fails).

- This is the one that we are interested in.

- The *unification algorithm* finds this solution.
Unification Algorithm

- Let A and B be two terms:

1. $\theta = \emptyset$, $E = \{A = B\}$
2. while not $E = \emptyset$:
 2.1 delete an equation $T = S$ from E
 2.2 case T or S (or both) are (distinct) variables. Assuming T variable:
 * (occur check) if T occurs in the term $S \rightarrow$ halt with failure
 * substitute variable T by term S in all terms in θ
 * substitute variable T by term S in all terms in E
 * add $T = S$ to θ
 2.3 case T and S are non-variable terms:
 * if their names or arities are different \rightarrow halt with failure
 * obtain the arguments $\{T_1, \ldots, T_n\}$ of T and $\{S_1, \ldots, S_n\}$ of S
 * add $\{T_1 = S_1, \ldots, T_n = S_n\}$ to E
3. halt with θ being the m.g.u of A and B
Unification Algorithm Examples (I)

- Unify: $A = p(X, X)$ and $B = p(f(Z), f(W))$

<table>
<thead>
<tr>
<th>θ</th>
<th>E</th>
<th>T</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>{}</td>
<td>{ $p(X, X) = p(f(Z), f(W))$ }</td>
<td>$p(X, X)$</td>
<td>$p(f(Z), f(W))$</td>
</tr>
<tr>
<td>{}</td>
<td>{ $X = f(Z), X = f(W)$ }</td>
<td>X</td>
<td>$f(Z)$</td>
</tr>
<tr>
<td>{ $X = f(Z)$ }</td>
<td>{ $f(Z) = f(W)$ }</td>
<td>$f(Z)$</td>
<td>$f(W)$</td>
</tr>
<tr>
<td>{ $X = f(Z)$ }</td>
<td>{ $Z = W$ }</td>
<td>Z</td>
<td>W</td>
</tr>
<tr>
<td>{ $X = f(W), Z = W$ }</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
</tr>
</tbody>
</table>

- Unify: $A = p(X, f(Y))$ and $B = p(Z, X)$

<table>
<thead>
<tr>
<th>θ</th>
<th>E</th>
<th>T</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>{}</td>
<td>{ $p(X, f(Y)) = p(Z, X)$ }</td>
<td>$p(X, f(Y))$</td>
<td>$p(Z, X)$</td>
</tr>
<tr>
<td>{}</td>
<td>{ $X = Z, f(Y) = X$ }</td>
<td>X</td>
<td>Z</td>
</tr>
<tr>
<td>{ $X = Z$ }</td>
<td>{ $f(Y) = Z$ }</td>
<td>$f(Y)$</td>
<td>Z</td>
</tr>
<tr>
<td>{ $X = f(Y), Z = f(Y)$ }</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
</tr>
</tbody>
</table>
Unification Algorithm Examples (II)

- **Unify:** \(A = p(X, f(Y)) \) and \(B = p(a, g(b)) \)

\[
\begin{array}{c|c|c|c}
\theta & E & T & S \\
\hline
\emptyset & \{ p(X, f(Y)) = p(a, g(b)) \} & p(X, f(Y)) & p(a, g(b)) \\
\emptyset & \{ X = a, f(Y) = g(b) \} & X & a \\
\{ X = a \} & \{ f(Y) = g(b) \} & f(Y) & g(b) \\
\text{fail} & & & \\
\end{array}
\]

- **Unify:** \(A = p(X, f(X)) \) and \(B = p(Z, Z) \)

\[
\begin{array}{c|c|c|c}
\theta & E & T & S \\
\hline
\emptyset & \{ p(X, f(X)) = p(Z, Z) \} & p(X, f(X)) & p(Z, Z) \\
\emptyset & \{ X = Z, f(X) = Z \} & X & Z \\
\{ X = Z \} & \{ f(Z) = Z \} & f(Z) & Z \\
\text{fail} & & & \\
\end{array}
\]
A (Schematic) Interpreter for Logic Programs (SLD–resolution)

Input: A logic program \(P \), a query \(Q \)
Output: \(Q_\mu \) (answer substitution) if \(Q \) is provable from \(P \), failure otherwise

Algorithm:

1. Initialize the “resolvent” \(R \) to be \(\{Q\} \)
2. While \(R \) is nonempty do:
 2.1. Take the leftmost literal \(A \) in \(R \)
 2.2. Choose a (renamed) clause \(A' \leftarrow B_1, \ldots, B_n \) from \(P \), such that \(A \) and \(A' \) unify with unifier \(\theta \) (if no such clause can be found, branch is failure; explore another branch)
 2.3. Remove \(A \) from \(R \), add \(B_1, \ldots, B_n \) to \(R \)
 2.4. Apply \(\theta \) to \(R \) and \(Q \)
3. If \(R \) is empty, output \(Q \) (a solution). Explore another branch for more sol’s.

• Step 2.2 defines alternative paths to be explored to find answer(s); execution explores this tree (for example, breadth-first).
Since step 2.2 is left open, a given logic programming system must specify how it deals with this by providing one (or more)

- **Search rule(s):** “how are clauses/branches selected in 2.2.”

If the search rule is not specified execution is **nondeterministic**, since choosing a different clause (in step 2.2) can lead to different solutions (finding solutions in a different order).

Example (two valid executions):

```
?- pet(X).
X = spot ? ;
X = barry ? ;
no
?- pet(X).
X = barry ? ;
X = spot ? ;
no
?- ?- ?-
```

In fact, there is also some freedom in step 2.1, i.e., a system may also specify:

- **Computation rule(s):** “how are literals selected in 2.1.”
Running programs

C₁: \(\text{pet}(X) :- \text{animal}(X), \text{barks}(X). \)
C₂: \(\text{pet}(X) :- \text{animal}(X), \text{meows}(X). \)
C₃: \(\text{animal}(\text{spot}). \)
C₄: \(\text{animal}(\text{barry}). \)
C₅: \(\text{animal}(\text{hobbes}). \)
C₆: \(\text{barks}(\text{spot}). \)
C₇: \(\text{meows}(\text{barry}). \)
C₈: \(\text{roars}(\text{hobbes}). \)

\[\begin{array}{|c|c|c|c|}
\hline
Q & R & \text{Clause} & \theta \\
\hline
\text{pet}(P) & \text{pet}(P) & C₂^* & \{ P = X₁ \} \\
\text{pet}(X₁) & \text{animal}(X₁), \text{meows}(X₁) & C₄^* & \{ X₁ = \text{barry} \} \\
\text{pet}(\text{barry}) & \text{meows}(\text{barry}) & C₇ & \{} \\
\text{pet}(\text{barry}) & \text{—} & \text{—} & \text{—} \\
\hline
\end{array} \]

* means there is a choice-point, i.e., there are other clauses whose head unifies.

- System response: \(P = \text{barry} \) ?
- If we type “;” after the ? prompt (i.e., we ask for another solution) the system can go and execute a different branch (i.e., a different choice in \(C₂^* \) or \(C₄^* \)).
Running programs (different strategy)

C₁: \texttt{pet}(X) :- \texttt{animal}(X), \texttt{barks}(X).
C₂: \texttt{pet}(X) :- \texttt{animal}(X), \texttt{meows}(X).
C₃: \texttt{animal}(spot).
C₄: \texttt{animal}(barry).
C₅: \texttt{animal}(hobbes).
C₆: \texttt{barks}(spot).
C₇: \texttt{meows}(barry).
C₈: \texttt{roars}(hobbes).

\begin{itemize}
 \item \texttt{:= pet(P).} (different strategy)
\end{itemize}

<table>
<thead>
<tr>
<th>Q</th>
<th>R</th>
<th>Clause</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{pet}(P)</td>
<td>\texttt{pet}(P)</td>
<td>$C₁^*$</td>
<td>{ $P = X₁$ }</td>
</tr>
<tr>
<td>\texttt{pet}(Xₙ)</td>
<td>\texttt{animal}(Xₙ), \texttt{barks}(Xₙ)</td>
<td>$C₅^*$</td>
<td>{ $X₁ = \text{hobbes}$ }</td>
</tr>
<tr>
<td>\texttt{pet}(hobbes)</td>
<td>\texttt{barks}(hobbes)</td>
<td>??</td>
<td>failure</td>
</tr>
</tbody>
</table>

→ explore another branch (different choice in $C₁^*$ or $C₅^*$) to find a solution. We take $C₃$ instead of $C₅$:

<table>
<thead>
<tr>
<th>Q</th>
<th>R</th>
<th>Clause</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{pet}(P)</td>
<td>\texttt{pet}(P)</td>
<td>$C₁^*$</td>
<td>{ $P = X₁$ }</td>
</tr>
<tr>
<td>\texttt{pet}(Xₙ)</td>
<td>\texttt{animal}(Xₙ), \texttt{barks}(Xₙ)</td>
<td>$C₃^*$</td>
<td>{ $X₁ = \text{spot}$ }</td>
</tr>
<tr>
<td>\texttt{pet}(spot)</td>
<td>\texttt{barks}(spot)</td>
<td>$C₆$</td>
<td>{}</td>
</tr>
<tr>
<td>\texttt{pet}(spot)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

20
The Search Tree

- A query + a logic program together specify a search tree.

 Example: query \(\text{pet}(X) \) with the previous program generates this search tree (the boxes represent the “and” parts [except leaves]):

- Different query \(\rightarrow \) different tree.

- The search and computation rules explain how the search tree will be explored during execution.

- How can we achieve completeness (guarantee that all solutions will be found)?
Characterization of The Search Tree

- All solutions are at *finite depth* in the tree.
- Failures can be at finite depth or, in some cases, be an infinite branch.
Depth-First Search

- Incomplete: may fall through an infinite branch before finding all solutions.
- But very efficient: it can be implemented with a call stack, very similar to a traditional programming language.
Breadth-First Search

- Will find all solutions before falling through an infinite branch.
- But costly in terms of time and memory.
- Used in all the following examples (via Ciao’s bf package).
Selecting breadth-first or depth-first search

- In the Ciao system we can select the search rule using the packages mechanism.

- Files should start with the following line:
 - To execute in breadth-first mode:
    ```prolog
    :- module(_,_,[’bf/bfall’]).
    ```
 - To execute in depth-first mode:
    ```prolog
    :- module(_,_,[]).
    ```

See the part on Developing Programs with a Logic Programming System for more details on the particular system used in the course (Ciao).
Role of Unification in Execution

- As mentioned before, unification used to access data and give values to variables. **Example:** Consider query `:- animal(A), named(A,Name).` with:

 `animal(dog(barry)). named(dog(Name),Name).`

- Also, unification is used to pass parameters in procedure calls and to return values upon procedure exit.

<table>
<thead>
<tr>
<th>Q</th>
<th>R</th>
<th>Clause</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>pet(P)</td>
<td>pet(P)</td>
<td>C₁*</td>
<td>{ P=X₁ }</td>
</tr>
<tr>
<td>pet(X₁)</td>
<td>animal(X₁), barks(X₁)</td>
<td>C₃*</td>
<td>{ X₁=spot }</td>
</tr>
<tr>
<td>pet(spot)</td>
<td>barks(spot)</td>
<td>C₆</td>
<td>{}</td>
</tr>
<tr>
<td>pet(spot)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
“Modes”

- In fact, argument positions are not fixed a priori to be input or output.

Example: Consider query `:- pet(spot).` vs. `:- pet(X).` or `:- plus(s(0), s(s(0)), Z).` vs. `:- plus(s(0), Y, s(s(s(0)))).` % Adds

- Thus, procedures can be used in different **modes** s.t. different sets of arguments are input or output in each mode.

- We sometimes use `+` and `-` to refer to, respectively, and argument being an input or an output, e.g.:

 \[
 plus(+X, +Y, -Z)
 \]

 means we call `plus` with

 - `X` instantiated,
 - `Y` instantiated, and
 - `Z` free.
Database Programming

- A Logic Database is a set of facts and rules (i.e., a logic program):

\[
\text{father_of}(\text{john}, \text{peter}). \\
\text{father_of}(\text{john}, \text{mary}). \\
\text{father_of}(\text{peter}, \text{michael}). \\
\text{mother_of}(\text{mary}, \text{david}). \\
\text{grandfather_of}(L, M) :\neg \text{father_of}(L, N), \text{father_of}(N, M). \\
\text{grandfather_of}(X, Y) :\neg \text{father_of}(X, Z), \text{mother_of}(Z, Y).
\]

- Given such database, a logic programming system can answer questions (queries) such as:

\[
?- \text{father_of}(\text{john}, \text{peter}). \quad \text{yes} \\
?- \text{father_of}(\text{john}, \text{david}). \quad \text{no} \\
?- \text{father_of}(\text{john}, X). \quad X = \text{peter} ; \\
X = \text{mary} \\
?- \text{grandfather_of}(X, \text{michael}). \quad X = \text{john} \\
?- \text{grandfather_of}(X, Y). \quad X = \text{john}, Y = \text{michael} ; \\
X = \text{john}, Y = \text{david} \\
?- \text{grandfather_of}(X, X). \quad \text{no}
\]

- Rules for grandmother_of(X,Y)?
Another example:

resistor(power, n1).
resistor(power, n2).
transistor(n2, ground, n1).
transistor(n3, n4, n2).
transistor(n5, ground, n4).

\[
inverter(Input, Output) :-
transistor(Input, ground, Output),
resistor(power, Output).\]

\[
nand_gate(Input1, Input2, Output) :-
transistor(Input1, X, Output),
transistor(Input2, ground, X),
resistor(power, Output).\]

\[
and_gate(Input1, Input2, Output) :-
nand_gate(Input1, Input2, X),
inverter(X, Output).\]

Query \(\text{and} _ \text{gate} \(\text{In1}, \text{In2}, \text{Out} \) \) has solution: \(\text{In1}=\text{n3}, \text{In2}=\text{n5}, \text{Out}=\text{n1} \)
Structured Data and Data Abstraction (and the ’=’ Predicate)

- *Data structures* are created using (complex) terms.

- Structuring data is important:


  ```
  course(complog,wed,19,00,20,30,'M.','Hermenegildo',new,5102).
  ```

- When is the Computational Logic course?

  ```
  ```

- Structured version:

  ```
  course(complog,Time,Lecturer,Location) :-
  Time = t(wed,18:30,20:30),
  Lecturer = lect('M.','Hermenegildo'),
  Location = loc(new,5102).
  ```

Note: “X=Y” is equivalent to “’=’(X,Y)” where the predicate =/2 is defined as the fact “’=’(X,X).” – Plain unification!

- Equivalent to:

  ```
  course(complog, t(wed,18:30,20:30),
  lect('M.','Hermenegildo'), loc(new,5102)).
  ```
Structured Data and Data Abstraction (and The Anonymous Variable)

- Given:

 \[
 \text{course(complog,Time,Lecturer, Location)} \ :- \\
 \text{Time} = t(\text{wed},18:30,20:30), \\
 \text{Lecturer} = \text{lect('M.','Hermenegildo')}, \\
 \text{Location} = \text{loc(new,5102)}. \\
 \]

- When is the Computational Logic course?

 \[- \text{course(complog, Time, A, B).} \]
 has solution:

 \[
 \text{Time}=t(\text{wed},18:30,20:30), \ A=\text{lect('M.','Hermenegildo')}, \ B=\text{loc(new,5102)}
 \]

- Using the \textit{anonymous variable} (“_”):

 \[- \text{course(complog,Time, _, _)}. \]
 has solution:

 \[
 \text{Time}=t(\text{wed},18:30,20:30)
 \]
Terms as Data Structures with Pointers

• **main** below is a procedure, that:

 ◇ creates some data structures, with *pointers* and *aliasing*.
 ◇ *calls* other procedures, *passing* to them *pointers* to these structures.

```
main :-
    X = f(K, g(K)),
    Y = a,
    Z = g(L),
    W = h(b, L),
    % Heap memory at this point →
    p(X, Y),
    q(Y, Z),
    r(W).
```

• Terms are data structures with pointers.

• Logical variables are *declarative* pointers.
 ◇ Declarative: they can only be assigned once.
• The circuit example revisited:

resistor(r1,power,n1).
transistor(t1,n2,ground,n1).
resistor(r2,power,n2).
transistor(t2,n3,n4,n2).
transistor(t3,n5,ground,n4).
inverter(inv(T,R),Input,Output) :-
 transistor(T,Input,ground,Output),
 resistor(R,power,Output).

nand_gate(nand(T1,T2,R),Input1,Input2,Output) :-
 transistor(T1,Input1,X,Output),
 transistor(T2,Input2,ground,X),
 resistor(R,power,Output).

and_gate(and(N,I),Input1,Input2,Output) :-
 nand_gate(N,Input1,Input2,X),
 inverter(I,X,Output).

• The query :- and_gate(G,In1,In2,Out).
has solution: G=and(nand(t2,t3,r2),inv(t1,r1)),In1=n3,In2=n5,Out=n1
Logic Programs and the Relational DB Model

<table>
<thead>
<tr>
<th>Relational Database</th>
<th>Logic Programming</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relation Name</td>
<td>Predicate symbol</td>
</tr>
<tr>
<td>Relation</td>
<td>Procedure consisting of ground facts (facts without variables)</td>
</tr>
<tr>
<td>Tuple</td>
<td>Ground fact</td>
</tr>
<tr>
<td>Attribute</td>
<td>Argument of predicate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>Sex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>20</td>
<td>M</td>
</tr>
<tr>
<td>Jones</td>
<td>21</td>
<td>F</td>
</tr>
<tr>
<td>Smith</td>
<td>36</td>
<td>M</td>
</tr>
</tbody>
</table>

“Person”

<table>
<thead>
<tr>
<th>Name</th>
<th>Town</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>London</td>
<td>15</td>
</tr>
<tr>
<td>Brown</td>
<td>York</td>
<td>5</td>
</tr>
<tr>
<td>Jones</td>
<td>Paris</td>
<td>21</td>
</tr>
<tr>
<td>Smith</td>
<td>Brussels</td>
<td>15</td>
</tr>
<tr>
<td>Smith</td>
<td>Santander</td>
<td>5</td>
</tr>
</tbody>
</table>

“Lived in”

<table>
<thead>
<tr>
<th>Name</th>
<th>Town</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>brown</td>
<td>London</td>
<td>15</td>
</tr>
<tr>
<td>brown</td>
<td>York</td>
<td>5</td>
</tr>
<tr>
<td>jones</td>
<td>Paris</td>
<td>21</td>
</tr>
<tr>
<td>smith</td>
<td>Brussels</td>
<td>15</td>
</tr>
<tr>
<td>smith</td>
<td>Santander</td>
<td>5</td>
</tr>
</tbody>
</table>

person(brown, 20, male).
person(jones, 21, female).
person(smith, 36, male).
lived_in(brown, london, 15).
lived_in(brown, york, 5).
lived_in(jones, paris, 21).
lived_in(smith, brussels, 15).
lived_in(smith, santander, 5).
The operations of the relational model are easily implemented as rules.

- **Union:** \(r \cup s(X_1, \ldots, X_n) \leftarrow r(X_1, \ldots, X_n). \)
 \(r \cup s(X_1, \ldots, X_n) \leftarrow s(X_1, \ldots, X_n). \)

- **Set Difference:** \(r \setminus s(X_1, \ldots, X_n) \leftarrow r(X_1, \ldots, X_n), \neg s(X_1, \ldots, X_n). \)
 \(r \setminus s(X_1, \ldots, X_n) \leftarrow s(X_1, \ldots, X_n), \neg r(X_1, \ldots, X_n). \)
 (we postpone the discussion on negation until later.)

- **Cartesian Product:**
 \(r \times s(X_1, \ldots, X_m, X_{m+1}, \ldots, X_{m+n}) \leftarrow r(X_1, \ldots, X_m), s(X_{m+1}, \ldots, X_{m+n}). \)

- **Projection:** \(r_13(X_1, X_3) \leftarrow r(X_1, X_2, X_3). \)

- **Selection:** \(r_{selected}(X_1, X_2, X_3) \leftarrow r(X_1, X_2, X_3), \leq (X_2, X_3). \)
 (see later for definition of \(\leq /2 \))

- Derived operations – some can be expressed more directly in LP:
 - **Intersection:** \(r \cap s(X_1, \ldots, X_n) \leftarrow r(X_1, \ldots, X_n), s(X_1, \ldots, X_n). \)

 - **Join:** \(r_{joinX2}(X_1, \ldots, X_n) \leftarrow r(X_1, X_2, X_3, \ldots, X_n), s(X'_1, X_2, X'_3, \ldots, X'_n). \)

- Duplicates an issue: see “setof” later in Prolog.
The subject of “deductive databases” uses these ideas to develop logic-based databases.

- Often syntactic restrictions (a subset of definite programs) used (e.g. “Datalog” – no functors, no existential variables).
- Variations of a “bottom-up” execution strategy used: Use the T_p operator (explained in the theory part) to compute the model, restrict to the query.
- Powerful notions of negation supported: S-models
 \rightarrow **Answer Set Programming.** ASP)
Recursive Programming

- **Example: ancestors.**


  ```prolog
  parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).

  ancestor(X,Y) :- parent(X,Y).
  ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).
  ancestor(X,Y) :- parent(X,Z), parent(Z,W), ancestor(Z,Y).
  ...
  ```

- **Defining ancestor recursively:**


  ```prolog
  parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).

  ancestor(X,Y) :- parent(X,Y).
  ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).
  ```

- **Exercise:** define “related”, “cousin”, “same generation”, etc.
Types

- **Type**: a (possibly infinite) set of terms.
- **Type definition**: A program defining a type.
- **Example**: Weekday:
 - Set of terms to represent: Monday, Tuesday, Wednesday, ...
 - Type definition:
 weekday('Monday').
 weekday('Tuesday'). ...

- **Example**: Date (weekday * day in the month):
 - Set of terms to represent: date('Monday', 23), date(Tuesday, 24), ...
 - Type definition:
 date(date(W,D)) :- weekday(W), day_of_month(D).
 day_of_month(1).
 day_of_month(2).
 ...
 day_of_month(31).
Recursive Programming: Recursive Types

- **Recursive types**: defined by recursive logic programs.
- **Example**: natural numbers (simplest recursive data type):
 - Set of terms to represent: \(0, s(0), s(s(0)), \ldots\)
 - Type definition:
 \[
 \begin{align*}
 \text{nat}(0) & : \ldots \\
 \text{nat}(s(X)) & : - \text{nat}(X).
 \end{align*}
 \]
 - A *minimal recursive predicate*: one unit clause and one recursive clause (with a single body literal).
- Types are *runnable* and can be used to check or produce values:
 - \(\text{?- nat}(X) \Rightarrow X=0; X=s(0); X=s(s(0)); \ldots\)
- We can reason about *complexity*, for a given *class of queries* ("mode").
 E.g., for mode \(\text{nat}(\text{ground})\) complexity is *linear* in size of number.
- **Example**: integers:
 - Set of terms to represent: \(0, s(0), -s(0), \ldots\)
 - Type definition:
 \[
 \begin{align*}
 \text{integer}(X) & : - \text{nat}(X) \\
 \text{integer}(-X) & : - \text{nat}(X).
 \end{align*}
 \]
Recursive Programming: Arithmetic

• Defining the natural order (\leq) of natural numbers:

\[
\text{less_or_equal}(0, X) :\text{-} \text{nat}(X).
\]
\[
\text{less_or_equal}(\text{s}(X), \text{s}(Y)) :\text{-} \text{less_or_equal}(X, Y).
\]

- Multiple uses (modes):
 \[
 \text{less_or_equal}(\text{s}(0), \text{s}(\text{s}(0)))\text{, less_or_equal}(X, 0), \ldots
 \]
- Multiple solutions:
 \[
 \text{less_or_equal}(X, \text{s}(0))\text{, less_or_equal}(\text{s}(\text{s}(0)), Y)\text{, etc.}
 \]

• Addition:

\[
\text{plus}(0, X, X) :\text{-} \text{nat}(X).
\]
\[
\text{plus}(\text{s}(X), Y, \text{s}(Z)) :\text{-} \text{plus}(X, Y, Z).
\]

- Multiple uses (modes):
 \[
 \text{plus}(\text{s}(\text{s}(0)), \text{s}(0), Z)\text{, plus}(\text{s}(\text{s}(0)), Y, \text{s}(\text{s}(0)))
 \]
- Multiple solutions:
 \[
 \text{plus}(X, Y, \text{s}(\text{s}(\text{s}(0))))\text{, etc.}
 \]
Recursive Programming: Arithmetic

- Another possible definition of addition:

 \[
 \begin{align*}
 \text{plus}(X, 0, X) & :\text{- nat}(X). \\
 \text{plus}(X, \text{s}(Y), \text{s}(Z)) & :\text{- plus}(X, Y, Z).
 \end{align*}
 \]

- The meaning of \text{plus} is the same if both definitions are combined.

- Not recommended: several proof trees for the same query \rightarrow not efficient, not concise. We look for minimal axiomatizations.

- The art of logic programming: finding compact and computationally efficient formulations!

- Try to define: \text{times}(X, Y, Z) (Z = X \times Y), \text{exp}(N, X, Y) (Y = X^N), \text{factorial}(N, F) (F = N!), \text{minimum}(N1, N2, Min), \ldots
Recursive Programming: Arithmetic

- Definition of \(\text{mod}(X, Y, Z) \)
 “\(Z \) is the remainder from dividing \(X \) by \(Y \)”

\[
\exists Q s.t. X = Y \times Q + Z \land Z < Y
\]

\[
\Rightarrow\quad \text{mod}(X, Y, Z) :\text{-} less(Z, Y), \times(Y, Q, W), \plus(W, Z, X).
\]

\[
\text{less}(0, s(X)) :\text{-} \text{nat}(X).
\]
\[
\text{less}(s(X), s(Y)) :\text{-} \text{less}(X, Y).
\]

- Another possible definition:

\[
\text{mod}(X, Y, X) :\text{-} \text{less}(X, Y).
\]
\[
\text{mod}(X, Y, Z) :\text{-} \plus(X1, Y, X), \text{mod}(X1, Y, Z).
\]

- The second is much more efficient than the first one (compare the size of the proof trees).
Recursive Programming: Arithmetic/Functions

- The Ackermann function:

 \[
 \text{ackermann}(0,N) = N+1 \\
 \text{ackermann}(M,0) = \text{ackermann}(M-1,1) \\
 \text{ackermann}(M,N) = \text{ackermann}(M-1,\text{ackermann}(M,N-1))
 \]

- In Peano arithmetic:

 \[
 \text{ackermann}(0,N) = s(N) \\
 \text{ackermann}(s(M1),0) = \text{ackermann}(M1,s(0)) \\
 \text{ackermann}(s(M1),s(N1)) = \text{ackermann}(M1,\text{ackermann}(s(M1),N1))
 \]

- Can be defined as:

 \[
 \text{ackermann}(0,N,s(N)). \\
 \text{ackermann}(s(M1),0,Val) :- \text{ackermann}(M1,s(0),Val). \\
 \text{ackermann}(s(M1),s(N1),Val) :- \text{ackermann}(s(M1),N1,Val1), \text{ackermann}(M1,Val1,Val).
 \]

- In general, \textit{functions} can be coded as a predicate with one more argument, which represents the output (and additional syntactic sugar often available).
Recursive Programming: Arithmetic/Functions (Functional Syntax)

- Syntactic support available (see, e.g., the Ciao \textit{fsyntax} and \textit{functional} packages).
- The Ackermann function (Peano) in Ciao’s functional Syntax and defining \texttt{s} as a prefix operator:

\begin{verbatim}
:- use_package(functional).
:- op(500,fy,s).

ackermann(0, N) := s N.
ackermann(s M, 0) := ackermann(M, s 0).
ackermann(s M, s N) := ackermann(M, ackermann(s M, N)).
\end{verbatim}

- Convenient in other cases – e.g. for defining types:

\begin{verbatim}
nat(0).
nat(s(X)) :- nat(X).
\end{verbatim}

Using special := notation for the “return” (last) the argument:

\begin{verbatim}
nat := 0.
nat := s(X) :- nat(X).
\end{verbatim}
Moving body call to head using the ~ notation ("evaluate and replace with result"):

```
nat := 0.
nat := s(~nat).
```

"~" not needed with functional package if inside its own definition:

```
nat := 0.
nat := s(nat).
```

Using an :- op(500, fy, s) declaration to define s as a prefix operator:

```
nat := 0.
nat := s nat.
```

Using "|" (disjunction):

```
nat := 0 | s nat.
```

Which exactly equivalent to:

```
nat(0).
nat(s(X) :- nat(X).
```
Recursive Programming: Lists

- Binary structure: first argument is *element*, second argument is *rest* of the list.
- We need:
 - A constant symbol: we use the *constant* `[]` (→ denotes the empty list).
 - A functor of arity 2: traditionally the dot “.” (which is overloaded).
- Syntactic sugar: the term `. (X, Y)` is denoted by `[X|Y]` (X is the *head*, Y is the *tail*).

<table>
<thead>
<tr>
<th>Formal object</th>
<th>“Cons pair” syntax</th>
<th>“Element” syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>. (a, [])</code></td>
<td>`[a</td>
<td>[]]`</td>
</tr>
<tr>
<td><code>(a, . (b, []))</code></td>
<td>`[a</td>
<td>[b</td>
</tr>
<tr>
<td><code>(a, . (b, (c, [])))</code></td>
<td>`[a</td>
<td>[b</td>
</tr>
<tr>
<td><code>(a, X)</code></td>
<td>`[a</td>
<td>X]`</td>
</tr>
<tr>
<td><code>(a, . (b, X))</code></td>
<td>`[a</td>
<td>[b</td>
</tr>
</tbody>
</table>

- Note that:
 - `[a, b]` and `[a | X]` unify with `{X = [b]}`
 - `[a]` and `[a | X]` unify with `{X = []}
 - `[a]` and `[a, b | X]` do not unify
 - `[]` and `[X]` do not unify
Recursive Programming: Lists (Contd.)

- Type definition (no syntactic sugar):
 \[\text{list}([]).\]
 \[\text{list}(.(X,Y)) :- \text{list}(Y).\]

- Type definition, with some syntactic sugar ([] notation):
 \[\text{list}([]).\]
 \[\text{list}([X|Y]) :- \text{list}(Y).\]

- Type definition, using also functional package:
 \[
 \text{list} := [] \mid [_|\text{list}].
 \]

- “Exploring” the type:
 \[?- \text{list}(L).\]
 \[L = [] ? ;\]
 \[L = [_] ? ;\]
 \[L = [_,_] ? ;\]
 \[L = [_,_,_] ? ;\]
 \[\ldots\]
Recursive Programming: Lists (Contd.)

- **X is a *member* of the list Y:**

 \[
 \begin{align*}
 &\text{member}(a, [a]). \quad \text{member}(b, [b]). \quad \text{etc.} \Rightarrow \text{member}(X, [X]). \\
 &\text{member}(a, [a, c]). \quad \text{member}(b, [b, d]). \quad \text{etc.} \Rightarrow \text{member}(X, [X,Y]). \\
 &\text{member}(a, [a, c, d]). \quad \text{member}(b, [b, d, l]). \quad \text{etc.} \Rightarrow \text{member}(X, [X,Y,Z]). \\
 \end{align*}
 \]

 \[\Rightarrow \text{member}(X, [X|Y]) :- \text{list}(Y).\]

 \[
 \begin{align*}
 &\text{member}(a, [c, a]), \quad \text{member}(b, [d, b]). \quad \text{etc.} \Rightarrow \text{member}(X, [Y,X]). \\
 &\text{member}(a, [c, d, a]). \quad \text{member}(b, [s, t, b]). \quad \text{etc.} \Rightarrow \text{member}(X, [Y,Z,X]). \\
 \end{align*}
 \]

 \[\Rightarrow \text{member}(X, [Y|Z]) :- \text{member}(X,Z).\]

- **Resulting definition:**

 \[
 \begin{align*}
 &\text{member}(X, [X|Y]) :- \text{list}(Y). \\
 &\text{member}(X, [_|T]) :- \text{member}(X,T). \\
 \end{align*}
 \]

- **Uses of member(X,Y):**

 - checking whether an element is in a list (member(b, [a, b, c]))
 - finding an element in a list (member(X, [a, b, c]))
 - finding a list containing an element (member(a, Y))
Recursive Programming: Lists (Contd.)

- Combining lists and naturals:

 ◇ Computing the length of a list:

  ```prolog
  len([],0).
  len([H|T],s(LT)) :- len(T,LT)
  ```

 ◇ Adding all elements of a list:

  ```prolog
  sumlist([],0).
  sumlist([H|T],S) :- sumlist(T,ST), plus(ST,H,S).
  ```

 ◇ The type of lists of natural numbers:

  ```prolog
  natlist([],0).
  natlist([H|T]) :- natlist(T,ST), nat(ST,H,S).
  ```

or:

  ```prolog
  natlist := [nat|natlist].
  ```
Exercises:

- Define: \texttt{prefix}(X, Y) (the list \texttt{X} is a prefix of the list \texttt{Y}), e.g.
 \texttt{prefix([a, b], [a, b, c, d])}
- Define: \texttt{suffix}(X, Y), \texttt{sublist}(X, Y),...
Recursive Programming: Lists (Contd.)

- Concatenation of lists:
 - Base case:
 \[
 \text{append([], [a], [a]). append([], [a, b], [a, b]). etc.} \\
 \Rightarrow \text{append([], Ys, Ys) :- list(Ys).}
 \]

 - Rest of cases (first step):
 \[
 \text{append([a], [b], [a, b]).} \\
 \text{append([a], [b, c], [a, b, c]). etc.} \\
 \Rightarrow \text{append([X], Ys, [X|Ys]) :- list(Ys).}
 \]
 \[
 \text{append([a, b], [c], [a, b, c]).} \\
 \text{append([a, b], [c, d], [a, b, c, d]). etc.} \\
 \Rightarrow \text{append([X, Z], Ys, [X, Z|Ys]) :- list(Ys).}
 \]

This is still infinite \(\Rightarrow\) we need to generalize more.
Recursive Programming: Lists (Contd.)

- Second generalization:
 \[
 \text{append}([X], Ys, [X|Ys]) :- \text{list}(Ys).
 \]
 \[
 \text{append}([X,Z], Ys, [X,Z|Ys]) :- \text{list}(Ys).
 \]
 \[
 \text{append}([X,Z,W], Ys, [X,Z,W|Ys]) :- \text{list}(Ys).
 \]
 \[
\Rightarrow \text{append}([X|Xs], Ys, [X|Zs]) :- \text{append}(Xs, Ys, Zs).
 \]

So, we have:

\[
\text{append}([], Ys, Ys) :- \text{list}(Ys).
\]
\[
\text{append}([X|Xs], Ys, [X|Zs]) :- \text{append}(Xs, Ys, Zs).
\]

- Another way of reasoning: thinking inductively.
 - The base case is:
 \[
 \text{append}([], Ys, Ys) :- \text{list}(Ys).
 \]
 - If we assume that \boxed{\text{append}(Zs, Ys, Zs)} works for some iteration, then, in the next one, the following holds: \boxed{\text{append}(s(Zs), Ys, s(Zs))}.\]
Recursive Programming: Lists (Contd.)

- Uses of append:
 - Concatenate two given lists:
 \[- \text{append}([a, b, c], [d, e], L).\]
 \[L = [a, b, c, d, e] \text{ ?}\]
 - Find differences between lists:
 \[- \text{append}(D, [d, e], [a, b, c, d, e]).\]
 \[D = [a, b, c] \text{ ?}\]
 - Split a list:
 \[- \text{append}(A, B, [a, b, c, d, e]).\]
 \[A = [],\]
 \[B = [a, b, c, d, e] \text{ ? ;}\]
 \[A = [a],\]
 \[B = [b, c, d, e] \text{ ? ;}\]
 \[A = [a, b],\]
 \[B = [c, d, e] \text{ ? ;}\]
 \[A = [a, b, c],\]
 \[B = [d, e] \text{ ? ;}\]
 \[\ldots\]
Recursive Programming: Lists (Contd.)

- Reverse(Xs, Ys): Ys is the list obtained by reversing the elements in the list Xs.
 It is clear that we will need to traverse the list Xs.
 For each element X of Xs, we must put X at the end of the rest of the Xs list already reversed:

\[
\text{reverse([X|Xs], Ys) :- reverse(Xs, Zs), append(Zs, [X], Ys).}
\]

How can we stop?

\[
\text{reverse([], []).}
\]

- As defined, reverse(Xs, Ys) is very inefficient. Another possible definition:
 (uses an accumulating parameter)

\[
\text{reverse(Xs, Ys) :- reverse(Xs, [], Ys).}
\]

\[
\text{reverse([], Ys, Ys).}
\]

\[
\text{reverse([X|Xs], Acc, Ys) :- reverse(Xs, [X|Acc], Ys).}
\]

⇒ Find the differences in terms of efficiency between the two definitions.
Recursive Programming: Binary Trees

- Represented by a ternary functor \(\text{tree}(\text{Element}, \text{Left}, \text{Right}) \).
- Empty tree represented by \text{void}.
- Definition:

 \[
 \begin{align*}
 \text{binary_tree(\text{void})}. \\
 \text{binary_tree(\text{tree}(\text{Element}, \text{Left}, \text{Right}))} & :\neg \\
 & \quad \text{binary_tree(Left)}, \\
 & \quad \text{binary_tree(Right)}. \\
 \end{align*}
 \]

- Defining \text{tree_member(\text{Element}, \text{Tree})}:

 \[
 \begin{align*}
 \text{tree_member(X,tree(X,\text{Left},\text{Right}))} & :\neg \\
 & \quad \text{binary_tree(Left)}, \\
 & \quad \text{binary_tree(Right)}. \\
 \text{tree_member(X,tree(Y,\text{Left},\text{Right}))} & :\neg \quad \text{tree_member(X,Left)}. \\
 \text{tree_member(X,tree(Y,\text{Left},\text{Right}))} & :\neg \quad \text{tree_member(X,Right)}. \\
 \end{align*}
 \]
Recursive Programming: Binary Trees

- Defining pre_order(Tree,Elements):
 Elements is a list containing the elements of Tree traversed in preorder.

  ```
  pre_order(void,[]).
  pre_order(tree(X,Left,Right),Elements) :-
      pre_order(Left,ElementsLeft),
      pre_order(Right,ElementsRight),
      append([X|ElementsLeft],ElementsRight,Elements).
  ```

- Exercise – define:
 - in_order(Tree,Elements)
 - post_order(Tree,Elements)
Polymorphism

- Note that the two definitions of `member/2` can be used *simultaneously*:

```prolog
lt_member(X,[X|Y]) :- list(Y).
lt_member(X,[_|T]) :- lt_member(X,T).

lt_member(X,tree(X,L,R)) :- binary_tree(L), binary_tree(R).
lt_member(X,tree(Y,L,R)) :- lt_member(X,L).
lt_member(X,tree(Y,L,R)) :- lt_member(X,R).
```

Lists only unify with the first two clauses, trees with clauses 3–5!

- `:- lt_member(X,[b,a,c]).`
 \[X = b ; X = a ; X = c \]

- `:- lt_member(X,tree(b,tree(a,void,void),tree(c,void,void))).`
 \[X = b ; X = a ; X = c \]

- Also, try (somewhat surprising): `:- lt_member(M,T).`
Recursive Programming: Manipulating Symbolic Expressions

• Recognizing (and generating!) polynomials in some term X:
 ◦ X is a polynomial in X
 ◦ a constant is a polynomial in X
 ◦ sums, differences and products of polynomials in X are polynomials
 ◦ also polynomials raised to the power of a natural number and the quotient of a polynomial by a constant

```prolog
polynomial(X,X).
polynomial(Term,X) :- pconstant(Term).
polynomial(Term1+Term2,X) :- polynomial(Term1,X), polynomial(Term2,X).
polynomial(Term1-Term2,X) :- polynomial(Term1,X), polynomial(Term2,X).
polynomial(Term1*Term2,X) :- polynomial(Term1,X), polynomial(Term2,X).
polynomial(Term1/Term2,X) :- polynomial(Term1,X), pconstant(Term2).
polynomial(Term1ˆN,X) :- polynomial(Term1,X), nat(N).
```
Symbolic differentiation: deriv(Expression, X, DifferentiatedExpression)

```
deriv(X, X, s(0)).
deriv(C, X, 0) :- pconstant(C).
deriv(U+V, X, DU+DV) :- deriv(U, X, DU), deriv(V, X, DV).
deriv(U-V, X, DU-DV) :- deriv(U, X, DU), deriv(V, X, DV).
deriv(U*V, X, DU*V+U*DV) :- deriv(U, X, DU), deriv(V, X, DV).
deriv(U/V, X, (DU*V-U*DV)/V^s(s(0))) :- deriv(U, X, DU), deriv(V, X, DV).
deriv(U^s(N), X, s(N)*U^N*DU) :- deriv(U, X, DU), nat(N).
deriv(log(U), X, DU/U) :- deriv(U, X, DU).
...```

?- deriv(s(s(s(0))))*x+s(s(0)), x, Y).

A simplification step can be added.
Recognizing the sequence of characters accepted by the following non-deterministic, finite automaton (NDFA):

\[
\begin{array}{c}
q_0 \\
\text{a} \\
\text{b} \\
q_1 \\
\end{array}
\]

where \(q_0\) is both the initial and the final state.

Strings are represented as lists of constants (e.g., \([a,b,b]\)).

Program:

\[
\begin{align*}
\text{initial}(q_0) &. & \text{delta}(q_0,a,q_1). \\
& & \text{delta}(q_1,b,q_0). \\
\text{final}(q_0) &. & \text{delta}(q_1,b,q_1). \\
\text{accept}(S) & :& \text{initial}(Q), \text{accept_from}(S,Q). \\
\text{accept_from}([],Q) & :- & \text{final}(Q). \\
\text{accept_from}([X|Xs],Q) & :- & \text{delta}(Q,X,\text{NewQ}), \text{accept_from}(Xs,\text{NewQ}).
\end{align*}
\]
A nondeterministic, stack, finite automaton (NDSFA):

\[
\text{accept}(S) :- \text{initial}(Q), \text{accept}_\text{from}(S,Q,[]) .
\]

\[
\text{accept}_\text{from}([],Q,[]) :- \text{final}(Q).
\]

\[
\text{accept}_\text{from}([X|Xs],Q,S) :- \delta(Q,X,S,\text{NewQ},\text{NewS}), \\
\quad \text{accept}_\text{from}(Xs,\text{NewQ},\text{NewS}).
\]

\[
\text{initial}(q0).
\]

\[
\text{final}(q1).
\]

\[
\delta(q0,X,Xs,q0,[X|Xs]).
\]

\[
\delta(q0,X,Xs,q1,[X|Xs]).
\]

\[
\delta(q0,X,Xs,q1,Xs).
\]

\[
\delta(q1,X,[X|Xs],q1,Xs).
\]

What sequence does it recognize?
Recursive Programming: Towers of Hanoi

**Objective:**

- Move tower of N disks from peg a to peg b, with the help of peg c.

**Rules:**

- Only one disk can be moved at a time.
- A larger disk can never be placed on top of a smaller disk.

---

<table>
<thead>
<tr>
<th>N = 1</th>
<th>N = 2</th>
<th>N = 3</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="Diagram for N = 1" /></td>
<td><img src="image2.png" alt="Diagram for N = 2" /></td>
<td><img src="image3.png" alt="Diagram for N = 3" /></td>
</tr>
</tbody>
</table>
Recursive Programming: Towers of Hanoi (Contd.)

- We will call the main predicate `hanoi_moves(N, Moves)`
- \( N \) is the number of disks and \( \text{Moves} \) the corresponding list of “moves”.
- Each move `\text{move}(A, B)` represents that the top disk in \( A \) should be moved to \( B \).
- **Example:**

```
hanoi_moves(s(s(s(0))),
 [move(a,b), move(a,c), move(b,c), move(a,b),
 move(c,a), move(c,b), move(a,b)]
```

is represented by:

![Diagram of Towers of Hanoi](image-url)
A general rule:

We capture this in a predicate $\text{hanoi}(N, \text{Orig}, \text{Dest}, \text{Help}, \text{Moves})$ where "Moves contains the moves needed to move a tower of $N$ disks from peg $\text{Orig}$ to peg $\text{Dest}$, with the help of peg $\text{Help}$.

$$\text{hanoi}(s(0), \text{Orig}, \text{Dest}, _\text{Help}, [\text{move}(\text{Orig}, \text{Dest})]).$$

$$\text{hanoi}(s(N), \text{Orig}, \text{Dest}, \text{Help}, \text{Moves}) :-$$

$$\text{hanoi}(N, \text{Orig}, \text{Help}, \text{Dest}, \text{Moves1}),$$

$$\text{hanoi}(N, \text{Help}, \text{Dest}, \text{Orig}, \text{Moves2}),$$

$$\text{append}(\text{Moves1}, [\text{move}(\text{Orig}, \text{Dest})|\text{Moves2}], \text{Moves}).$$

And we simply call this predicate:

$$\text{hanoi\_moves}(N, \text{Moves}) :-$$

$$\text{hanoi}(N, a, b, c, \text{Moves}).$$
Learning to Compose Recursive Programs

- To some extent it is a simple question of practice.
- By generalization (as in the previous examples): elegant, but sometimes difficult? (Not the way most people do it.)
- Think inductively: state first the base case(s), and then think about the general recursive case(s).
- Sometimes it may help to compose programs with a given use in mind (e.g., “forwards execution”), making sure it is declaratively correct. Consider then also if alternative uses make sense.
- Sometimes it helps to look at well-written examples and use the same “schemas.”
- Using a global top-down design approach can help (in general, not just for recursive programs):
  - State the general problem.
  - Break it down into subproblems.
  - Solve the pieces.
- Again, the best approach: practice, practice, practice.