Programming and Computational Logic
A Motivational Introduction

The following people have contributed to this course material:
Manuel Hermenegildo (editor), Technical University of Madrid, Spain and University of New Mexico, USA; Francisco Bueno, Manuel Carro, Pedro López, and Daniel Cabeza, Technical University of Madrid, Spain; María José García de la Banda, Monash University, Australia; David H. D. Warren, University of Bristol, U.K.; Ulrich Neumerkel, Technical University of Vienna, Austria; Michael Codish, Ben Gurion University, Israel
Course General Topic

Computational Logic

- logic programming
- logic of programming
- functional programming
- knowledge representation
- logic and AI
- lambda calculus
- algorithms
- verification
- constraints
- declarative programming

Logic of Computation
- program verification
- proving properties

Declarative Programming
- direct use of logic
 as a programming tool
The Program Correctness Problem

- Conventional models of using computers – not easy to determine correctness!
 - Has become a very important issue, not just in safety-critical apps.
 - Components with assured quality, being able to give a warranty, ...
 - Being able to run untrusted code, certificate carrying code, ...
A Simple Imperative Program

• Example:

```c
#include <stdio.h>
main() {
    int Number, Square;
    Number = 0;
    while(Number <= 5) {
        Square = Number * Number;
        printf("%d\n",Square);
        Number = Number + 1; }
}
```

• Is it correct? With respect to what?

• A suitable formalism:
 ◦ to provide specifications (describe problems), and
 ◦ to reason about the correctness of programs (their implementation).

is needed.
“Compute the squares of the natural numbers which are less or equal than 5.”

Ideal at first sight, but:

- verbose
- vague
- ambiguous
- needs context (assumed information)
- ...

Philosophers and Mathematicians already pointed this out a long time ago...
Logic

- A means of clarifying / formalizing the human thought process

- Logic for example tells us that (classical logic)
 *Aristotle likes cookies, and
 Plato is a friend of anyone who likes cookies*
 imply that
 Plato is a friend of Aristotle

- Symbolic logic:
 A shorthand for classical logic – plus many useful results:
 \[a_1 : \text{likes}(\text{aristotle}, \text{cookies}) \]
 \[a_2 : \forall X \text{ likes}(X, \text{cookies}) \rightarrow \text{friend}(\text{plato}, X) \]
 \[t_1 : \text{friend}(\text{plato}, \text{aristotle}) \]
 \[T[a_1, a_2] \vdash t_1 \]

- But, can logic be used:
 - To represent the problem (specifications)?
 - *Even perhaps to solve the problem?*
For expressing specifications and reasoning about the correctness of programs we need:

- Specification languages (assertions), modeling, ...
- Program semantics (models, axiomatic, fixpoint, ...).
- Proofs: program *verification* (and debugging, equivalence, ...).
Generating Squares: A Specification (I)

Numbers—we will use “Peano” representation for simplicity:

\[0 \rightarrow 0 \quad 1 \rightarrow s(0) \quad 2 \rightarrow s(s(0)) \quad 3 \rightarrow s(s(s(0))) \quad \ldots \]

- Defining the natural numbers:
 \[\text{nat}(0) \land \text{nat}(s(0)) \land \text{nat}(s(s(0))) \land \ldots \]

- A better solution:
 \[\text{nat}(0) \land \forall X \ (\text{nat}(X) \rightarrow \text{nat}(s(X))) \]

- Order on the naturals:
 \[
 \forall X \ (\text{le}(0, X)) \land \\
 \forall X \forall Y \ (\text{le}(X, Y) \rightarrow \text{le}(s(X), s(Y)))
 \]

- Addition of naturals:
 \[
 \forall X \ (\text{nat}(X) \rightarrow \text{add}(0, X, X)) \land \\
 \forall X \forall Y \forall Z \ (\text{add}(X, Y, Z) \rightarrow \text{add}(s(X), Y, s(Z)))
 \]
Generating Squares: A Specification (II)

- **Multiplication of naturals:**
 \[\forall X \ (\text{nat}(X) \rightarrow \text{mult}(0, X, 0)) \land \]
 \[\forall X \forall Y \forall Z \forall W \ (\text{mult}(X, Y, W) \land \text{add}(W, Y, Z) \rightarrow \text{mult}(s(X), Y, Z)) \]

- **Squares of the naturals:**
 \[\forall X \forall Y \ (\text{nat}(X) \land \text{nat}(Y) \land \text{mult}(X, X, Y) \rightarrow \text{nat}_\text{square}(X, Y)) \]

We can now write a *specification* of the (imperative) program, i.e., conditions that we want the program to meet:

- **Precondition:**
 empty.

- **Postcondition:**
 \[\forall X \ (\text{output}(X) \leftarrow (\exists Y \ \text{nat}(Y) \land \text{le}(Y, s(s(s(s(0))))) \land \text{nat}_\text{square}(Y, X))) \]
For expressing specifications and reasoning about the correctness of programs we need:

- Specification languages (assertions), modeling, ...
- Program semantics (models, axiomatic, fixpoint, ...).
- Proofs: program *verification* (and debugging, equivalence, ...).
• Semantics:
 ◦ A *semantics* associates a meaning (a mathematical object) to a program or program sentence.

• Semantic tasks:
 ◦ Verification: proving that a program meets its specification.
 ◦ Static debugging: finding where a program does not meet specifications.
 ◦ Program equivalence: proving that two programs have the same semantics.
 ◦ etc.
Styles of Semantics

- **Operational:**
 The meaning of program sentences is defined in terms of the steps (transformations from state to state) that computations may take during execution (derivations). Proofs by induction on derivations.

- **Axiomatic:**
 The meaning of program sentences is defined indirectly in terms some axioms and rules of some logic of program properties.

- **Denotational (fixpoint):**
 The meaning of program sentences is given abstractly as elements of some suitable mathematical structure (domain).

- **Model (declarative) semantics:**
 The meaning of programs is given as a minimal model ("logical meaning") of the logic that the program is written in.
Alternative Use of Logic?

- So, logic allows us to *represent problems* (program specifications).

 But, it would be interesting to also improve:

 - i.e., the process of implementing solutions to problems.
 - The importance of Programming Languages (and tools).
 - Interesting question: can logic help here too?
• Assuming the existence of a *mechanical proof method* (deduction procedure) *a new view of problem solving and computing is possible* [Green]:
 ◦ program once and for all the deduction procedure in the computer,
 ◦ find a suitable *representation* for the problem (i.e., the *specification*),
 ◦ then, to obtain solutions, ask questions and let deduction procedure do rest:

 ![Diagram]

• No correctness proofs needed!
Computing With Our Previous Description / Specification

<table>
<thead>
<tr>
<th>Query</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{nat}(s(0))$?</td>
<td>(yes)</td>
</tr>
<tr>
<td>$\exists X \text{ add}(s(0), s(s(0)), X)$?</td>
<td>$X = s(s(s(0)))$</td>
</tr>
<tr>
<td>$\exists X \text{ add}(s(0), X, s(s(s(0))))$?</td>
<td>$X = s(s(0))$</td>
</tr>
<tr>
<td>$\exists X \text{ nat}(X)$?</td>
<td>$X = 0 \lor X = s(0) \lor X = s(s(0)) \lor \ldots$</td>
</tr>
<tr>
<td>$\exists X \exists Y \text{ add}(X, Y, s(0))$?</td>
<td>$(X = 0 \land Y = s(0)) \lor (X = s(0) \land Y = 0)$</td>
</tr>
<tr>
<td>$\exists X \text{ nat}_\text{square}(s(s(0)), X)$?</td>
<td>$X = s(s(s(0))))$</td>
</tr>
<tr>
<td>$\exists X \text{ nat}_\text{square}(X, s(s(s(s(0))))))$?</td>
<td>$X = s(s(0))$</td>
</tr>
<tr>
<td>$\exists X \exists Y \text{ nat}_\text{square}(X, Y)$?</td>
<td>$(X = 0 \land Y = 0) \lor (X = s(0) \land Y = s(0)) \lor (X = s(s(0)) \land Y = s(s(s(s(0)))))) \lor \ldots$</td>
</tr>
<tr>
<td>$\exists X \text{ output}(X)$?</td>
<td>$X = 0 \lor X = s(0) \lor X = s(s(s(s(0)))) \lor X = s^9(0) \lor X = s^{16}(0) \lor X = s^{25}(0)$</td>
</tr>
</tbody>
</table>
Which Logic?

- We have already argued the convenience of representing the problem in logic, but
 - which logic?
 - propositional
 - predicate calculus (first order)
 - higher-order logics
 - modal logics
 - 𝜆-calculus, ...
 - which reasoning procedure?
 - natural deduction, classical methods
 - resolution
 - Prawitz/Bibel, tableaux
 - bottom-up fixpoint
 - rewriting
 - narrowing, ...
Issues

- We try to maximize expressive power.
- But one of the main issues is whether we have an **effective** reasoning procedure.
- It is important to understand the underlying properties and the theoretical limits!
- Example: propositions vs. first-order formulas.
 - **Propositional logic:**
 - “spot is a dog” \(p \)
 - “dogs have tail” \(q \)
 - but how can we conclude that Spot has a tail?
 - **Predicate logic extends the expressive power of propositional logic:**
 - \(\text{dog}(\text{spot}) \)
 - \(\forall X \text{dog}(X) \rightarrow \text{has_tail}(X) \)
 - now, using deduction we can conclude:
 - \(\text{has_tail}(\text{spot}) \)
Comparison of Logics (I)

- Propositional logic:

 “spot is a dog” \(p \)
 + decidability/completeness
 - limited expressive power
 + practical deduction mechanism

 → circuit design, “answer set” programming, ...

- Predicate logic: (first order)

 “spot is a dog” \(\text{dog}(\text{spot}) \)
 +/- decidability/completeness
 +/- good expressive power
 + practical deduction mechanism (e.g., SLD-resolution)

 → classical logic programming!
Comparison of Logics (II)

- Higher-order predicate logic:

 “There is a relationship for spot” \(X(spot) \)

 - decidability/completeness

 + good expressive power

 – practical deduction mechanism

 But interesting subsets \(\rightarrow \) HO logic programming, functional-logic programming, ...

- Other logics: decidability? Expressive power? Practical deduction mechanism?

 Often (very useful) variants of previous ones:

 ◦ Predicate logic + constraints (in place of unification)

 \(\rightarrow \) constraint programming!

 ◦ Propositional temporal logic, etc.

- Interesting case: \(\lambda \)-calculus

 + similar to predicate logic in results, allows higher order

 - does not support predicates (relations), only functions

 \(\rightarrow \) functional programming!
Generating squares by SLD-Resolution – Logic Programming (I)

• We code the problem as definite (Horn) clauses:

\[\begin{align*}
&\text{nat}(0) \\
&\neg\text{nat}(X) \lor \text{nat}(s(X)) \\
&\neg\text{nat}(X) \lor \text{add}(0, X, X)) \\
&\neg\text{add}(X, Y, Z) \lor \text{add}(s(X), Y, s(Z)) \\
&\neg\text{nat}(X) \lor \text{mult}(0, X, 0) \\
&\neg\text{mult}(X, Y, W) \lor \neg\text{add}(W, Y, Z) \lor \text{mult}(s(X), Y, Z) \\
&\neg\text{nat}(X) \lor \neg\text{nat}(Y) \lor \neg\text{mult}(X, X, Y) \lor \text{nat}_square(X, Y)
\end{align*} \]

• **Query:** \(\text{nat}(s(0)) \) ?

• In order to refute: \(\neg\text{nat}(s(0)) \)

• **Resolution:**

\[\begin{align*}
&\neg\text{nat}(s(0)) \text{ with } \neg\text{nat}(X) \lor \text{nat}(s(X)) \text{ gives } \neg\text{nat}(0) \\
&\neg\text{nat}(0) \text{ with } \text{nat}(0) \text{ gives } \square
\end{align*} \]

• **Answer:** (yes)
Generating squares by SLD-Resolution – Logic Programming (II)

\[\text{nat}(0)\]
\[\neg \text{nat}(X) \lor \text{nat}(s(X))\]
\[\neg \text{nat}(X) \lor \text{add}(0, X, X)\]
\[\neg \text{add}(X, Y, Z) \lor \text{add}(s(X), Y, s(Z))\]
\[\neg \text{nat}(X) \lor \text{mult}(0, X, 0)\]
\[\neg \text{mult}(X, Y, W) \lor \neg \text{add}(W, Y, Z) \lor \text{mult}(s(X), Y, Z)\]
\[\neg \text{nat}(X) \lor \neg \text{nat}(Y) \lor \neg \text{mult}(X, X, Y) \lor \text{nat} _ \text{square}(X, Y)\]

- **Query:** $\exists X \exists Y \text{ add}(X, Y, s(0))$?
- **In order to refute:** $\neg \text{add}(X, Y, s(0))$
- **Resolution:**
 - $\neg \text{add}(X, Y, s(0))$ with $\neg \text{nat}(X) \lor \text{add}(0, X, X)$ gives $\neg \text{nat}(s(0))$
 - $\neg \text{nat}(s(0))$ solved as before
- **Answer:** $X = 0, Y = s(0)$
- **Alternative:**
 - $\neg \text{add}(X, Y, s(0))$ with $\neg \text{add}(X, Y, Z) \lor \text{add}(s(X), Y, s(Z))$ gives $\neg \text{add}(X, Y, 0)$
Generating Squares in a Practical Logic Programming System (I)

:- module(_,_,['bf/af']).

nat(0) <- .
nat(s(X)) <- nat(X).

le(0,_X) <- .
le(s(X),s(Y)) <- le(X,Y).

add(0,Y,Y) <- nat(Y).
add(s(X),Y,s(Z)) <- add(X,Y,Z).

mult(0,Y,0) <- nat(Y).
mult(s(X),Y,Z) <- add(W,Y,Z), mult(X,Y,W).

nat_square(X,Y) <- nat(X), nat(Y), mult(X,X,Y).

output(X) <- nat(Y), le(Y,s(s(s(s(s(0))))))), nat_square(Y,X).
Generating Squares in a Practical Logic Programming System (II)

<table>
<thead>
<tr>
<th>Query</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>?- nat(s(0)).</code></td>
<td>yes</td>
</tr>
<tr>
<td><code>?- add(s(0), s(s(0)), X).</code></td>
<td><code>X = s(s(s(0)))</code></td>
</tr>
<tr>
<td><code>?- add(s(0), X, s(s(s(0)))).</code></td>
<td><code>X = s(s(0))</code></td>
</tr>
<tr>
<td><code>?- nat(X).</code></td>
<td><code>X = 0 ; X = s(0) ; X = s(s(0)) ; ...</code></td>
</tr>
<tr>
<td><code>?- add(X, Y, s(0)).</code></td>
<td><code>(X = 0 , Y=s(0)) ; (X = s(0) , Y = 0)</code></td>
</tr>
<tr>
<td><code>?- nat_square(s(s(0)), X).</code></td>
<td><code>X = s(s(s(0))))</code></td>
</tr>
<tr>
<td><code>?- nat_square(X,s(s(s(0))))</code>.</td>
<td><code>X = s(s(0))</code></td>
</tr>
<tr>
<td><code>?- nat_square(X,Y).</code></td>
<td><code>(X = 0 , Y=0) ; (X = s(0) , Y=s(0)) ; (X = s(s(0)) , Y=s(s(s(s(0)))))) ; ...</code></td>
</tr>
<tr>
<td><code>?- output(X).</code></td>
<td><code>X = 0 ; X = s(0) ; X = s(s(s(s(0)))) ; ...</code></td>
</tr>
</tbody>
</table>