Computational Logic
A Motivational Introduction
Computational Logic

- direct use of logic as a programming tool
- program verification
- proving properties
- declarative programming
- logic of programming
- logic and AI
- knowledge representation
- functional programming
- constraints
- lambda calculus

Logic of Computation
- program verification
- proving properties

Declarative Programming
- direct use of logic as a programming tool
The Program Correctness Problem

- Conventional models of using computers – not easy to determine correctness!
 - Has become a very important issue, not just in safety-critical apps.
 - Components with assured quality, being able to give a warranty, ...
 - Being able to run untrusted code, certificate carrying code, ...
A Simple Imperative Program

• Example:

```c
#include <stdio.h>
main() {
    int Number, Square;
    Number = 0;
    while(Number <= 5) {
        Square = Number * Number;
        printf("%d\n",Square);
        Number = Number + 1; }
}
```

• Is it correct? With respect to what?

• A suitable formalism:
 ‣ to provide *specifications* (describe problems), and
 ‣ to reason about the *correctness of programs* (their implementation).

is needed.
Natural Language

“Compute the squares of the natural numbers which are less or equal than 5.”

Ideal at first sight, but:

- verbose
- vague
- ambiguous
- needs context (assumed information)
- ...

Philosophers and Mathematicians already pointed this out a long time ago...
Logic

• A means of clarifying / formalizing the human thought process

• Logic for example tells us that (classical logic)
 Aristotle likes cookies, and
 Plato is a friend of anyone who likes cookies
 imply that
 Plato is a friend of Aristotle

• Symbolic logic:
 A shorthand for classical logic – plus many useful results:
 \(a_1 : \text{likes}(\text{aristotle}, \text{cookies}) \)
 \(a_2 : \forall X \, \text{likes}(X, \text{cookies}) \rightarrow \text{friend}(\text{plato}, X) \)
 \(t_1 : \text{friend}(\text{plato}, \text{aristotle}) \)
 \(T[a_1, a_2] \vdash t_1 \)

• But, can logic be used:
 ◦ To represent the problem (specifications)?
 ◦ Even perhaps to solve the problem?
• For expressing specifications and reasoning about the correctness of programs we need:

 ◇ Specification languages (assertions), modeling, ...
 ◇ Program semantics (models, axiomatic, fixpoint, ...).
 ◇ Proofs: program *verification* (and debugging, equivalence, ...).
Generating Squares: A Specification (I)

Numbers—we will use “Peano” representation for simplicity:

\[0 \rightarrow 0 \quad 1 \rightarrow s(0) \quad 2 \rightarrow s(s(0)) \quad 3 \rightarrow s(s(s(0))) \quad \ldots\]

- Defining the natural numbers:
 \[nat(0) \land nat(s(0)) \land nat(s(s(0))) \land \ldots\]

- A better solution:
 \[nat(0) \land \forall X \ (nat(X) \rightarrow nat(s(X)))\]

- Order on the naturals:
 \[\forall X \ (nat(X) \rightarrow le(0, X)) \land \forall X\forall Y \ (le(X, Y) \rightarrow le(s(X), s(Y)))\]

- Addition of naturals:
 \[\forall X \ (nat(X) \rightarrow add(0, X, X)) \land \forall X\forall Y\forall Z \ (add(X, Y, Z) \rightarrow add(s(X), Y, s(Z)))\]
Generating Squares: A Specification (II)

- Multiplication of naturals:
 \[\forall X \ (\text{nat}(X) \rightarrow \text{mult}(0, X, 0)) \land \forall X \forall Y \forall Z \forall W \ (\text{mult}(X, Y, W) \land \text{add}(W, Y, Z) \rightarrow \text{mult}(s(X), Y, Z)) \]

- Squares of the naturals:
 \[\forall X \forall Y \ (\text{nat}(X) \land \text{nat}(Y) \land \text{mult}(X, X, Y) \rightarrow \text{nat_square}(X, Y)) \]

We can now write a specification of the (imperative) program, i.e., conditions that we want the program to meet:

- Precondition:
 empty.

- Postcondition:
 \[\forall X \ (\text{output}(X) \leftarrow (\exists Y \ \text{nat}(Y) \land \text{le}(Y, s(s(s(s(0))))) \land \text{nat_square}(Y, X))) \]
Alternative Use of Logic?

- So, logic allows us to *represent problems* (program specifications).

 But, it would be interesting to also improve: -

 i.e., the process of implementing solutions to problems.

- The importance of Programming Languages (and tools).

- Interesting question: can logic help here too?
From Representation/Specification to Computation

- Assuming the existence of a *mechanical proof method* (deduction procedure) a *new view of problem solving and computing is possible* [Greene]:
 - program once and for all the deduction procedure in the computer,
 - find a suitable *representation* for the problem (i.e., the *specification*),
 - then, to obtain solutions, ask questions and let deduction procedure do rest:

 ![Diagram of the process]

 - No correctness proofs needed!
Computing With Our Previous Description / Specification

<table>
<thead>
<tr>
<th>Query</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>$nat(s(0))$?</td>
<td>(yes)</td>
</tr>
<tr>
<td>$\exists X \ add(s(0), s(s(0)), X)$?</td>
<td>$X = s(s(s(0)))$</td>
</tr>
<tr>
<td>$\exists X \ add(s(0), X, s(s(s(0))))$?</td>
<td>$X = s(s(0))$</td>
</tr>
<tr>
<td>$\exists X \ nat(X)$?</td>
<td>$X = 0 \lor X = s(0) \lor X = s(s(0)) \lor \ldots$</td>
</tr>
<tr>
<td>$\exists X \exists Y \ add(X, Y, s(0))$?</td>
<td>$(X = 0 \land Y = s(0)) \lor (X = s(0) \land Y = 0)$</td>
</tr>
<tr>
<td>$\exists X \ nat_square(s(s(0)), X)$?</td>
<td>$X = s(s(s(0))))$</td>
</tr>
<tr>
<td>$\exists X \ nat_square(X, s(s(s(s(0)))))$?</td>
<td>$X = s(s(0))$</td>
</tr>
<tr>
<td>$\exists X \exists Y \ nat_square(X, Y)$?</td>
<td>$(X = 0 \land Y = 0) \lor (X = s(0) \land Y = s(0)) \lor (X = s(s(0)) \land Y = s(s(s(s(0)))))) \lor \ldots$</td>
</tr>
<tr>
<td>$\exists X \output(X)$?</td>
<td>$X = 0 \lor X = s(0) \lor X = s(s(s(s(0)))) \lor X = s^9(0) \lor X = s^{16}(0) \lor X = s^{25}(0)$</td>
</tr>
</tbody>
</table>
Which Logic?

- We have already argued the convenience of representing the problem in logic, but
 - which logic?
 - propositional
 - predicate calculus (first order)
 - higher-order logics
 - modal logics
 - λ-calculus, ...
 - which reasoning procedure?
 - natural deduction, classical methods
 - resolution
 - Prawitz/Bibel, tableaux
 - bottom-up fixpoint
 - rewriting
 - narrowing, ...
Issues

- We try to maximize expressive power.
- But one of the main issues is whether we have an effective reasoning procedure.
- It is important to understand the underlying properties and the theoretical limits!
- Example: propositions vs. first-order formulas.
 - Propositional logic:
 "spot is a dog" \(p \)
 "dogs have tail" \(q \)
 but how can we conclude that Spot has a tail?
 - Predicate logic extends the expressive power of propositional logic:
 \(\text{dog}(\text{spot}) \)
 \(\forall X \text{dog}(X) \rightarrow \text{has_tail}(X) \)
 now, using deduction we can conclude:
 \(\text{has_tail}(\text{spot}) \)
Comparison of Logics (I)

- Propositional logic:

 “spot is a dog” \(p \)

 + decidability

 - limited expressive power

 + practical deduction mechanism

 \rightarrow circuit design, “answer set” programming, ...

- Predicate logic: (first order)

 “spot is a dog” \(\text{dog}(\text{spot}) \)

 +/- decidability

 +/- good expressive power

 + practical deduction mechanism (e.g., \textbf{SLD-resolution})

 \rightarrow classical logic programming!
Comparison of Logics (II)

• Higher-order predicate logic:

 “There is a relationship for spot” \(X(spot) \)

 - decidability

 + good expressive power

 – practical deduction mechanism

 But interesting subsets \(\rightarrow \) HO logic programming, functional-logic prog., ...

• Other logics: decidability? Expressive power? Practical deduction mechanism?

 Often (very useful) variants of previous ones:

 ◇ Predicate logic + constraints (in place of unification)
 \(\rightarrow \) constraint programming!

 ◇ Propositional temporal logic, etc.

• Interesting case: \(\lambda \)-calculus

 + similar to predicate logic in results, allows higher order

 - does not support predicates (relations), only functions

 \(\rightarrow \) functional programming!
Generating squares by SLD-Resolution – Logic Programming (I)

- We code the problem as definite (Horn) clauses:
 \[
 \text{nat}(0) \\
 \neg \text{nat}(X) \lor \text{nat}(s(X)) \\
 \neg \text{nat}(X) \lor \text{add}(0, X, X)) \\
 \neg \text{add}(X, Y, Z) \lor \text{add}(s(X), Y, s(Z)) \\
 \neg \text{nat}(X) \lor \text{mult}(0, X, 0) \\
 \neg \text{mult}(X, Y, W) \lor \neg \text{add}(W, Y, Z) \lor \text{mult}(s(X), Y, Z) \\
 \neg \text{nat}(X) \lor \neg \text{nat}(Y) \lor \neg \text{mult}(X, X, Y) \lor \text{nat} _ \text{square}(X, Y)
 \]

- **Query:** \(\text{nat}(s(0)) \) ?

- In order to refute: \(\neg \text{nat}(s(0)) \)

- Resolution:
 \(\neg \text{nat}(s(0)) \) with \(\neg \text{nat}(X) \lor \text{nat}(s(X)) \) gives \(\neg \text{nat}(0) \)
 \(\neg \text{nat}(0) \) with \(\text{nat}(0) \) gives \(\boxempty \)

- **Answer:** \(\text{yes} \)
Generating squares by SLD-Resolution – Logic Programming (II)

\begin{align*}
nat(0) \\
\neg nat(X) \lor nat(s(X)) \\
\neg nat(X) \lor \text{add}(0, X, X)) \\
\neg \text{add}(X, Y, Z) \lor \text{add}(s(X), Y, s(Z)) \\
\neg nat(X) \lor \text{mult}(0, X, 0) \\
\neg \text{mult}(X, Y, W) \lor \neg \text{add}(W, Y, Z) \lor \text{mult}(s(X), Y, Z) \\
\neg nat(X) \lor \neg nat(Y) \lor \neg \text{mult}(X, X, Y) \lor \neg \text{square}(X, Y)
\end{align*}

- **Query:** \(\exists X \exists Y \ \text{add}(X, Y, s(0)) \ ? \)
- **In order to refute:** \(\neg \text{add}(X, Y, s(0)) \)
- **Resolution:**
 \(\neg \text{add}(X, Y, s(0)) \) with \(\neg nat(X) \lor \text{add}(0, X, X) \) gives \(\neg nat(s(0)) \)
 \(\neg nat(s(0)) \) solved as before
- **Answer:** \(X = 0, \ Y = s(0) \)
- **Alternative:**
 \(\neg \text{add}(X, Y, s(0)) \) with \(\neg \text{add}(X, Y, Z) \lor \text{add}(s(X), Y, s(Z)) \) gives \(\neg \text{add}(X, Y, 0) \)
Generating Squares in a Practical Logic Programming System (I)

:- module(_,_,['bf/bfall']).

nat(0).
nat(s(X)) :- nat(X).

le(0,X) :- nat(X).
le(s(X),s(Y)) :- le(X,Y).

add(0,Y,Y) :- nat(Y).
add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,Y,0) :- nat(Y).
mult(s(X),Y,Z) :- add(W,Y,Z), mult(X,Y,W).

nat_square(X,Y) :- nat(X), nat(Y), mult(X,X,Y).

output(X) :- nat(Y), le(Y,s(s(s(s(s(0)))))), nat_square(Y,X).
Generating Squares in a Practical Logic Programming System (II)

<table>
<thead>
<tr>
<th>Query</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>?- nat(s(0)).</td>
<td>yes</td>
</tr>
<tr>
<td>?- add(s(0),s(s(0)),X).</td>
<td>X = s(s(s(0)))</td>
</tr>
<tr>
<td>?- add(s(0),X,s(s(s(0)))).</td>
<td>X = s(s(0))</td>
</tr>
<tr>
<td>?- nat(X).</td>
<td>X = 0 ; X = s(0) ; X = s(s(0)) ; ...</td>
</tr>
<tr>
<td>?- add(X,Y,s(0)).</td>
<td>(X = 0 , Y=s(0)) ; (X = s(0) , Y = 0)</td>
</tr>
<tr>
<td>?- nat_square(s(s(0)), X).</td>
<td>X = s(s(s(s(0))))</td>
</tr>
<tr>
<td>?- nat_square(X,s(s(s(s(0))))).</td>
<td>X = s(s(0))</td>
</tr>
<tr>
<td>?- nat_square(X,Y).</td>
<td>(X = 0 , Y=0) ; (X = s(0) , Y=s(0)) ; (X = s(s(0)) , Y=s(s(s(s(0))))) ; ...</td>
</tr>
<tr>
<td>?- output(X).</td>
<td>X = 0 ; X = s(0) ; X = s(s(s(s(0)))) ; ...</td>
</tr>
</tbody>
</table>
Introductory example (I) – Family relations

\[\begin{align*}
&\text{father_of}(\text{john}, \text{peter}) \\
&\text{father_of}(\text{john}, \text{mary}) \\
&\text{father_of}(\text{peter}, \text{michael}) \\
&\text{mother_of}(\text{mary}, \text{david}) \\
&\forall X \forall Y (\exists Z (\text{father_of}(X, Z) \land \text{father_of}(Z, Y)) \rightarrow \text{grandfather_of}(X, Y)) \\
&\forall X \forall Y (\exists Z (\text{father_of}(X, Z) \land \text{mother_of}(Z, Y)) \rightarrow \text{grandfather_of}(X, Y)) \\
&\text{father_of}(\text{john}, \text{peter}). \\
&\text{father_of}(\text{john}, \text{mary}). \\
&\text{father_of}(\text{peter}, \text{michael}). \\
&\text{mother_of}(\text{mary}, \text{david}). \\
&\text{grandfather_of}(L, M) :- \text{father_of}(L, K), \text{father_of}(K, M). \\
&\text{grandfather_of}(X, Y) :- \text{father_of}(X, Z), \text{mother_of}(Z, Y). \\
\end{align*}\]

- How can \text{grandmother_of}/2 be represented?
- What does \text{grandfather_of}(X, \text{david}) mean? And \text{grandfather_of}(\text{john}, X)?
Introductory example (II) - Testing membership in lists

- **Declarative view:**
 - Suppose there is a functor $f/2$ such that $f(H, T)$ represents a list with head H and tail T.
 - Membership definition: $X \in L \leftrightarrow \begin{cases} X \text{ is the head of } L \\ \text{or } X \text{ is member of the tail of } L \end{cases}$
 - Using logic:
 \[
 \forall X \forall L (\exists T (L = f(X, T) \rightarrow \text{member}(X, L))) \\
 \forall X \forall L (\exists Z \exists T (L = f(Z, T) \land \text{member}(X, T) \rightarrow \text{member}(X, L)))
 \]
 - Using Prolog:

 member(X, f(X, T)).
 member(X, f(Z, T)) :- member(X, T).

- **Procedural view (but for checking membership only!):**
 - Traverse the list comparing each element until X is found or list is finished

 /* Testing array membership in C */
 int member(int x, int list[LISTSIZE]) {
 for (int i = 0; i < LISTSIZE; i++)
 if (x == list[i]) return TRUE;
 return FALSE;
 }
A (very brief) History of Logic Programming (I)

- **60’s**
 - Greene: programming as problem solving.
 - Robinson: (linear) resolution.

- **70’s**
 - Kowalski: procedural interpretation of Horn clause logic. Read:
 - *A if B₁ and B₂ and ... and Bₙ as:*
 - to solve (execute) A, solve (execute) B₁ and B₂ and,..., Bₙ

 Algorithm = logic + control.

 - Colmerauer: specialized theorem prover (Fortran) embedding the procedural interpretation: Prolog (Programmation et Logique).
 - In the U.S.: “next-generation AI languages” of the time (i.e. planner) seen as inefficient and difficult to control.
A (very brief) History of Logic Programming (II)

- **Late 80’s, 90’s**
 - Major research in the basic paradigms and advanced implementation techniques: Japan (Fifth Generation Project), US (MCC), Europe (ECRC, ESPRIT projects, leading to the “framework programs”).
 - Numerous commercial Prolog implementations, programming books, and a *de facto* standard, the Edinburgh Prolog family.
 - Leading in 1995 to The ISO Prolog standard.
 - Parallel and concurrent logic programming systems.
 - **CLP** – Constraint Logic Programming: Major extension – opened many new applications areas.
 * Commercial CLP systems with fielded applications.
 * Concurrent constraint programming systems.

- **2000-...**
 - Many other extensions: full higher order, inclusion of functional programming, types, verification, partial evaluation, concurrency, distribution, objects, ...
 - Highly optimizing compilers, environments, automatic parallelism, automatic debugging.
 - Datalog, Answer Set Programming (ASP) – support for negation through stable models. Many applications.
• Many applications:
 ◊ Natural language processing
 ◊ Scheduling/Optimization problems
 ◊ AI related problems
 ◊ (Multi) agent systems programming
 ◊ Program analyzers
 ◊ ...

• Some examples:
 ◊ The first C++ compiler was written in Prolog.
 ◊ The java abstract machine is specified in Prolog.
 ◊ The IBM Watson System (2011) has important parts written in Prolog.
 https://www.youtube.com/watch?v=P18EdAKuC1U
 ◊ ...