Computational Logic
A Motivational Introduction
Computational Logic

- Logic of Computation
 - program verification
 - proving properties

- Declarative Programming
 - direct use of logic
 - as a programming tool

- Computational Logic
 - direct use of logic as a programming tool
 - program verification
 - proving properties
 - declarative programming
 - logic
 - verification
 - logic programming
 - functional programming
 - constraints
 - logic of programming
 - lambda calculus
 - logic and AI
 - knowledge representation
The Program Correctness Problem

- Conventional models of using computers – not easy to determine correctness!
 - Has become a very important issue, not just in safety-critical apps.
 - Components with assured quality, being able to give a warranty, ...
 - Being able to run untrusted code, certificate carrying code, ...
A Simple Imperative Program

• Example:

```c
#include <stdio.h>
main() {
    int Number, Square;
    Number = 0;
    while(Number <= 5) {
        Square = Number * Number;
        printf("%d\n",Square);
        Number = Number + 1; }
}
```

• Is it correct? With respect to what?

• A suitable formalism:
 ◦ to provide specifications (describe problems), and
 ◦ to reason about the correctness of programs (their implementation).

is needed.
“Compute the squares of the natural numbers which are less or equal than 5.”

Ideal at first sight, but:

- verbose
- vague
- ambiguous
- needs context (assumed information)
- ...

Philosophers and Mathematicians already pointed this out a long time ago...
Logic

- A means of clarifying / formalizing the human thought process
- Logic for example tells us that (classical logic)
 Aristotle likes cookies, and
 Plato is a friend of anyone who likes cookies
 imply that
 Plato is a friend of Aristotle
- Symbolic logic:
 A shorthand for classical logic – plus many useful results:
 $a_1 : \text{likes}(\text{aristotle}, \text{cookies})$
 $a_2 : \forall X \text{likes}(X, \text{cookies}) \to \text{friend}(\text{plato}, X)$
 $t_1 : \text{friend}(\text{plato}, \text{aristotle})$
 $T[a_1, a_2] \vdash t_1$
- But, can logic be used:
 - To represent the problem (specifications)?
 - *Even perhaps to solve the problem?*
For expressing specifications and reasoning about the correctness of programs we need:

- Specification languages (assertions), modeling, ...
- Program semantics (models, axiomatic, fixpoint, ...).
- Proofs: program *verification* (and debugging, equivalence, ...).
Generating Squares: A Specification (I)

Numbers—we will use “Peano” representation for simplicity:

0 → 0 1 → s(0) 2 → s(s(0)) 3 → s(s(s(0))) . . .

- Defining the natural numbers:
 \[nat(0) \land nat(s(0)) \land nat(s(s(0))) \land \ldots \]

- A better solution:
 \[nat(0) \land \forall X (nat(X) \rightarrow nat(s(X))) \]

- Order on the naturals:
 \[
 \forall X (le(0, X)) \land \\
 \forall X \forall Y (le(X, Y) \rightarrow le(s(X), s(Y)))
 \]

- Addition of naturals:
 \[
 \forall X (nat(X) \rightarrow add(0, X, X)) \land \\
 \forall X \forall Y \forall Z (add(X, Y, Z) \rightarrow add(s(X), Y, s(Z)))
 \]
Generating Squares: A Specification (II)

- Multiplication of naturals:
 \[\forall X \ (\text{nat}(X) \rightarrow \text{mult}(0, X, 0)) \land \\
 \forall X \forall Y \forall Z \forall W \ (\text{mult}(X, Y, W) \land \text{add}(W, Y, Z) \rightarrow \text{mult}(s(X), Y, Z)) \]

- Squares of the naturals:
 \[\forall X \forall Y \ (\text{nat}(X) \land \text{nat}(Y) \land \text{mult}(X, X, Y) \rightarrow \text{nat}_\text{square}(X, Y)) \]

We can now write a specification of the (imperative) program, i.e., conditions that we want the program to meet:

- **Precondition:**
 empty.

- **Postcondition:**
 \[\forall X (\text{output}(X) \leftarrow (\exists Y \ \text{nat}(Y) \land \text{le}(Y, s(s(s(s(0))))) \land \text{nat}_\text{square}(Y, X))) \]
Alternative Use of Logic?

- So, logic allows us to *represent problems* (program specifications).

 But, it would be interesting to also improve:

 i.e., the process of implementing solutions to problems.

- The importance of Programming Languages (and tools).

- Interesting question: can logic help here too?
• Assuming the existence of a *mechanical proof method* (deduction procedure) a *new view of problem solving and computing is possible* [Greene]:
 ◦ program once and for all the deduction procedure in the computer,
 ◦ find a suitable *representation* for the problem (i.e., the *specification*),
 ◦ then, to obtain solutions, ask questions and let deduction procedure do rest:

 ![Diagram](image)

 • No correctness proofs needed!

Diagram Description

- **Problem**: Input problem
- **Representation (specification)**: Guide for the deduction system
- **Questions**: Input for the deduction system
- **Deduction system**: Performs the deduction process
- **(Correct) Answers / Results**: Output of the system
Computing With Our Previous Description / Specification

<table>
<thead>
<tr>
<th>Query</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{nat}(s(0))$?</td>
<td>(yes)</td>
</tr>
<tr>
<td>$\exists X \ add(s(0), s(s(0)), X)$?</td>
<td>$X = s(s(s(0)))$</td>
</tr>
<tr>
<td>$\exists X \ add(s(0), X, s(s(s(0))))$?</td>
<td>$X = s(s(0))$</td>
</tr>
<tr>
<td>$\exists X \ nat(X)$?</td>
<td>$X = 0 \lor X = s(0) \lor X = s(s(0)) \lor \ldots$</td>
</tr>
<tr>
<td>$\exists X \exists Y \ add(X, Y, s(0))$?</td>
<td>$(X = 0 \land Y = s(0)) \lor (X = s(0) \land Y = 0)$</td>
</tr>
<tr>
<td>$\exists X \ nat_square(s(s(0)), X)$?</td>
<td>$X = s(s(s(0))))$</td>
</tr>
<tr>
<td>$\exists X \ nat_square(X, s(s(s(s(0))))))$?</td>
<td>$X = s(s(0))$</td>
</tr>
<tr>
<td>$\exists X \exists Y \ nat_square(X, Y)$?</td>
<td>$(X = 0 \land Y = 0) \lor (X = s(0) \land Y = s(0)) \lor (X = s(s(0)) \land Y = s(s(s(s(0)))))) \lor \ldots$</td>
</tr>
<tr>
<td>$\exists X output(X)$?</td>
<td>$X = 0 \lor X = s(0) \lor X = s(s(s(s(0)))) \lor X = s^9(0) \lor X = s^{16}(0) \lor X = s^{25}(0)$</td>
</tr>
</tbody>
</table>
Which Logic?

- We have already argued the convenience of representing the problem in logic, but
 - which logic?
 - propositional
 - predicate calculus (first order)
 - higher-order logics
 - modal logics
 - λ-calculus, ...
 - which reasoning procedure?
 - natural deduction, classical methods
 - resolution
 - Prawitz/Bibel, tableaux
 - bottom-up fixpoint
 - rewriting
 - narrowing, ...
Issues

- We try to maximize expressive power.
- But one of the main issues is whether we have an **effective** reasoning procedure.
- It is important to understand the underlying properties and the theoretical limits!
- Example: propositions vs. first-order formulas.
 - Propositional logic:
 "spot is a dog" \(p \)
 "dogs have tail" \(q \)
 but how can we conclude that Spot has a tail?
 - Predicate logic extends the expressive power of propositional logic:
 \[
 \begin{align*}
 \text{dog}(\text{spot}) \\
 \forall X \text{dog}(X) \rightarrow \text{has_tail}(X)
 \end{align*}
 \]
 now, using deduction we can conclude:
 \[
 \text{has_tail}(\text{spot})
 \]
Comparison of Logics (I)

- Propositional logic:

 "spot is a dog"
 \[p \]
 + decidability/completeness
 - limited expressive power
 + practical deduction mechanism

 \[\rightarrow \text{circuit design, "answer set" programming, ...} \]

- Predicate logic: (first order)

 "spot is a dog"
 \[\text{dog(spot)} \]
 +/- decidability/completeness
 +/- good expressive power
 + practical deduction mechanism (e.g., \textit{SLD-resolution})

 \[\rightarrow \text{classical logic programming!} \]
Comparison of Logics (II)

- Higher-order predicate logic:

 "There is a relationship for spot" \(X(spot) \)

 - decidability/completeness

 + good expressive power

 – practical deduction mechanism

 But interesting subsets \(\rightarrow \) HO logic programming, functional-logic prog., ...

- Other logics: decidability? Expressive power? Practical deduction mechanism?

 Often (very useful) variants of previous ones:

 ◇ Predicate logic + constraints (in place of unification)

 \(\rightarrow \) constraint programming!

 ◇ Propositional temporal logic, etc.

- Interesting case: \(\lambda \)-calculus

 + similar to predicate logic in results, allows higher order

 - does not support predicates (relations), only functions

 \(\rightarrow \) functional programming!
Generating squares by SLD-Resolution – Logic Programming (I)

- We code the problem as definite (Horn) clauses:
 \[
 \begin{align*}
 &\text{nat}(0) \\
 &\neg\text{nat}(X) \lor \text{nat}(s(X)) \\
 &\neg\text{nat}(X) \lor \text{add}(0, X, X) \\
 &\neg\text{add}(X, Y, Z) \lor \text{add}(s(X), Y, s(Z)) \\
 &\neg\text{nat}(X) \lor \text{mult}(0, X, 0) \\
 &\neg\text{mult}(X, Y, W) \lor \neg\text{add}(W, Y, Z) \lor \text{mult}(s(X), Y, Z) \\
 &\neg\text{nat}(X) \lor \neg\text{nat}(Y) \lor \neg\text{mult}(X, X, Y) \lor \text{nat_square}(X, Y)
 \end{align*}
 \]

- **Query:** \text{nat}(s(0)) ?

- In order to refute: \neg\text{nat}(s(0))

- **Resolution:**
 \[
 \begin{align*}
 &\neg\text{nat}(s(0)) \text{ with } \neg\text{nat}(X) \lor \text{nat}(s(X)) \text{ gives } \neg\text{nat}(0) \\
 &\neg\text{nat}(0) \text{ with } \text{nat}(0) \text{ gives } \Box
 \end{align*}
 \]

- **Answer:** \textit{(yes)}
Generating squares by SLD-Resolution – Logic Programming (II)

\[
nat(0) \\
\neg\nat(X) \lor \nat(s(X)) \\
\neg\nat(X) \lor \add(0, X, X) \\
\neg\add(X, Y, Z) \lor \add(s(X), Y, s(Z)) \\
\neg\nat(X) \lor \mult(0, X, 0) \\
\neg\mult(X, Y, W) \lor \neg\add(W, Y, Z) \lor \mult(s(X), Y, Z) \\
\neg\nat(X) \lor \neg\nat(Y) \lor \neg\mult(X, X, Y) \lor \\text{nat_square}(X, Y)
\]

- **Query:** \(\exists X \exists Y \add(X, Y, s(0)) \) ?
- **In order to refute:** \(\neg\add(X, Y, s(0)) \)
- **Resolution:**
 \(\neg\add(X, Y, s(0)) \) with \(\neg\nat(X) \lor \add(0, X, X) \) gives \(\neg\nat(s(0)) \)
 \(\neg\nat(s(0)) \) solved as before
- **Answer:** \(X = 0, Y = s(0) \)
- **Alternative:**
 \(\neg\add(X, Y, s(0)) \) with \(\neg\add(X, Y, Z) \lor \add(s(X), Y, s(Z)) \) gives \(\neg\add(X, Y, 0) \)
Generating Squares in a Practical Logic Programming System (I)

:- module(_,_,['bf/bfall']).

nat(0).
nat(s(X)) :- nat(X).

le(0,X) :- nat(X).
le(s(X),s(Y)) :- le(X,Y).

add(0,Y,Y) :- nat(Y).
add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,Y,0) :- nat(Y).
mult(s(X),Y,Z) :- add(W,Y,Z), mult(X,Y,W).

nat_square(X,Y) :- nat(X), nat(Y), mult(X,X,Y).

output(X) :- nat(Y), le(Y,s(s(s(s(s(0)))))), nat_square(Y,X).
Generating Squares in a Practical Logic Programming System (II)

<table>
<thead>
<tr>
<th>Query</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>?- nat(s(0)).</code></td>
<td>yes</td>
</tr>
<tr>
<td><code>?- add(s(0),s(s(0)),X).</code></td>
<td>X = s(s(s(0)))</td>
</tr>
<tr>
<td><code>?- add(s(0),X,s(s(s(0))))</code></td>
<td>X = s(s(0))</td>
</tr>
<tr>
<td><code>?- nat(X).</code></td>
<td>X = 0 ; X = s(0) ; X = s(s(0)) ; ...</td>
</tr>
<tr>
<td><code>?- add(X,Y,s(0)).</code></td>
<td>(X = 0 , Y=s(0)) ; (X = s(0) , Y = 0)</td>
</tr>
<tr>
<td><code>?- nat_square(s(s(0)), X).</code></td>
<td>X = s(s(s(s(0))))</td>
</tr>
<tr>
<td><code>?- nat_square(X,s(s(s(s(0))))).</code></td>
<td>X = s(s(0))</td>
</tr>
<tr>
<td><code>?- nat_square(X,Y).</code></td>
<td>(X = 0 , Y=0) ; (X = s(0) , Y=s(0)) ; (X = s(s(0)) , Y=s(s(s(s(0))))) ; ...</td>
</tr>
<tr>
<td><code>?- output(X).</code></td>
<td>X = 0 ; X = s(0) ; X = s(s(s(s(s(0)))))) ; ...</td>
</tr>
</tbody>
</table>
Introductory example (I) – Family relations

father_of(john, peter)
father_of(john, mary)
father_of(peter, michael)
mother_of(mary, david)
∀X∀Y(∃Z(father_of(X, Z) ∧ father_of(Z, Y)) → grandfather_of(X, Y))
∀X∀Y(∃Z(father_of(X, Z) ∧ mother_of(Z, Y)) → grandfather_of(X, Y))

father_of(john, peter).
father_of(john, mary).
father_of(peter, michael).
mother_of(mary, david).

grandfather_of(L,M) :- father_of(L,K),
father_of(K,M).

grandfather_of(X,Y) :- father_of(X,Z),
mother_of(Z,Y).

- How can grandmother_of/2 be represented?

- What does grandfather_of(X,david) mean? And grandfather_of(john,X)?
Introductory example (II) - Testing membership in lists

- Declarative view:

 ◦ Suppose there is a functor \(f/2 \) such that \(f(H,T) \) represents a list with head \(H \) and tail \(T \).

 ◦ Membership definition: \(X \in L \iff \begin{cases} X \text{ is the head of } L \\ \text{or } X \text{ is member of the tail of } L \end{cases} \)

 ◦ Using logic:

 \[
 \forall X \forall L(\exists T (L = f(X,T) \rightarrow member(X,L))) \\
 \forall X \forall L(\exists Z \exists T (L = f(Z,T) \land member(X,T) \rightarrow member(X,L)))
 \]

 ◦ Using Prolog:

 member(X, f(X, T)).
 member(X, f(Z, T)) :- member(X, T).

- Procedural view (but for checking membership only!):

 ◦ Traverse the list comparing each element until \(X \) is found or list is finished

 /* Testing array membership in C */
 int member(int x, int list[LISTSIZE]) {
 for (int i = 0; i < LISTSIZE; i++)
 if (x == list[i]) return TRUE;
 return FALSE;
 }
A (very brief) History of Logic Programming (I)

- **60’s**
 - Greene: programming as problem solving.
 - Robinson: (linear) resolution.

- **70’s**
 - Kowalski: procedural interpretation of Horn clause logic. Read:
 - \(A \) if \(B_1 \) and \(B_2 \) and \(\cdots \) and \(B_n \) as:
 - to solve (execute) \(A \), solve (execute) \(B_1 \) and \(B_2 \) and,..., \(B_n \)

 Algorithm = logic + control.

 - Colmerauer: specialized theorem prover (Fortran) embedding the procedural interpretation: Prolog (Programmation et Logique).

 - In the U.S.: “next-generation AI languages” of the time (i.e. planner) seen as inefficient and difficult to control.

A (very brief) History of Logic Programming (II)

- Late 80’s, 90’s
 - Major research in the basic paradigms and advanced implementation techniques: Japan (Fifth Generation Project), US (MCC), Europe (ECRC, ESPRIT projects, leading to the “framework programs”).
 - Numerous commercial Prolog implementations, programming books, and a de facto standard, the Edinburgh Prolog family.
 - Leading in 1995 to The ISO Prolog standard.
 - Parallel and concurrent logic programming systems.
 - CLP – Constraint Logic Programming: Major extension – opened many new applications areas.
 * Commercial CLP systems with fielded applications.
 * Concurrent constraint programming systems.

- 2000-...
 - Many other extensions: full higher order, inclusion of functional programming, types, verification, partial evaluation, concurrency, distribution, objects, ...
 - Highly optimizing compilers, environments, automatic parallelism, automatic debugging.
 - Datalog, Answer Set Programming (ASP) – support for negation through stable models. Many applications.
A (very brief) History of Logic Programming (III)

- Many applications:
 - Natural language processing
 - Scheduling/Optimization problems
 - AI related problems
 - (Multi) agent systems programming
 - Program analyzers
 - ...

- Some examples:
 - The first C++ compiler was written in Prolog.
 - The java abstract machine is specified in Prolog.
 - The IBM Watson System (2011) has important parts written in Prolog.
 https://www.youtube.com/watch?v=P18EdAKuC1U
 - ...

...