Computational Logic

A Motivational Introduction
The Program Correctness Problem

- Conventional models of using computers – not easy to determine correctness!
 - Has become a very important issue, not just in safety-critical apps.
 - Components with assured quality, being able to give a warranty, ...
 - Being able to run untrusted code, certificate carrying code, ...
A Simple Imperative Program

• Example:

```c
#include <stdio.h>
main() {
    int Number, Square;
    Number = 0;
    while(Number <= 5)
    { Square = Number * Number;
      printf("%d\n",Square);
      Number = Number + 1; } }
```

• Is it correct? With respect to what?

• A suitable formalism:
 ◦ to provide *specifications* (describe problems), and
 ◦ to reason about the *correctness of programs* (their *implementation*).

is needed.
“Compute the squares of the natural numbers which are less or equal than 5.”

Ideal at first sight, but:

- verbose
- vague
- ambiguous
- needs context (assumed information)
- ...

Philosophers and Mathematicians already pointed this out a long time ago...
Logic

- A means of clarifying / formalizing the human thought process

- Logic for example tells us that (classical logic)
 Aristotle likes cookies, and
 Plato is a friend of anyone who likes cookies
 imply that
 Plato is a friend of Aristotle

- Symbolic logic:
 A shorthand for classical logic – plus many useful results:
 \(a_1 : \text{likes}(\text{aristotle}, \text{cookies}) \)
 \(a_2 : \forall X \text{ likes}(X, \text{cookies}) \rightarrow \text{friend}(\text{plato}, X) \)
 \(t_1 : \text{friend}(\text{plato}, \text{aristotle}) \)
 \(T[a_1, a_2] \vdash t_1 \)

- But, can logic be used:
 - To represent the problem (specifications)?
 - Even perhaps to solve the problem?
For expressing specifications and reasoning about the correctness of programs we need:

- Specification languages (assertions), modeling, ...
- Program semantics (models, axiomatic, fixpoint, ...).
- Proofs: program verification (and debugging, equivalence, ...).
Generating Squares: A Specification (I)

Numbers —we will use “Peano” representation for simplicity:
0 → 0 1 → s(0) 2 → s(s(0)) 3 → s(s(s(0))) ...

- Defining the natural numbers:
 \(\text{nat}(0) \land \text{nat}(s(0)) \land \text{nat}(s(s(0))) \land \ldots \)

- A better solution:
 \(\text{nat}(0) \land \forall X (\text{nat}(X) \rightarrow \text{nat}(s(X))) \)

- Order on the naturals:
 \(\forall X (\text{nat}(X) \rightarrow \text{le}(0, X)) \land \)
 \(\forall X \forall Y (\text{le}(X, Y) \rightarrow \text{le}(s(X), s(Y))) \)

- Addition of naturals:
 \(\forall X (\text{nat}(X) \rightarrow \text{add}(0, X, X)) \land \)
 \(\forall X \forall Y \forall Z (\text{add}(X, Y, Z) \rightarrow \text{add}(s(X), Y, s(Z))) \)
Generating Squares: A Specification (II)

- Multiplication of naturals:
 \[\forall X \ (\text{nat}(X) \rightarrow \text{mult}(0, X, 0)) \land \\
 \forall X \forall Y \forall Z \forall W \ (\text{mult}(X, Y, W) \land \text{add}(W, Y, Z) \rightarrow \text{mult}(s(X), Y, Z)) \]

- Squares of the naturals:
 \[\forall X \forall Y \ (\text{nat}(X) \land \text{nat}(Y) \land \text{mult}(X, X, Y) \rightarrow \text{nat_square}(X, Y)) \]

We can now write a specification of the (imperative) program, i.e., conditions that we want the program to meet:

- **Precondition:**
 empty.

- **Postcondition:**
 \[\forall X (\text{output}(X) \leftarrow (\exists Y \ \text{nat}(Y) \land \text{le}(Y, s(s(s(s(0)))))) \land \text{nat_square}(Y, X))) \]
Alternative Use of Logic?

- So, logic allows us to *represent problems* (program specifications).

- But, it would be interesting to also improve:
 - i.e., the process of implementing solutions to problems.
 - The importance of Programming Languages (and tools).
 - Interesting question: can logic help here too?
From Representation/Specification to Computation

- Assuming the existence of a *mechanical proof method* (deduction procedure) *a new view of problem solving and computing is possible* [Greene]:
 - program once and for all the deduction procedure in the computer,
 - find a suitable *representation* for the problem (i.e., the *specification*),
 - then, to obtain solutions, ask questions and let deduction procedure do rest:

- No correctness proofs needed!
Computing With Our Previous Description / Specification

<table>
<thead>
<tr>
<th>Query</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{nat}(s(0))) ?</td>
<td>((\text{yes}))</td>
</tr>
<tr>
<td>(\exists X \ \text{add}(s(0), s(s(0)), X)) ?</td>
<td>(X = s(s(s(0))))</td>
</tr>
<tr>
<td>(\exists X \ \text{add}(s(0), X, s(s(s(0))))) ?</td>
<td>(X = s(s(0)))</td>
</tr>
<tr>
<td>(\exists X \ \text{nat}(X)) ?</td>
<td>(X = 0 \lor X = s(0) \lor X = s(s(0)) \lor \ldots)</td>
</tr>
<tr>
<td>(\exists X \exists Y \ \text{add}(X, Y, s(0))) ?</td>
<td>((X = 0 \land Y = s(0)) \lor (X = s(0) \land Y = 0))</td>
</tr>
<tr>
<td>(\exists X \ \text{nat_square}(s(s(0)), X)) ?</td>
<td>(X = s(s(s(0))))</td>
</tr>
<tr>
<td>(\exists X \ \text{nat_square}(X, s(s(s(s(0))))))) ?</td>
<td>(X = s(s(0)))</td>
</tr>
<tr>
<td>(\exists X \exists Y \ \text{nat_square}(X, Y)) ?</td>
<td>((X = 0 \land Y = 0) \lor (X = s(0) \land Y = s(0)) \lor (X = s(s(0)) \land Y = s(s(s(s(0)))))) \lor \ldots)</td>
</tr>
<tr>
<td>(\exists X \ \text{output}(X)) ?</td>
<td>(X = 0 \lor X = s(0) \lor X = s(s(s(s(0)))) \lor X = s^9(0) \lor X = s^{16}(0) \lor X = s^{25}(0))</td>
</tr>
</tbody>
</table>
Which Logic?

- We have already argued the convenience of representing the problem in logic, but
 - which logic?
 - propositional
 - predicate calculus (first order)
 - higher-order logics
 - modal logics
 - λ-calculus, ...
 - which reasoning procedure?
 - natural deduction, classical methods
 - resolution
 - Prawitz/Bibel, tableaux
 - bottom-up fixpoint
 - rewriting
 - narrowing, ...
Issues

- We try to maximize expressive power.
- But one of the main issues is whether we have an **effective** reasoning procedure.
- It is important to understand the underlying properties and the theoretical limits!
- Example: propositions vs. first-order formulas.
 - Propositional logic:
 - “spot is a dog” \(p \)
 - “dogs have tail” \(q \)
 - but how can we conclude that Spot has a tail?
 - Predicate logic extends the expressive power of propositional logic:
 - \(\text{dog}(\text{spot}) \)
 - \(\forall X \text{dog}(X) \rightarrow \text{has_tail}(X) \)
 - now, using deduction we can conclude:
 - \(\text{has_tail}(\text{spot}) \)
Comparison of Logics (I)

- Propositional logic:

 "spot is a dog" \(p \)

 + decidability

 - limited expressive power

 + practical deduction mechanism

 → circuit design, “answer set” programming, ...

- Predicate logic: (first order)

 "spot is a dog" \(\text{dog(spot)} \)

 +/- decidability

 +/- good expressive power

 + practical deduction mechanism (e.g., SLD-resolution)

 → classical logic programming!
Comparison of Logics (II)

- Higher-order predicate logic:
 - “There is a relationship for spot” \(X(\text{spot}) \)
 - decidability
 - good expressive power
 - practical deduction mechanism

 But interesting subsets \(\rightarrow \) HO logic programming, functional-logic prog., ...

- Other logics: decidability? Expressive power? Practical deduction mechanism?
 Often (very useful) variants of previous ones:
 - Predicate logic + constraints (in place of unification)
 \(\rightarrow \) constraint programming!
 - Propositional temporal logic, etc.

- Interesting case: \(\lambda \)-calculus
 - similar to predicate logic in results, allows higher order
 - does not support predicates (relations), only functions

 \(\rightarrow \) functional programming!
Generating squares by SLD-Resolution – Logic Programming (I)

- We code the problem as definite (Horn) clauses:
 \[
 \begin{align*}
 \text{nat}(0) \\
 \neg \text{nat}(X) \lor \text{nat}(\text{s}(X)) \\
 \neg \text{nat}(X) \lor \text{add}(0, X, X) \\
 \neg \text{add}(X, Y, Z) \lor \text{add}(\text{s}(X), Y, \text{s}(Z)) \\
 \neg \text{nat}(X) \lor \text{mult}(0, X, 0) \\
 \neg \text{mult}(X, Y, W) \lor \neg \text{add}(W, Y, Z) \lor \text{mult}(\text{s}(X), Y, Z) \\
 \neg \text{nat}(X) \lor \neg \text{nat}(Y) \lor \neg \text{mult}(X, X, Y) \lor \text{nat_square}(X, Y)
 \end{align*}
 \]

- **Query:** \(\text{nat}(\text{s}(0)) \) ?

- In order to refute: \(\neg \text{nat}(\text{s}(0)) \)

- **Resolution:**
 \[
 \neg \text{nat}(\text{s}(0)) \text{ with } \neg \text{nat}(X) \lor \text{nat}(\text{s}(X)) \text{ gives } \neg \text{nat}(0) \\
 \neg \text{nat}(0) \text{ with } \text{nat}(0) \text{ gives } \Box
 \]

- **Answer:** (yes)
Generating squares by SLD-Resolution – Logic Programming (II)

\[\text{nat}(0) \]
\[\neg \text{nat}(X) \lor \text{nat}(s(X)) \]
\[\neg \text{nat}(X) \lor \text{add}(0, X, X) \]
\[\neg \text{add}(X, Y, Z) \lor \text{add}(s(X), Y, s(Z)) \]
\[\neg \text{nat}(X) \lor \text{mult}(0, X, 0) \]
\[\neg \text{mult}(X, Y, W) \lor \neg \text{add}(W, Y, Z) \lor \text{mult}(s(X), Y, Z) \]
\[\neg \text{nat}(X) \lor \neg \text{nat}(Y) \lor \neg \text{mult}(X, X, Y) \lor \text{nat_square}(X, Y) \]

- **Query:** \(\exists X \exists Y \text{ add}(X, Y, s(0)) \) ?
- **In order to refute:** \(\neg \text{add}(X, Y, s(0)) \)
- **Resolution:**
 \(\neg \text{add}(X, Y, s(0)) \) with \(\neg \text{nat}(X) \lor \text{add}(0, X, X) \) gives \(\neg \text{nat}(s(0)) \)
 \(\neg \text{nat}(s(0)) \) solved as before
- **Answer:** \(X = 0, Y = s(0) \)
- **Alternative:**
 \(\neg \text{add}(X, Y, s(0)) \) with \(\neg \text{add}(X, Y, Z) \lor \text{add}(s(X), Y, s(Z)) \) gives \(\neg \text{add}(X, Y, 0) \)
Generating Squares in a Practical Logic Programming System (I)

:- module(_,_,['bf/bfall']).

nat(0).
nat(s(X)) :- nat(X).

le(0,X) :- nat(X).
le(s(X),s(Y)) :- le(X,Y).

add(0,Y,Y) :- nat(Y).
add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,Y,0) :- nat(Y).
mult(s(X),Y,Z) :- add(W,Y,Z), mult(X,Y,W).

nat_square(X,Y) :- nat(X), nat(Y), mult(X,X,Y).

output(X) :- nat(Y), le(Y,s(s(s(s(s(0)))))), nat_square(Y,X).
<table>
<thead>
<tr>
<th>Query</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>?- nat(s(0)).</code></td>
<td>yes</td>
</tr>
<tr>
<td><code>?- add(s(0), s(s(0)), X).</code></td>
<td>X = s(s(s(0)))</td>
</tr>
<tr>
<td><code>?- add(s(0), X, s(s(s(0)))).</code></td>
<td>X = s(s(0))</td>
</tr>
<tr>
<td><code>?- nat(X).</code></td>
<td>X = 0 ; X = s(0) ; X = s(s(0)) ; ...</td>
</tr>
<tr>
<td><code>?- add(X, Y, s(0)).</code></td>
<td>(X = 0 , Y = s(0)) ; (X = s(0) , Y = 0)</td>
</tr>
<tr>
<td><code>?- nat_square(s(s(0)), X).</code></td>
<td>X = s(s(s(s(0))))</td>
</tr>
<tr>
<td><code>?- nat_square(X, s(s(s(0)))).</code></td>
<td>X = s(s(0))</td>
</tr>
<tr>
<td><code>?- nat_square(X, Y).</code></td>
<td>(X = 0 , Y = 0) ; (X = s(0) , Y = s(0)) ; (X = s(s(0)) , Y = s(s(s(s(0)))))) ; ...</td>
</tr>
<tr>
<td><code>?- output(X).</code></td>
<td>X = 0 ; X = s(0) ; X = s(s(s(s(0)))) ; ...</td>
</tr>
</tbody>
</table>
Additional examples (I) – Family relations

father_of(john, peter)
father_of(john, mary)
father_of(peter, michael)
mother_of(mary, david)
∀X∀Y(∃Z(father_of(X, Z) ∧ father_of(Z, Y)) → grandfather_of(X, Y))
∀X∀Y(∃Z(father_of(X, Z) ∧ mother_of(Z, Y)) → grandfather_of(X, Y))

father_of(john, peter).
father_of(john, mary).
father_of(peter, michael).
mother_of(mary, david).

grandfather_of(L,M) :- father_of(L,K),
 father_of(K,M).

grandfather_of(X,Y) :- father_of(X,Z),
 mother_of(Z,Y).

How can grandmother_of/2 be represented?

What does grandfather_of(X, david) mean? And grandfather_of(john, X)?
Additional examples (II) - Testing membership in lists

- **Declarative view:**
 - Suppose there is a functor \(f/2 \) such that \(f(H, T) \) represents a list with head \(H \) and tail \(T \).
 - Membership definition: \(X \in L \leftrightarrow \begin{cases}
 & X \text{ is the head of } L \\
 & \text{or } X \text{ is member of the tail of } L
 \end{cases} \)
 - Using logic:
 \[
 \forall X \forall L(\exists T (L = f(X, T) \rightarrow member(X, L))) \\
 \forall X \forall L(\exists Z \forall T(L = f(Z, T) \land member(X, T) \rightarrow member(X, L)))
 \]
 - Using Prolog:

 member(X, f(X, T)).
 member(X, f(Z, T)) :- member(X, T).

- **Procedural view (but for checking membership only!):**
 - Traverse the list comparing each element until \(X \) is found or list is finished

 /* Testing array membership in C */
 int member(int x, int list[LISTSIZE]) {
 for (int i = 0; i < LISTSIZE; i++)
 if (x == list[i]) return TRUE;
 return FALSE;
 }
A (very brief) History of Logic Programming (I)

- **60’s**
 - Greene: programming as problem solving.
 - Robinson: resolution.

- **70’s**
 - Colmerauer: specialized theorem prover (Fortran) embedding the procedural interpretation: First Prolog (“Programmation et Logique”) interpreter.
 - Kowalski: procedural interpretation of Horn clause logic. Read:
 \[
 A \text{ if } B_1 \text{ and } B_2 \text{ and } \cdots \text{ and } B_n \text{ as:}
 \]
 to solve (execute) \(A\), solve (execute) \(B_1\) and \(B_2\) and,\(,\ B_n\)
 \[
 \text{Algorithm} = \text{logic} + \text{control}.\]

 - D.H.D. Warren develops first compiler, DEC-10 Prolog, almost completely written in Prolog. Very efficient (same as Lisp). Top-level, debugger, very useful builtins, ... becomes the standard.
A (very brief) History of Logic Programming (II)

• 80’s, 90’s

◊ Major research in the basic paradigms and advanced implementation techniques: Japan (Fifth Generation Project), US (MCC), Europe (ECRC, ESPRIT projects), leading to the current EU “framework research programs”.
◊ Numerous commercial Prolog implementations, programming books, using the de facto standard, the Edinburgh Prolog family.
◊ Leading in 1995 to The ISO Prolog standard.
◊ Parallel and concurrent logic programming systems.
◊ Constraint Logic Programming (CLP): A major extension – opened new areas and even communities:
 * Commercial CLP systems with fielded applications.
 * Concurrent constraint programming systems.

• 2000-....

◊ Many other extensions: full higher order, support for types/modes, concurrency, distribution, objects, functional syntax, ...
◊ Highly optimizing compilers, automatic, automatic parallelism, automatic verification and debugging, advanced environments.

Also, Datalog, Answer Set Programming (ASP) – support for negation through stable models.
A (very brief) History of Logic Programming (III)

• Many applications:
 ◦ Natural language processing
 ◦ Scheduling/Optimization problems
 ◦ Many AI-related problems, (Multi) agent programming
 ◦ Heterogeneous data integration
 ◦ Program analyzers and verifiers
 ◦ ...

Many in combination with other languages.

• Some examples:
 ◦ The IBM Watson System (2011) has important parts written in Prolog.
 ◦ Clarissa, a voice user interface by NASA for browsing ISS procedures.
 ◦ The first Erlang interpreter was developed in Prolog by Joe Armstrong.
 ◦ The Microsoft Windows NT Networking Installation and Configuration system.
 ◦ The Ericsson Network Resource Manager (NRM).
 ◦ “A flight booking system handling nearly a third of all airline tickets in the world” (SICStus).
 ◦ The java abstract machine specification is written in Prolog.
 ◦ ...

24