Computational Logic
A Motivational Introduction
The Program Correctness Problem

- Conventional models of using computers – not easy to determine correctness!
 - Has become a very important issue, not just in safety-critical apps.
 - Components with assured quality, being able to give a warranty, ...
 - Being able to run untrusted code, certificate carrying code, ...
A Simple Imperative Program

- Example:

```c
#include <stdio.h>
main() {
    int Number, Square;
    Number = 0;
    while(Number <= 5)
    { Square = Number * Number;
        printf("%d\n",Square);
        Number = Number + 1; } }
```

- Is it correct? With respect to what?

- A suitable formalism:
 - to provide *specifications* (describe problems), and
 - to reason about the *correctness of programs* (their *implementation*).

is needed.
“Compute the squares of the natural numbers which are less or equal than 5.”

Ideal at first sight, but:

- verbose
- vague
- ambiguous
- needs context (assumed information)
- ...

Philosophers and Mathematicians already pointed this out a long time ago...
• A means of clarifying / formalizing the human thought process

• Logic for example tells us that (classical logic)
 \textit{Aristotle likes cookies, and}
 \textit{Plato is a friend of anyone who likes cookies}
 imply that
 \textit{Plato is a friend of Aristotle}

• Symbolic logic:
 A shorthand for classical logic – plus many useful results:
 \(a_1 : \text{likes}(\text{aristotle, cookies})\)
 \(a_2 : \forall X \text{ likes}(X, \text{cookies}) \rightarrow \text{friend}(\text{plato, X})\)
 \(t_1 : \text{friend}(\text{plato, aristotle})\)
 \(T[a_1, a_2] \vdash t_1\)

• But, can logic be used:
 ◇ To represent the problem (specifications)?
 ◇ \textit{Even perhaps to solve the problem?}
For expressing specifications and reasoning about the correctness of programs we need:

- Specification languages (assertions), modeling, ...
- Program semantics (models, axiomatic, fixpoint, ...).
- Proofs: program verification (and debugging, equivalence, ...).
Generating Squares: A Specification (I)

Numbers —we will use “Peano” representation for simplicity:

\[0 \rightarrow 0 \quad 1 \rightarrow s(0) \quad 2 \rightarrow s(s(0)) \quad 3 \rightarrow s(s(s(0))) \quad \ldots \]

- Defining the natural numbers:
 \[\text{nat}(0) \land \text{nat}(s(0)) \land \text{nat}(s(s(0))) \land \ldots \]

- A better solution:
 \[\text{nat}(0) \land \forall X \ (\text{nat}(X) \rightarrow \text{nat}(s(X))) \]

- Order on the naturals:
 \[
 \forall X \ (\text{le}(0, X)) \land \\
 \forall X \forall Y \ (\text{le}(X, Y) \rightarrow \text{le}(s(X), s(Y)))
 \]

- Addition of naturals:
 \[
 \forall X \ (\text{nat}(X) \rightarrow \text{add}(0, X, X)) \land \\
 \forall X \forall Y \forall Z \ (\text{add}(X, Y, Z) \rightarrow \text{add}(s(X), Y, s(Z)))
 \]
Generating Squares: A Specification (II)

- Multiplication of naturals:
 \(\forall X (\text{nat}(X) \rightarrow \text{mult}(0, X, 0)) \land \forall X \forall Y \forall Z \forall W (\text{mult}(X, Y, W) \land \text{add}(W, Y, Z) \rightarrow \text{mult}(s(X), Y, Z)) \)

- Squares of the naturals:
 \(\forall X \forall Y (\text{nat}(X) \land \text{nat}(Y) \land \text{mult}(X, X, Y) \rightarrow \text{nat_square}(X, Y)) \)

We can now write a specification of the (imperative) program, i.e., conditions that we want the program to meet:

- **Precondition:**
 empty.

- **Postcondition:**
 \(\forall X (\text{output}(X) \leftarrow (\exists Y \text{nat}(Y) \land \text{le}(Y, s(s(s(s(0)))))) \land \text{nat_square}(Y, X))) \)
Alternative Use of Logic?

- So, logic allows us to *represent problems* (program specifications).

 ![Diagram](image)

 But, it would be interesting to also improve: - , i.e., the process of implementing solutions to problems.

- The importance of Programming Languages (and tools).

- Interesting question: can logic help here too?
From Representation/Specification to Computation

- Assuming the existence of a *mechanical proof method* (deduction procedure) *a new view of problem solving and computing is possible* [Greene]:
 - program once and for all the deduction procedure in the computer,
 - find a suitable *representation* for the problem (i.e., the *specification*),
 - then, to obtain solutions, ask questions and let deduction procedure do rest:

- No correctness proofs needed!

![Diagram showing the process from problem to correct answers/results through representation, questions, and deduction system.]
<table>
<thead>
<tr>
<th>Query</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{nat}(s(0))$?</td>
<td>(yes)</td>
</tr>
<tr>
<td>$\exists X \text{ add}(s(0), s(s(0)), X)$?</td>
<td>$X = s(s(s(0)))$</td>
</tr>
<tr>
<td>$\exists X \text{ add}(s(0), X, s(s(s(0))))$?</td>
<td>$X = s(s(0))$</td>
</tr>
<tr>
<td>$\exists X \text{ nat}(X)$?</td>
<td>$X = 0 \lor X = s(0) \lor X = s(s(0)) \lor \ldots$</td>
</tr>
<tr>
<td>$\exists X \exists Y \text{ add}(X, Y, s(0))$?</td>
<td>$(X = 0 \land Y = s(0)) \lor (X = s(0) \land Y = 0)$</td>
</tr>
<tr>
<td>$\exists X \text{ nat_square}(s(s(0)), X)$?</td>
<td>$X = s(s(s(0))))$</td>
</tr>
<tr>
<td>$\exists X \text{ nat_square}(X, s(s(s(s(0)))))$?</td>
<td>$X = s(s(0))$</td>
</tr>
<tr>
<td>$\exists X \exists Y \text{ nat_square}(X, Y)$?</td>
<td>$(X = 0 \land Y = 0) \lor (X = s(0) \land Y = s(0)) \lor (X = s(s(0)) \land Y = s(s(s(s(0)))))) \lor \ldots$</td>
</tr>
<tr>
<td>$\exists X \text{output}(X)$?</td>
<td>$X = 0 \lor X = s(0) \lor X = s(s(s(s(0)))) \lor X = s^9(0) \lor X = s^{16}(0) \lor X = s^{25}(0)$</td>
</tr>
</tbody>
</table>
Which Logic?

- We have already argued the convenience of representing the problem in logic, but

 - which logic?
 * propositional
 * predicate calculus (first order)
 * higher-order logics
 * modal logics
 * λ-calculus, ...

 - which reasoning procedure?
 * natural deduction, classical methods
 * resolution
 * Prawitz/Bibel, tableaux
 * bottom-up fixpoint
 * rewriting
 * narrowing, ...
Issues

• We try to maximize expressive power.
• But one of the main issues is whether we have an **effective** reasoning procedure.
• It is important to understand the underlying properties and the theoretical limits!
• Example: propositions vs. first-order formulas.
 ❖ Propositional logic:

 “spot is a dog” \(p \)
 “dogs have tail” \(q \)

 but how can we conclude that Spot has a tail?

 ❖ Predicate logic extends the expressive power of propositional logic:

 \[\text{dog}(\text{spot}) \]
 \[\forall X \text{dog}(X) \rightarrow \text{has_tail}(X) \]

 now, using deduction we can conclude:

 \[\text{has_tail}(\text{spot}) \]
Comparison of Logics (I)

- Propositional logic:
 "spot is a dog" \(p \)
 + decidability/completeness
 - limited expressive power
 + practical deduction mechanism

 \(\rightarrow \) circuit design, “answer set” programming, ...

- Predicate logic: (first order)
 "spot is a dog" \(\text{dog}(\text{spot}) \)
 +/- decidability/completeness
 +/- good expressive power
 + practical deduction mechanism (e.g., SLD-resolution)

 \(\rightarrow \) classical logic programming!
Comparison of Logics (II)

• Higher-order predicate logic:
 “There is a relationship for spot” \(X(spot) \)
 - decidability/completeness
 + good expressive power
 – practical deduction mechanism

But interesting subsets \(\rightarrow \) HO logic programming, functional-logic prog., ...

• Other logics: decidability? Expressive power? Practical deduction mechanism? Often (very useful) variants of previous ones:
 ◦ Predicate logic + constraints (in place of unification)
 \(\rightarrow \) constraint programming!
 ◦ Propositional temporal logic, etc.

• Interesting case: \(\lambda \)-calculus
 + similar to predicate logic in results, allows higher order
 - does not support predicates (relations), only functions

\(\rightarrow \) functional programming!
Generating squares by SLD-Resolution – Logic Programming (I)

- We code the problem as definite (Horn) clauses:
 \[\text{nat}(0)\]
 \[\neg \text{nat}(X) \lor \text{nat}(s(X))\]
 \[\neg \text{nat}(X) \lor \text{add}(0, X, X)\]
 \[\neg \text{add}(X, Y, Z) \lor \text{add}(s(X), Y, s(Z))\]
 \[\neg \text{nat}(X) \lor \text{mult}(0, X, 0)\]
 \[\neg \text{mult}(X, Y, W) \lor \neg \text{add}(W, Y, Z) \lor \text{mult}(s(X), Y, Z)\]
 \[\neg \text{nat}(X) \lor \neg \text{nat}(Y) \lor \neg \text{mult}(X, X, Y) \lor \text{nat_square}(X, Y)\]

- **Query:** \(\text{nat}(s(0))\) ?

- **In order to refute:** \(\neg \text{nat}(s(0))\)

- **Resolution:**
 \[\neg \text{nat}(s(0)) \text{ with } \neg \text{nat}(X) \lor \text{nat}(s(X)) \text{ gives } \neg \text{nat}(0)\]
 \[\neg \text{nat}(0) \text{ with } \text{nat}(0) \text{ gives } \square\]

- **Answer:** (yes)
Generating squares by SLD-Resolution – Logic Programming (II)

\[
\text{nat}(0)
\]
\[
\neg \text{nat}(X) \lor \text{nat}(s(X))
\]
\[
\neg \text{nat}(X) \lor \text{add}(0, X, X))
\]
\[
\neg \text{add}(X, Y, Z) \lor \text{add}(s(X), Y, s(Z))
\]
\[
\neg \text{nat}(X) \lor \text{mult}(0, X, 0)
\]
\[
\neg \text{mult}(X, Y, W) \lor \neg \text{add}(W, Y, Z) \lor \text{mult}(s(X), Y, Z)
\]
\[
\neg \text{nat}(X) \lor \neg \text{nat}(Y) \lor \neg \text{mult}(X, X, Y) \lor \text{nat}_{\text{square}}(X, Y)
\]

- **Query:** \(\exists X \exists Y \text{ add}(X, Y, s(0)) \) ?

- **In order to refute:** \(\neg \text{add}(X, Y, s(0)) \)

- **Resolution:**
 \(\neg \text{add}(X, Y, s(0)) \) with \(\neg \text{nat}(X) \lor \text{add}(0, X, X)) \) gives \(\neg \text{nat}(s(0)) \)

 \(\neg \text{nat}(s(0)) \) solved as before

- **Answer:** \(X = 0, Y = s(0) \)

- **Alternative:**
 \(\neg \text{add}(X, Y, s(0)) \) with \(\neg \text{add}(X, Y, Z) \lor \text{add}(s(X), Y, s(Z)) \) gives \(\neg \text{add}(X, Y, 0) \)
Generating Squares in a Practical Logic Programming System (I)

:- module(_,_,['bf/bfall']).

nat(0).
nat(s(X)) :- nat(X).

le(0,X) :- nat(X).
le(s(X),s(Y)) :- le(X,Y).

add(0,Y,Y) :- nat(Y).
add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,Y,0) :- nat(Y).
mult(s(X),Y,Z) :- add(W,Y,Z), mult(X,Y,W).

nat_square(X,Y) :- nat(X), nat(Y), mult(X,X,Y).

output(X) :- nat(Y), le(Y,s(s(s(s(s(0)))))), nat_square(Y,X).
Generating Squares in a Practical Logic Programming System (II)

<table>
<thead>
<tr>
<th>Query</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>?- nat(s(0)).</code></td>
<td>yes</td>
</tr>
<tr>
<td><code>?- add(s(0),s(s(0)),X).</code></td>
<td><code>X = s(s(s(0)))</code></td>
</tr>
<tr>
<td><code>?- add(s(0),X,s(s(s(0))))</code>.</td>
<td><code>X = s(s(0))</code></td>
</tr>
<tr>
<td><code>?- nat(X).</code></td>
<td><code>X = 0 ; X = s(0) ; X = s(s(0)) ; ...</code></td>
</tr>
<tr>
<td><code>?- add(X,Y,s(0)).</code></td>
<td><code>(X = 0 , Y=s(0)) ; (X = s(0) , Y = 0)</code></td>
</tr>
<tr>
<td><code>?- nat_square(s(s(0)), X).</code></td>
<td><code>X = s(s(s(s(0))))</code></td>
</tr>
<tr>
<td><code>?- nat_square(X,s(s(s(s(0))))).</code></td>
<td><code>X = s(s(0))</code></td>
</tr>
<tr>
<td><code>?- nat_square(X,Y).</code></td>
<td><code>(X = 0 , Y=0) ; (X = s(0) , Y=s(0)) ; (X = s(s(0)) , Y=s(s(s(s(0)))))) ; ...</code></td>
</tr>
<tr>
<td><code>?- output(X).</code></td>
<td><code>X = 0 ; X = s(0) ; X = s(s(s(s(s(0)))))) ; ...</code></td>
</tr>
</tbody>
</table>
Introductory example (I) – Family relations

father_of(john, peter)
father_of(john, mary)
father_of(peter, michael)
mother_of(mary, david)
∀X∀Y(∃Z(father_of(X, Z) ∧ father_of(Z, Y)) → grandfather_of(X, Y))
∀X∀Y(∃Z(father_of(X, Z) ∧ mother_of(Z, Y)) → grandfather_of(X, Y))

father_of(john, peter).
father_of(john, mary).
father_of(peter, michael).
mother_of(mary, david).

grandfather_of(L,M) :- father_of(L,K),
 father_of(K,M).

grandfather_of(X,Y) :- father_of(X,Z),
 mother_of(Z,Y).

- How can grandmother_of/2 be represented?
- What does grandfather_of(X,david) mean? And grandfather_of(john,X)?
Introductory example (II) - Testing membership in lists

- Declarative view:
 - Suppose there is a functor $f/2$ such that $f(H, T)$ represents a list with head H and tail T.
 - Membership definition: $X \in L \leftrightarrow \begin{cases} & \text{X is the head of } L \\ & \text{or } X \text{ is member of the tail of } L \end{cases}$
 - Using logic:
 \[
 \forall X \forall L(\exists T \left(L = f(X, T) \rightarrow \text{member}(X, L) \right))
 \]
 \[
 \forall X \forall L(\exists Z \exists T \left(L = f(Z, T) \land \text{member}(X, T) \rightarrow \text{member}(X, L) \right))
 \]
 - Using Prolog:
 \[
 \text{member}(X, f(X, T)).
 \]
 \[
 \text{member}(X, f(Z, T)) :- \text{member}(X, T).
 \]

- Procedural view (but for checking membership only!):
 - Traverse the list comparing each element until X is found or list is finished
 /* Testing array membership in C */
 int member(int x, int list[LISTSIZE]) {
 for (int i = 0; i < LISTSIZE; i++)
 if (x == list[i]) return TRUE;
 return FALSE;
 }
A (very brief) History of Logic Programming (I)

- **60’s**
 - Greene: programming as problem solving.
 - Robinson: (linear) resolution.

- **70’s**
 - Kowalski: procedural interpretation of Horn clause logic. Read:

 A if B_1 and B_2 and · · · and B_n as:

 to solve (execute) A, solve (execute) B_1 and B_2 and,..., B_n

 Algorithm = logic + control.

 - Colmerauer: specialized theorem prover (Fortran) embedding the procedural interpretation: Prolog (Programmation et Logique).

 - In the U.S.: “next-generation AI languages” of the time (i.e. planner) seen as inefficient and difficult to control.

A (very brief) History of Logic Programming (II)

- Late 80’s, 90’s
 - Major research in the basic paradigms and advanced implementation techniques: Japan (Fifth Generation Project), US (MCC), Europe (ECRC, ESPRIT projects, leading to the “framework programs”).
 - Numerous commercial Prolog implementations, programming books, and a *de facto* standard, the Edinburgh Prolog family.
 - Leading in 1995 to The ISO Prolog standard.
 - Parallel and concurrent logic programming systems.
 - **CLP** – Constraint Logic Programming: Major extension – opened many new applications areas.
 - Commercial CLP systems with fielded applications.
 - Concurrent constraint programming systems.

- 2000-...
 - Many other extensions: full higher order, inclusion of functional programming, types, verification, partial evaluation, concurrency, distribution, objects, ...
 - Highly optimizing compilers, environments, automatic parallelism, automatic debugging.
 - **Datalog**, Answer Set Proramming (ASP) – support for negation through stable models. Many applications.
A (very brief) History of Logic Programming (III)

- Many applications:
 - Natural language processing
 - Scheduling/Optimization problems
 - AI related problems
 - (Multi) agent systems programming
 - Program analyzers
 - ...

- Some examples:
 - The first C++ compiler was written in Prolog.
 - The java abstract machine is specified in Prolog.
 - The IBM Watson System (2011) has important parts written in Prolog.
 https://www.youtube.com/watch?v=P18EdAKuC1U
 - ...